
HAL Id: hal-03243936
https://hal.science/hal-03243936

Submitted on 31 May 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Animating Fourier series decomposition of a character
with LuaTeX and MPLIB

Maxime Chupin

To cite this version:
Maxime Chupin. Animating Fourier series decomposition of a character with LuaTeX and MPLIB.
Tugboat, 2021, 42, pp.67 - 71. �10.47397/tb/42-1/tb130chupin-fourier�. �hal-03243936�

https://hal.science/hal-03243936
https://hal.archives-ouvertes.fr

TUGboat, Volume 42 (2021), No. 1 67

Animating Fourier series decomposition of a
character with LuaTEX and MPLIB

Maxime Chupin

Abstract
In this article, we will see how, thanks to METAPOST

and MPLIB and LuaTEX, we can build an anima-
tion illustrating in a mechanical way the Fourier
decomposition of a closed contour.

This is a translation by the author of the original
article in French, published in La Lettre GUTenberg
number 41 [2] of the French TEX user group.

1 Introduction
The video artist 3Blue1Brown,1 mathematical pop-
ularizer on YouTube, has made a video illustrating
the Fourier decomposition of a closed path by an-
imations of gear mechanisms of circles put end to
end. The result is magnificent and bewitching (see
figure 1).

Figure 1: But what is a Fourier series? From thermal
transfer to drawings with circles from 3Blue1Brown on
YouTube.

It is not easy to describe these animations in
words, but the idea is to put circles of different diam-
eters with inscribed vectors that rotate at different
speeds end to end, and the end of this broken line
traces the closed curve (the music note in figure 1).

This viewing made me want to do this with our
favorite tools, specifically with LuaLATEX and META-
POST, itself included in LuaTEX via the MPLIB
library. I also thought it would be interesting to
make these animations with the outline of a glyph
of a character (of one part, i.e., connected). So I
started working on this project.

2 Mathematical principle
We therefore consider a closed curve in R2 that can
be considered as a periodic function f : R 7→ C. The

1 youtube.com/watch?v=-qgreAUpPwM

period is considered to be equal to 1. Without going
into details, the Fourier series decomposition of f is:

∀t ∈ [0, 1], f(t) =
+∞∑

n=−∞
cn(f)ein2πt,

where

cn(f) =
∫ 1/2

−1/2
f(t)e−in2πtdt.

Numerically, we will work with discrete versions
of this decomposition in Fourier series. Consider two
integers N and M large enough and M even. In the
discrete world, we will no longer have the continuous
f function but samples along the path, which we
will denote by (f1, f2, . . . , fN) where the fi ∈ C. We
then have:

∀t ∈ [0, 1], f(t) '
M/2∑

n=−M/2

c̃n(f)ein2πt, (1)

where

c̃n(f) =
N∑

k=0

1
N

fk+1e−i 2nk
N . (2)

The M +1 c̃n(f) will be called the Fourier coefficients.
Geometrically, we can see the relation (1) as a

sum of vectors of R2 (thus put end to end) with
norm the modulus of the complex number and, as
orientation, its argument.

Thus, when t runs through the interval [0, 1],
these vectors rotate and the end of the last vector
draws the closed curve2 that we have decomposed.

3 Get a set of points of R2 of the contour
We must therefore construct, from the contour of a
glyph, the sequence (f1, f2, . . . , fN) presented above.

3.1 Thanks to METAPOST

First, we need to obtain a discretization of the closed
contour of a given glyph. METAPOST [5], with the
MetaFun [3] format, allows us to do this quite easily.
For the example, we will take the glyph f , 500 points
for the discretization, and a certain homothetic factor
set to 0.1 for the display.

The METAPOST code is the following:

fontmapfile "=lm-ec.map";
picture lettre; path contourLettre; path p;
lettre := glyph "f" of "ec-lmri10";
nbrPoints := 500; scale := 0.1;
beginfig(1);
for item within lettre:
contourLettre := pathpart item;
for i:=1 upto nbrPoints:
if i=1:
p := point i/nbrPoints along contourLettre;

2 Or rather an approximation of the contour of the glyph.

doi.org/10.47397/tb/42-1/tb130chupin-fourier

Animating Fourier series decomposition of a character with LuaTEX and MPLIB

https://youtube.com/watch?v=-qgreAUpPwM
https://doi.org/10.47397/tb/42-1/tb130chupin-fourier

68 TUGboat, Volume 42 (2021), No. 1

else:
p := p--(point i/nbrPoints

along contourLettre);
fi;

endfor;
draw p scaled scale;

endfor; endfig; end;

The result is shown below, using the luamplib pack-
age [4] to use METAPOST directly in this article.

We will not detail this code here. It seems a bit
complex but this is due to the METAPOST’s glyph
structure that (fortunately) allows having several
parts for a glyph. Although here we will consider only
letters with one (connected) part, we must adhere to
the general data structure. The thing to remember
is that we have METAPOST code which allows us to
obtain a set of points constituting a discretization of
the character glyph outline.

3.2 The list of points with Lua
The computation of the Fourier series decomposition
of this closed curve is theoretically possible in TEX,
but Lua [6] offers us more capabilities, more speed,
and easier coding.3 So, using LuaTEX, we want to
retrieve this list of points on the Lua side. Another
advantage is that, as we have already said, LuaTEX
includes METAPOST via the Lua library, MPLIB
(see [7]).

3.3 Search for font files
With METAPOST (or MPLIB), unfortunately we can
use only Type 1 fonts. There is a little subtlety
concerning the opening of the font file: METAPOST

asks for a ‘pfb’ file type, while kpse asks for a ‘type1
fonts’ file type. Taco Hoekwater, on the metapost@
tug.org mailing list, provided me with the search
function that handles this little problem:

local mpkpse = kpse.new('luatex', 'mpost')
local function finder(name, mode, ftype)
if mode == "w" then
return name

else
if ftype == 'pfb' then
ftype='type1 fonts'

3 At least, for me . . .

end
return mpkpse:find_file(name,ftype)

end; end

3.4 From METAPOST to a Lua table
Having passed this small technical difficulty, we will
present here a Lua function that allows us to build
a Lua table which contains the points generated by
METAPOST.

function getpathfrommp(s,nbrPoints,scale)
−− define a Lua function which retrieves the list of
−− nbrPoints points made from the outline of the
−− character s; scale is a homothety parameter

−− launch MetaPost session using our search function
local mp = mplib.new({find_file = finder,})
−− metafun Format
mp:execute('input metafun ;')
−− we store the output of the MetaPost code execution
local rettable; rettable = mp:execute(
'fontmapfile "=lm-ec.map";
picture lettre; path contourLettre;
lettre := glyph "' .. s .. '" of "ec-lmri10";
path p; beginfig(1);
for item within lettre:
 contourLettre := pathpart item;
 for i:=1 upto'.. nbrPoints ..':
 if i=1: p := point i/'..nbrPoints..' along

contourLettre;
 else: p:= p--(point i/'..nbrPoints..' along

contourLettre);fi;
endfor;
draw p scaled '..scale..';
endfor; endfig; end;') −− MetaPost code as above
output = {} −− initialization
−− if the MetaPost code execution went well
if rettable.status == 0 then
figures = rettable.fig −− figure list
figure = figures[1] −− first and only figure
local objects = figure:objects() −− object list
−− compose figure from the first and only object:
local segment = objects[1]
for point =1, #segment.path do
output[point] = {}
output[point].x = segment.path[point].x_coord
output[point].y = segment.path[point].y_coord

end
end
else print("error") end;
return output
end

To roughly explain the above code, the purpose
is to get the output of the execution of a code by
METAPOST (MPLIB here). This output has a Lua
structure (see the LuaTEX documentation [7], sec-
tion mplib). So we browse this structure to extract

Maxime Chupin

metapost@tug.org
metapost@tug.org

TUGboat, Volume 42 (2021), No. 1 69

the list of points we are interested in: first of all the
list of figures, which here is limited to a single one,
then inside the first figure, we look for the objects
which again are limited to a single object (our closed
curve), then we browse the path (METAPOST) of
the object, named here segment, and finally we re-
trieve the x and y coordinates that we store in our
output variable output. For a description of the Lua
functions allowing us to browse the structure of the
object produced by the execution of the METAPOST

code, please refer to the LuaTEX documentation.
We pass in three parameters: the character

whose outline we want to trace (s), the number
of points (nbrPoints), and the homothety (scale).
Our code is not robust, because if the glyph corre-
sponding to the character s is not connected, there
is a strong chance that the code will not work.

4 Fourier series decomposition with Lua
4.1 Call to an external library
The Fourier series decomposition is done with com-
plex numbers as presented previously. Complex num-
bers are not natively managed by Lua, but many
libraries are available on the Web that implement
computation functions on complex numbers. I chose
the complex.lua file available at lua-users.org/
wiki/ComplexNumbers.

To use this library, we need:
1. on the LATEX side, to load the luapackage-

loader package (see the end of this article for
the complete LATEX code);

2. on the Lua side, to call the file complex.lua via
the following code:

complex = require "complex"

4.2 Convert the list of coordinates of R2 into
a list of complex numbers

To ease the computations, a function is created to
convert the list of coordinates obtained by the Lua
function getpathfrommp into a list of complex num-
bers. This is done by the following code, which needs
no further explanation.

function pathToComplex(path)
local complexPath
complexPath = {}
for i=1,#path do
complexPath[i]

= complex.new(path[i].x,path[i].y)
end
return complexPath
end

4.3 Implementation of Fourier coefficients
calculation

The computation of the Fourier coefficients c̃n(f)
of equality (2) is easily implemented with Lua, as
shown in the following code.

function cn(f,n)
local CN = complex.new(0.0,0.0)
local N = #f
for i=0,N-1 do
exposant = complex.new(0.0,-2.0*math.pi*n*i/N)
Exp = complex.exp(exposant)
CN = complex.add(CN,complex.mulnum(complex.mul

(f[i+1],Exp),1.0/N))
end
return CN; end

From this, we need to build the list
(c−M/2, c−M/2+1, . . . , c−1, c0, c1, . . . , cM/2),

which is done by the following Lua function:

function cnList(f)
local CNlist = {}
local M = #f
for i=0,M do
CNlist[i] = cn(f,math.floor(i-M/2))

end
return CNlist; end

5 Plot with mplibcode
Once all these code bricks are prepared, we just
have to implement the drawing with the help of the
mplibcode environment of the luamplib package [4]
(or we could use TikZ). This function has several
arguments:

• a discretized path, i.e., the set of coordinates
(x, y) of the contour of the glyph;

• its conversion into complexes (complexPath);
• a list of Fourier coefficients (cnList);
• a desired number of Fourier coefficients (M + 1

in the previous equations), i.e., the number of
circles and vectors drawn (nbrFourier);

• a time t ∈ [0, 1].

function coreDecomp(path, complexPath, cnList,
nbrFourier, t)

−− path: list of R^2 points
−− complexPath: complex list of these points
−− cnList: list of Fourier coefficients
−− nbrFourier: number of Fourier coefficients
−− initialization
local str
local cnListRotated = {}
local zero = math.floor(#cnList/2)
local NFourier = math.floor(nbrFourier/2)

Animating Fourier series decomposition of a character with LuaTEX and MPLIB

http://lua-users.org/wiki/ComplexNumbers
http://lua-users.org/wiki/ComplexNumbers

70 TUGboat, Volume 42 (2021), No. 1

cnListRotated[zero] = cnList[zero]
−− multiplication by e^{2i k pi t}
for k=1,zero do
cnListRotated[zero+k] = complex.mul(

cnList[zero+k],complex.exp(complex.new(0.0,
k*2*math.pi*t)))

cnListRotated[zero-k] = complex.mul(
cnList[zero-k],complex.exp(complex.new(0.0,

-k*2*math.pi*t)))
end
−− beginning of mplibcode
local str = "\\begin{mplibcode}\nverbatimtex
 \\leavevmode etex; beginfig(1);"
−− MetaPost code of the glyph to draw
local mpCodeLetter = mpCodePath(path)
str = str..mpCodeLetter −− concatenation
−− complex current point at which
−− we draw the next circle
local currentC = complex.new(0,0)
−− add the drawing of the circle and the vector
str = str .. mpCodeCircle(cnListRotated[zero],

currentC)
currentC = complex.add(currentC,

cnListRotated[zero])
for i=1,NFourier do −− for all Fourier coeff
str = str..mpCodeCircle(cnListRotated[zero+i],

currentC)
currentC = complex.add(currentC,

cnListRotated[zero+i])
str = str..mpCodeCircle(cnListRotated[zero-i],

currentC)
currentC = complex.add(currentC,

cnListRotated[zero-i])
end
str = str.."endfig;\n\\end{mplibcode}\n"

.."\\newpage" −− closing
return str; end

To help in reading this code: cnListRotated[i]
corresponds to the terms in the sum (1) of c̃n(f)e2ikπt,
since the multiplication by e2ikπt can be seen as a
rotation in the complex plane.

The main purpose of this function is to con-
struct a string containing the mplibcode that will
be sent to LATEX via the Lua tex.sprint() function.
The coreDecomp function above calls two other Lua
functions that produce the METAPOST code of the
drawing:

• the function mpCodePath(path), which takes as
argument the list of the contour points of the
glyph and draws the glyph;4

• the function mpCodeCircle(cn,shift), which
takes as argument a coefficient of Fourier cn
(after rotation) and an R2 shift which is the

4 There is also a frame drawn around it to make sure that
all images have the same size and thus be able to chain the
images to produce an animation.

end of the broken line where the vector and the
circle must be drawn.
The code for these two functions is below. They

mainly consist of the concatenation of strings to
produce METAPOST code.

function mpCodePath(path)
−− plot the path contour
local str = ""
str = str.."path p; p:="
for i=1,#path do
str = str.."("..string.format("%f",path[i].x)

..","..lstring.format("%f",path[i].y)

..")--"
end
str = str.."cycle; draw p;\n"
str = str.."pair ll,lr,ur,ul; ll:=llcorner p;"

.."ur:=urcorner p; lr:=lrcorner p;"

.."ul:=ulcorner p;\n"
str = str.."Wdth := abs(xpart lr - xpart ll);"

.."Hght := abs(ypart ul- ypart ll);"

.."prcW := 0.8; prcH := 0.3;\n"
str = str.."draw (ll+(-prcW*Wdth,-prcH*Hght))"

.."--(lr+(+prcW*Wdth,-prcH*Hght))"

.."--(ur+(+prcW*Wdth,+prcH*Hght))"

.."--(ul+(-prcW*Wdth,+prcH*Hght))"

.."--cycle;\n"
return str; end

function mpCodeCircle(cn,shift)
−− draw the circle and the vector corresponding to
−− the Fourier coefficient centered at points shift
local str
local abs,arg
abs,arg = complex.polar(cn)
str = "draw fullcircle scaled "

..string.format("%f",2*abs).."shifted ("

..string.format("%f",shift[1])..","

..string.format("% f",shift[2])

..") withcolor (0.7,0.7,0.7);\n"
str = str.."drawarrow ((0,0)--("

..string.format("%f",cn[1])..","

..string.format("%f",cn[2]).."))shifted("

..string.format("% f",shift[1])..","

..string.format("%f",shift[2])

..") withpen pencircle scaled 1pt "

.."withcolor (0.7,0.3,0.3);"
return str; end

5.1 Generate images for any t ∈ [0, 1]
To create the animation, we generate the images with
a discretization of the time interval [0, 1]. This can
be done with the following function.

function plotDecompAnim(letter,nbrPoints,
nbrFourier,scale,nbrFrame)

−− letter: character that we want to decompose
−− nbrPoints: number of points in discretization

Maxime Chupin

TUGboat, Volume 42 (2021), No. 1 71

−− nbrFourier: number of Fourier coefficients
−− scale: homothetic coefficient
−− nbrFrame: frame number
local str
local path = getpathfrommp(letter,nbrPoints,

scale)
local complexPath = pathToComplex(path)
local cnList = cnList(complexPath)
for frame=0,nbrFrame-1 do
t = frame/nbrFrame
str = coreDecomp(path,complexPath,cnList,

nbrFourier,t)
tex.sprint(str)

end
end

The Lua functions presented are all put in a
single Fourier.lua file.

6 Animations and code
Once all these Lua functions are implemented, we
just have to load them and call the Lua function
plotDecompAnim using the command \directlua,
as shown in the following code.

\documentclass{article}
\usepackage{luapackageloader}
\usepackage{luamplib}
\directlua{dofile("Fourier.lua")}
\pagestyle{empty}
\begin{document}
\directlua{

plotDecompAnim("f",300,50,0.26,360)
}
\end{document}

To conclude, we have considered only three files:
the LATEX file above fourier.tex, the Fourier.lua
file which contains all our Lua functions presented
here, and the complex.lua file retrieved from the
web. To compile and produce the PDF, which con-
tains as many pages as there are images, we put these
three files in the same directory and run lualatex
on our fourier.tex file:
$ lualatex fourier.tex

If you read this article as a PDF file with Acro-
bat Reader, you will be able to see the generated
animation (cf. figure 2) with the animate package [1].
Otherwise, all the code and the animation are visible
and downloadable here:
fougeriens.org/~mc/?page=exemples&dir=fourier

Figure 2: Animation

References
[1] A. Grahn. The animate package, 2020.

https://ctan.org/pkg/animate.
[2] Association GUTenberg. La Lettre GUTenberg

numéro 41, Décembre 2020. https://www.
gutenberg.eu.org/IMG/pdf/lettre41.pdf.

[3] H. Hagen. Metafun. http://www.pragma-ade.
com/general/manuals/metafun-p.pdf, 2020.
v. 2.11.3.

[4] H. Hagen, T. Hoekwater, et al. The luamplib
package. https://ctan.org/pkg/luamplib,
2020. v. 2.11.3.

[5] J.D. Hobby, MetaPost Development
Team. MetaPost, a user’s manual. https:
//ctan.org/pkg/metapost, 2019. v. 2.0.

[6] R. Ierusalimschy. Programming in Lua.
Lua.org, 2016.

[7] LuaTEX development team. LuaTEX Reference
Manual. http://www.luatex.org/svn/trunk/
manual/luatex.pdf, March 2020. v. 1.12.

� Maxime Chupin
29 rue Pierre et Marie Curie
91400 Orsay
France
mc (at) melusine dot eu dot org
https://fougeriens.org/~mc/

Animating Fourier series decomposition of a character with LuaTEX and MPLIB

https://fougeriens.org/~mc/?page=exemples&dir=fourier
https://ctan.org/pkg/animate
https://www.gutenberg.eu.org/IMG/pdf/lettre41.pdf
https://www.gutenberg.eu.org/IMG/pdf/lettre41.pdf
http://www.pragma-ade.com/general/manuals/metafun-p.pdf
http://www.pragma-ade.com/general/manuals/metafun-p.pdf
https://ctan.org/pkg/luamplib
https://ctan.org/pkg/metapost
https://ctan.org/pkg/metapost
https://Lua.org
http://www.luatex.org/svn/trunk/manual/luatex.pdf
http://www.luatex.org/svn/trunk/manual/luatex.pdf

	Introduction
	Mathematical principle
	Get a set of points of R^2 of the contour
	Thanks to Metapost
	The list of points with Lua
	Search for font files
	From Metapost to a Lua table

	Fourier series decomposition with Lua
	Call to an external library
	Convert the list of coordinates of R^2 into a list of complex numbers
	Implementation of Fourier coefficients calculation

	Plot with mplibcode
	Generate images for any t in [0,1]

	Animations and code

	0.Plus:
	0.Reset:
	0.Minus:
	0.EndRight:
	0.StepRight:
	0.PlayPauseRight:
	0.PlayRight:
	0.PauseRight:
	0.PlayPauseLeft:
	0.PlayLeft:
	0.PauseLeft:
	0.StepLeft:
	0.EndLeft:
	anm0:
	0.119:
	0.118:
	0.117:
	0.116:
	0.115:
	0.114:
	0.113:
	0.112:
	0.111:
	0.110:
	0.109:
	0.108:
	0.107:
	0.106:
	0.105:
	0.104:
	0.103:
	0.102:
	0.101:
	0.100:
	0.99:
	0.98:
	0.97:
	0.96:
	0.95:
	0.94:
	0.93:
	0.92:
	0.91:
	0.90:
	0.89:
	0.88:
	0.87:
	0.86:
	0.85:
	0.84:
	0.83:
	0.82:
	0.81:
	0.80:
	0.79:
	0.78:
	0.77:
	0.76:
	0.75:
	0.74:
	0.73:
	0.72:
	0.71:
	0.70:
	0.69:
	0.68:
	0.67:
	0.66:
	0.65:
	0.64:
	0.63:
	0.62:
	0.61:
	0.60:
	0.59:
	0.58:
	0.57:
	0.56:
	0.55:
	0.54:
	0.53:
	0.52:
	0.51:
	0.50:
	0.49:
	0.48:
	0.47:
	0.46:
	0.45:
	0.44:
	0.43:
	0.42:
	0.41:
	0.40:
	0.39:
	0.38:
	0.37:
	0.36:
	0.35:
	0.34:
	0.33:
	0.32:
	0.31:
	0.30:
	0.29:
	0.28:
	0.27:
	0.26:
	0.25:
	0.24:
	0.23:
	0.22:
	0.21:
	0.20:
	0.19:
	0.18:
	0.17:
	0.16:
	0.15:
	0.14:
	0.13:
	0.12:
	0.11:
	0.10:
	0.9:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

