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Abstract

How to learn a good predictor on data with missing values? Most efforts focus
on first imputing as well as possible and second learning on the completed data to
predict the outcome. Yet, this widespread practice has no theoretical grounding.
Here we show that for almost all imputation functions, an impute-then-regress
procedure with a powerful learner is Bayes optimal. This result holds for all
missing-values mechanisms, in contrast with the classic statistical results that
require missing-at-random settings to use imputation in probabilistic modeling.
Moreover, it implies that perfect conditional imputation is not needed for good
prediction asymptotically. In fact, we show that on perfectly imputed data the
best regression function will generally be discontinuous, which makes it hard
to learn. Crafting instead the imputation so as to leave the regression function
unchanged simply shifts the problem to learning discontinuous imputations. Rather,
we suggest that it is easier to learn imputation and regression jointly. We propose
such a procedure, adapting NeuMiss, a neural network capturing the conditional
links across observed and unobserved variables whatever the missing-value pattern.
Experiments confirm that joint imputation and regression through NeuMiss is better
than various two step procedures in our experiments with finite number of samples.

1 Introduction

Data with missing values are ubiquitous in many applications, as in health or business: some
observations come with missing features. There is a rich statistical literature on imputation as well
as inference with missing values [Rubin, 1976, Little and Rubin, 1987, 2002, 2019]. Most of the
theory and practices build upon the Missing At Random (MAR) assumption that allows to maximize
the likelihood of observed data while ignoring the missing-values mechanism, for instance using
expectation maximization [Dempster et al., 1977]. On the contrary, Missing Not At Random settings,
where missingness depends on the unobserved values, may not be identifiable and require dedicated
methods with a model of the missing-values mechanism.

Learning predictive models with missing values poses distinct challenges compared to inference
tasks [Josse et al., 2019]. Indeed, when the input is an arbitrary subset of variables in dimension d,
there are 2d potential missing data patterns and as many sub-models to learn. Consequently, even
simple data-generating mechanisms lead to complex decision rules [Le Morvan et al., 2020b]. To
date, there are few supervised-learning models natively suited for partially-observed data. A notable
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exception is found with tree-based models [Twala et al., 2008, Chen and Guestrin, 2016], widely
used in data-science practice.

The most common practice however remains by far to use off-the-shelf methods first for imputation of
missing values and second for supervised-learning on the resulting completed data. Such a procedure
may benefit from progress in missing-value imputation with machine learning [van Buuren 2018,
Yoon et al. 2018, Mattei and Frellsen 2019]. However, there is a lack of learning theory to support
such Impute-then-Regress procedures: Under what conditions are they Bayes consistent? Which
aspects of the imputation are important?

There is empirical realization that the choice of imputation matters for predictive performance. The
NADIA R package [Borowski and Fic] can select an imputation method to minimize a prediction
error on a test set. Auto-ML is used to optimize full pipelines, including imputation [eg Jarrett et al.,
2021]. Ipsen et al. [2020] optimize a constant imputation for supervised learning. However, the
imputation is only weakly guided by the target in these approaches, it is set either from a family
of black-box methods using gradient-free model selection, or from trivial imputation functions. In
addition, there is a lack of insight on what drives a good imputation for prediction.

We contribute a systematic analysis of Impute-the-Regress procedures in a general setting: non-linear
response function and any missingness mechanism (no MAR assumptions). We show that:

• Impute-then-Regress procedures are Bayes optimal for all missing data mechanisms and for
almost all imputation functions, whatever the number of variables that may be missing. This very
general result gives theoretical grounding to such widespread procedures.

• We study “natural” choices of imputation and regression functions: the oracle imputation by
the conditional expectation and oracle regression function on the complete data. We show that
chaining these oracles is not Bayes optimal in general and quantify its excess risk. We show that
in both cases, choosing an oracle for one step, imputation or regression, imposes discontinuities
on the other step, thus making it harder to learn.

• As these results suggest that imputation and regression should be adapted to one another, we
contribute a method that jointly optimizes imputation and regression, using NeuMiss networks
[Le Morvan et al., 2020a] as a differentiable imputation procedure.

• We compare empirically a number of Impute-then-Regress procedures on simulated non-linear
regression tasks. Joint optimization of both steps provides the best performance.

2 Problem setting
Notations We consider a dataset of i.i.d. realizations of the random variable (X,M, Y ) ∈ Rd ×
{0, 1}d × R where X are the complete covariates, M a missingness indicator, and Y a response of
interest. For each realization (x,m, y), mj = 1 indicates that xj is missing, and mj = 0 that it is
observed. We denote by mis(m) ⊂ J1, dK the indices corresponding to the missing covariates (and
similarly obs(m) the observed indices), so that xobs(m) corresponds to the entries actually observed.
We define the incomplete covariate vector X̃ ∈ (R ∪ (NA))

d as X̃j = Xj if Mj = 0 and X̃j = NA
otherwise, where NA represents a missing value.

Assumptions We assume thatX admits a density on Rd and that, for all j ∈ J1, dK , each component
Xj has finite expectation and variance, that is E

[
X2
j

]
<∞. Moreover, we assume that the response

Y is generated according to:

Y = f?(X) + ε, with E
[
ε|Xobs(M),M

]
= 0 and E

[
Y 2
]
<∞. (1)

where f? : Rd → R is a function of the complete input data X , ε ∈ R is a random noise vari-
able.

2.1 Supervised learning with missing values
Optimization problem In practice, in the presence of missing values, we do not have access to the
complete data (X,M, Y ) but only to the subset of it that is observed, i.e, (Xobs(M),M, Y ). Thus
instead of learning a mapping from Rd to R, we need to learn a mapping from (R ∪ (NA))

d to R,
where the set of observed covariates can be any subset of J1, dK. It is this unusual input space, partly
discrete, that makes supervised learning with missing values challenging and different from classical
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supervised learning problems. Formally, the optimization problem we wish to solve is:

min
f :(R∪(NA))d 7→R

R(f) := E
[(
Y − f(X̃)

)2
]

(2)

Bayes predictor The function which minimizes (2), called the Bayes predictor, is given by:

f̃?(X̃) = E
[
Y |Xobs(M),M

]
= E

[
f?(X)|Xobs(M),M

]
. (3)

As X̃ is a function of Xobs and M , we will sometimes slightly abuse notations and write f̃?(X̃) =

f̃?(Xobs,M). The risk of the Bayes predictor is called the Bayes risk, which we denote asR?. It is
the lowest achievable risk for a given supervised learning problem.

Definition 1 (Bayes optimality). A Bayes optimal function f achieves the Bayes rate, i.e,R(f) = R?.

As can be seen from (3), the Bayes predictor is a function of M , a discrete random variable that
can take one of 2d values since M ∈ {0, 1}d. The function f̃? can thus be viewed as 2d different
functions, one for each possible subset of variables. This view raises questions that are central to
this paper: How should we parametrize functions on such input domains? And which function
families should we consider to approximate f̃?? These questions have been studied in the case where
f? is assumed to be a linear function, and X follows a Gaussian distribution. Indeed, under these
assumptions, Le Morvan et al. [2020b,a] have derived analytical expressions for the Bayes predictor
and deduced appropriate parametric estimators. However, aside from specific cases, it is impossible to
derive an analytical expression for the Bayes predictor, and novel arguments are needed to understand
which classes of functions should be considered in general.

3 Asymptotic analysis of Impute-then-regress procedures
3.1 Impute-then-regress procedures
Let |mis(m)| (resp. |obs(m)|) be the number of missing entries (resp. observed) for any missing data
pattern m. For each m ∈ {0, 1}d, we define an imputation function φ(m) : R|obs(m)| → R|mis(m)|

which outputs values for the missing entries based on the observed ones. We denote by φ(m)
j :

R|obs(m)| → R the component function of φ(m) that imputes the j-th component in X if it is missing.
Classical choices of imputation functions include constant functions or linear functions. Finally,
we introduce the family of functions FI that transform an incomplete vector into a complete one,
precisely:

FI =

{
Φ : (R ∪ {NA})d → Rd : ∀j ∈ J1, dK , Φj(X̃) =

{
Xj ifMj = 0

φ
(M)
j (Xobs(M)) ifMj = 1

}
. (4)

Let us define FI∞ in the exact same way but for imputation functions φ(m) ∈ C∞, for all m ∈ {0, 1}d.
Here we study Impute-then-regress procedures, which we define as two-step procedures where the
data is first imputed using a function Φ ∈ FI , and then a regression is performed on the imputed
data. Such a procedure is quite natural to deal with arbitrary subsets of inputs variables. It embeds
the data into Rd to reduce the problem to a classical one. In practice, impute-then-regress procedures
are widely used. However, the choice of function class is so far mostly ad-hoc and raises multiple
questions: How close to the Bayes rate can functions obtained via such procedures be? Should we
prefer some choices of imputation functions over others? What happens when the missing data
mechanism is missing not at random? In this section, we will give answers to these questions.

Below, we write obs (resp. mis) instead of obs(M) (resp. mis(M)) to lighten notations.

3.2 Impute-then-regress procedures are Bayes optimal

Definition 2 (Universal consistency). An estimator fn is Bayes consistent if limn→∞R(fn) = R?.
It is said to be universally consistent if the previous statement holds for all distributions of (X,Y ).

The following theorem shows that Impute-then-regress procedures are Bayes optimal for almost
all imputation functions. In other words, it means that a universal learner trained on imputed data
provides optimal performances asymptotically for almost all imputation functions. Let us now define,

for all imputation functions Φ ∈ FI , the function g?Φ ∈ argmin
g:Rd 7→R

E
[(
Y − g ◦ Φ(X̃)

)2
]

.
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Theorem 3.1 (Bayes consistency of Impute-then-regress procedures). Assume the data is generated
according to (1). Then, for almost all imputation function Φ ∈ FI∞, the function g?Φ ◦ Φ is Bayes
optimal. In other words, for almost all imputation functions Φ ∈ FI∞, a universally consistent
algorithm trained on the imputed data Φ(X̃) is Bayes consistent.

Appendix A.3 gives the proof. Theorem 3.1 states a very general result: Impute-then-regress
procedures are Bayes consistent for all missing data mechanisms, almost all imputation functions,
regardless of the distribution of (X,Y ) and the number of missing covariates. Since Theorem 3.1
holds for almost all imputation functions, it implies that good imputations are not required to obtain
good predictive performances, at least asymptotically. Note that here, the notion of almost all is to be
understood in its topological sense, and not in its measure theory sense. Moreover, this theorem does
not make any assumption on the missing data mechanism, and is therefore valid for Missing Not At
Random (MNAR) data. This contrasts with most methods for inference and imputation with missing
values, valid only for MAR data. Finally, the theorem remains valid for any configuration of variables
that may contain missing values, including the case in which all variables may contain missing values.
Bayes consistency of Impute-the-Regress procedures has already been studied, but in much more
restricted settings. Josse et al. [2019] proved that such procedures are Bayes consistent under the
MAR assumption, for constant imputations functions and for only one potentially missing variable.
Bertsimas et al. [2021] refined this result to almost surely continuous imputation functions. While
these two prior works build on very similar proofs, we use here very different arguments summarized
in the next paragraph.

The first key idea of the proof is that, after imputation, all data points with a given missing data
pattern m are mapped to a manifoldM(m) of dimension |obs(m)|. For example in 3D, data points
are mapped to R3 when completely observed, to 2D manifolds when they have one value missing,
to 1D manifolds when they have two values missing, and to one point when all values are missing
(see Figure 1). Thus, Impute-then-Regress procedures first map data points to various manifolds
depending on their missing data patterns and then apply a prediction function defined on the whole
space including manifolds. The second key idea of the proof is to ensure that the original missing
data patterns of imputed points can almost surely be identified. For this, the proof requires that all
manifolds of the same dimension are pairwise transverse. This assumption is sufficient, though not
necessary, to ensure that the intersection of two manifolds of dimension |obs(m)| cannot itself be of
dimension |obs(m)|. Transversality is a weak assumption. In fact, Thom’s transversality theorem,
(which we rely on in our proof) says that it is a generic property: it holds for “typical examples”, i.e
almost all imputation functions will lead to transverse manifolds. To clarify this concept, we provide
a particular case in 2D where 1D manifolds are not transverse in Appendix A.4.

The proof is constructive and exhibits a function g?Φ which achieves the Bayes rate for a given set
of imputation functions. For each manifoldM(m), ordered from smallest dimension to largest, we
require that g?Φ onM(m) equals the Bayes predictor for missing data pattern m except on points for
which g?Φ has already been defined, i.e, the points whereM(m) intersects with the manifolds ranked
before it. Thus, we obtain a function g?Φ that does not depend on m, and which for each manifold,
equals the Bayes predictor except on subsets of measure zero under the assumption that manifolds of
the same dimension are pairwise transverse. Refer to appendix A.3 for more details.

Figure 1: Example - Imputation manifolds in three
dimensions — 3-dimensional Gaussian data after im-
putation. Data points are colored according to their
missing data pattern prior to imputation. Red, brown
and purple (resp. orange, blue, and green) corre-
spond to missing data patterns with two (resp. one)
missing value(s). Completely observed points are not
represented to ease the visualization of manifolds.
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While this theorem is a very general result, it does not say what the optimal function associated to a
given imputation looks like. In fact, depending on the imputation function it may be non-continuous,
vary widely, and require a very large number of samples to be approximated.

Note on Impute-then-classify procedures - Theorem 3.1 applies to regression problems. However,
it can easily be shown that a similar result holds in binary classification settings. Indeed, in a
binary classification setting, the Bayes predictor predicts class 1 if P (Y = 1|X) > 0.5 and -1
otherwise. Thus, it suffices to consider that the function of interest f?(X) is the posterior probability
P (Y = 1|X). Then the same arguments as those used to prove Theorem 3.1 can be used to show
that Impute-then-classify procedures are Bayes optimal for almost all imputation functions.

4 Imputation versus regression: choosing one may break the other
Theorem 3.1 gives a theoretical grounding to Impute-then-regress procedures. As it holds for almost
any imputation function, one could very well choose simple and cheap imputations such as imputing
by a constant. However, the difficulty of the ensuing learning problem will depend on the choice of
imputation function. Indeed, the function g?Φ that achieves the Bayes rate depends on the imputation
function Φ. In general, it may not be continuous or smooth. Thus g?Φ can be more or less difficult to
approximate by machine learning algorithms depending on the chosen imputation function.

Le Morvan et al. [2020b] showed that even if Y is a linear function of X , imputing by a constant
leads to a complicated Bayes predictor: piecewise affine but with 2d regions. This result highlights
how imputations neglecting the structure of covariates can result in additional complexity for the
regression function g?Φ. Rather, another common practice is to impute by the conditional expectation:
it minimizes the mean squared error between the imputed matrix and the complete one and is the target
of most imputation methods. One hope may be that if f? has desirable properties, such as smoothness,
conditional imputation will lead to a function g?Φ which inherits from these properties.

In this section we first show that replacing missing values by their conditional expectation in the
oracle regression function f? gives a small but non-zero risk. Characterizing the optimal function on
the conditionally-imputed data, we find that it suffers from discontinuities and thus forms a difficult
estimation problem. Rather, we study whether the imputation can be corrected for f? to form the
Bayes predictor on partially-observed data.

4.1 Applying f? on conditional imputations: chaining oracles isn’t without risks.

The conditional imputation function ΦCI : (R ∪ {NA})d → Rd is defined as follows:

∀j ∈ J1, dK , ΦCIj (X̃) =

{
Xj ifMj = 0

E [Xj |Xobs,M ] ifMj = 1

Note that ΦCI ∈ FI . To lighten notations, we will writeXCI := ΦCI(X̃) to denote the conditionally
imputed data.

Lemma 4.1 (First order approximation). Assume that the data is generated according to (1). More-
over assume that (i) f? ∈ C2(S,R) where S ⊂ Rd is the support of the data, and that (ii)
there exists positive semidefnite matrices H̄+ ∈ P+

d and H̄− ∈ P+
d such that for all X in S,

H̄− 4 H(X) 4 H̄+ with H(X) the Hessian of f? at X . Then for all X in S and for all missing
data patterns:

1

2
tr
(
H̄−mis,misΣmis|obs,M

)
≤ f̃?(X̃)− f?(XCI) ≤ 1

2
tr
(
H̄+
mis,misΣmis|obs,M

)
(5)

where Σmis|obs,M is the covariance matrix of the distribution of Xmis given Xobs and M .

Appendix A.6 gives the proof. The assumption that H̄− 4 H(X) 4 H̄+ for any X means that the
minimum and maximum curvatures of f? in any direction are uniformly bounded over the entire space.
Lemma 4.1 shows that applying f? to the conditionally imputed (CI) data is a good approximation of
the Bayes predictor when there is no direction in which both the curvature of f? and the conditional
variance of the missing data given the observed one are high. Intuitively, if a low quality imputation
is compensated by a flat function, or conversely, if a fast varying function is compensated by a high
quality imputation, then f? applied to the CI data approximates well the Bayes predictor.
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Proposition 4.1 ((Non-)Consistency of chaining oracles). The function f? ◦ ΦCI is Bayes optimal if
and only if the function f? and the imputed data XCI satisfy:

∀M s.t. P (M) > 0, E [f?(X)|Xobs,M ] = f?(XCI) almost everywhere. (6)

Besides, under the assumptions of Lemma 4.1, the excess risk of chaining oracles compared to the
Bayes riskR? is upper-bounded by:

R(f?◦ΦCI)−R? ≤ 1

4
EM

[
max

(
tr
(
H̄−mis,misΣmis|obs,M

)2
, tr
(
H̄+
mis,misΣmis|obs,M

)2)]
(7)

Appendix A.7 gives the proof. Condition (6) for Bayes optimality is clearly stringent. Indeed, if
one variable is missing, condition (6) says that the expectation of the regression function should be
equal to the regression function applied at the expected entry. Although such functions are difficult to
characterize precisely, it is clear that condition (6) is difficult to fulfill for generic regression functions
(linear functions are among the few examples that do satisfy it). Therefore, for most functions f?,
f? ◦ ΦCI is not Bayes optimal. Proposition 4.1 also gives an upper bound for the excess risk of the
predictor f?(XCI) compared to the Bayes rate, showing here again that if there is no direction in
which both the curvature and the variance of the missing data given the observed one are high, the
excess risk is small.

The special case of linear regression: When f? is a linear function, the curvature is 0, hence eq. (7)
implies no excess risk. This is also visible from the expression of the Bayes predictor (3), where the
expectation on unobserved data can be pushed inside f? as it is linear. The Bayes predictor can thus
be exactly written as f? applied to conditionally-imputed data.

4.2 Regressing on conditional imputations, a good idea?
Proposition 4.2 (Regression function discontinuities). Suppose that f? ◦ ΦCI is not Bayes optimal,
and that the probability of observing all variables is strictly positive, i.e., for all x, P (M =
(0, . . . , 0), X = x) > 0. Then there is no continuous function g such that g ◦ ΦCI is Bayes
optimal.

In other words, when conditional imputation is used, the optimal regression function experiences
discontinuities unless it is f?. The proof is given in appendix A.8. From a finite-sample learning
standpoint, discontinuous functions are in general harder to learn: in the general case, non-parametric
regression requires more samples to achieve a given error on functions without specific regularities as
opposed to functions with a form of smoothness [see e.g., Györfi et al., 2006, chap 3]. Hence, while
regression on conditional imputation may be consistent (Theorem 3.1), it can require an inordinate
number of samples.

4.3 Fasten your seat belt: corrected imputations may experience discontinuities.
Another possible route is to find corrected imputations which we define as imputation functions Φ
such that, if f? is used as regression function, the impute-then-regress procedure f? ◦ Φ is Bayes
optimal. Intuitively, given a fixed regression function f?, the question is: can we "correct" an
imputation function and thus the manifold that it describes so that f? restricted to this manifold is
equal to the Bayes predictor? Assuming f? is continuous, the intermediate value theorem gives a first
answer to this question by ensuring the existence of imputations functions satisfying

f? ◦ Φ(Xobs(M),M) = E
[
f?(X)|Xobs(M),M

]
.

For the same reasons as above, determining that such imputations not only exist but are continuous
is important from a practical perspective. Indeed, assuming f? is continuous, the Bayes predictor
with missing values could then be tackled as the composition of two continuous functions, with an
Impute-then-Regress strategy. Intuitively in 2D, the existence of a continuous corrected imputation
can be seen as the existence of a continuous path in the 2D plane whose value by f? equals the Bayes
predictor. Figure 2 (left) gives a simple example in 2D for which a continuous corrected imputation
exists. Here if one chooses the imputation function of X2 given X1 as the black function denoted as
Φcorrected, then its composition by the green paraboloid f? gives the Bayes Predictor depicted on the
right in black. By contrast, if one imputes by the conditional expectation, then its composition with
f? gives the red curve which is different from the Bayes Predictor. Note that the manifolds in Figure 1
were obtained using (continuous) corrected imputations functions for the same setting as Figure 2
(left) but with 3-dimensional data. However, as illustrated in Figure 2 (right), continuous corrected
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Bowl Wave

Figure 2: Left: corrected imputation The regression function is f?(x1, x2) 7→ x2
1 + x2

2. When x2

is missing, chaining perfect conditional imputation with the regression function (f? ◦ ΦCI ) gives a
biased predictor, shown in red, as the unexplained variance in x2 is turned into bias. However, using as
an imputation Φ(x1) =

√
ρ2x2

1 + (1− ρ2) corrects this bias, with ρ the correlation between x1 and
x2. Right: no continuous corrected imputation exists. The function is defined as f?(x1, x2) 7→
x2

2 − 3x2. No continuous corrected imputation is possible because the Bayes predictor on the
partially-observed data E[Y |X1] is monotonous, while the regression function f? is not.

imputations do not always exist. Indeed, on this example the Bayes predictor is non-decreasing but
there is no continuous path in the 2D plane on which f? is non-decreasing and maps at some point to
both the ’purple’ and ’yellow values’ (proof in Appendix A.9). It is thus of interest to clarify when
continuous corrected imputations exist. Proposition 4.3 establishes such conditions.

Proposition 4.3 (Existence of continuous corrected imputations). Assume that f? is uniformly
continuous, twice continuously differentiable and that, for all missing patterns m and all xobs,
the support of Xmis|Xobs = xobs,M = m is connected. Additionally, assume that for all missing
patternsm, and all (xobs, xmis), the gradient of f? with respect to the missing coordinates is nonzero:

∇xmis
f?(xobs, xmis) 6= 0. (8)

Then, for all m, theres exist continuous imputation functions φ(m) : R|obs(m)| → R|mis(m)| such that
f? ◦ Φ is Bayes optimal.

Appendix A.10 gives a proof based on a global implicit function theorem. Assumption 8 is restrictive:
it is for instance not met for our example in Figure 2 (left), which still admits continuous corrected
imputations. This highlights the fact that continuous corrected imputations also exist under weaker
conditions, but it is difficult to conclude on “how often” it is the case.

5 Jointly optimizing an impute-n-regress procedure: NeuMiss+MLP
The above suggests that it is beneficial to adapt the regression function to the imputation procedure
and vice versa. Hence, we introduce a method for the joint optimization of these two steps by chaining
a NeuMiss network with an MLP (multi-layer perceptron).

NeuMiss [Le Morvan et al., 2020a] is a neural-network architecture originally designed to approximate
the Bayes predictor for linear models with missing values. It contains a Neumann block that has the
particularity of using element-wise multiplications by the missingness indicator as non-linearities.
Here we reuse this block to play the role of an imputation layer. This choice is motivated by two
key reasons. First, the Neumann block is a theoretically grounded layer for missing values: it
can approximate the conditional expectation of the missing values given the observed ones with
an error that decays exponentially fast with its depth. As explained in Prop. 4.1, this property is
desirable in some cases. Second, it is a differentiable block, which allows it to be chained with a
MLP and learned jointly with the regression function. The resulting architecture can thus be seen as
an Impute-then-Regress architecture, but that can be jointly optimized.

We performed one minor improvement on the NeuMiss architecture compared to the original paper.
Though the theory behind NeuMiss points to using shared weights in the Neumann block as well as
residual connections going from the input to each hidden layer of the Neumann block, Le Morvan
et al. [2020a] used neither. We found empirically that shared weights in the Neumann block as well
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as residual connections improved performance. Therefore, we used both in all our experiments. For
clarity, the (non-linear) NeuMiss architecture is described in detail in Appendix B.1.

6 Empirical study of impute-n-regress procedures
6.1 Experimental setup
Data generation The data X ∈ Rn×d are generated according to a multivariate Gaussian distribu-
tion N (µ,Σ) where the mean is drawn from a standard Gaussian and the covariance is generated
as Σ = BB> + D. B ∈ Rd×q is a matrix with entries drawn from a standard normal Gaussian
distribution, and D is a diagonal matrix with small entries that ensures that the covariance matrix
is full rank. We study two correlation settings called high and low corresponding respectively to
q = int(0.3 ∗ d) and q = int(0.7 ∗ d). The experiments are run with d = 50.

Choice of f? The response Y is generated according to Y = f?(X) + ε with three choices of f?
named bowl, wave, and break depicted in Figure 3 (exact expression in appendix B.2). β is a vector
of ones normalized such that the quantity z = β>X + β0 follows a Gaussian distribution centered
on 1 with variance 1. Note that f?bowl, f

?
wave and f?break were designed so that the desired variations

occur over the support of the data. The noise ε is chosen so as to have a signal-to-noise ratio of 10.

Figure 3: Bowl, wave and
break functions used for f? in
the empirical study. 1 0 1 2 3

X + 0

f*
(

X
+

0) bowl

1 0 1 2 3
X + 0

f*
(

X
+

0) wave

1 0 1 2 3
X + 0

f*
(

X
+

0) break

Missing values 50% of the entries of X were deleted according to one of two missing data
mechanisms: Missing Completely At Random (MCAR) or Gaussian self-masking [GSM, see Le
Morvan et al., 2020a]. Gaussian self-masking is a Missing Not At Random (MNAR) mechanism,
where the probability that a variable j is missing depends on Xj via a Gaussian function.

Baseline methods benchmarked For each level of correlation (low or high), for each function f?
(bowl, wave or break), and each missing data mechanism (MCAR or GSM), we compare a number of
methods. First, for reference, we compute various oracle predictors:

• Bayes predictor: This is the function that achieves the lowest achievable risk. In general cases,
its expression cannot be derived analytically. However, we show that it can be derived for ridge
functions, i.e. functions of the form x 7→ g(β>x), for some choices of g including polynomials,
the Gaussian cdf and piecewise constant functions. We thus built f?bowl, f

?
wave and fbreak as

combination of these base functions which allows us to compute their corresponding Bayes
predictors. Appendix B.2 gives their expressions.

• Chained oracles: f? ◦ ΦCI consists in imputing by the conditional expectation and then applying
f?. The analytical expression of ΦCI can be derived analytically for both MCAR and GSM, and
we thus use this analytical expression to impute the missing values.

• Oracle + MLP: The data is imputed using the analytical expression of the conditional expectation,
and then a MLP is fitted to the completed data.

These three predictors all use ground truth information (parameters µ, Σ of the data distribution,
expression of f? or of the missing data mechanism) which are unavailable in practice. They are
mainly useful as reference points. We then compare the NeurMiss+MLP architecture and a number
of classic Impute-then-Regress methods as well as gradient boosted regression trees:

• Mean + MLP The data is imputed by the mean, and a multilayer perceptron (MLP) is fitted to the
completed data.

• MICE + MLP The data is imputed using Scikit-learn’s [Pedregosa et al., 2012, BSD licensed]
conditional imputer IterativeImputer that adapts the popular Multivariate Imputation by
Chained Equations [MICE, van Buuren, 2018] to be able to impute a test set. A multilayer
perceptron (MLP) is then fitted to the completed data.
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• GBRT: Gradient boosted regression trees (Scikit-learn’s HistGradientBoostingRegressor
with default parameters). This predictor readily supports missing values: during training, missing
values on the decision variable for a given split are sent to the left or right child depending on
which provides the largest gain. This is know as the Missing Incorporated Attribute strategy [Twala
et al., 2008].

Finally, we also run Mean + mask + MLP as well as MICE + mask + MLP in which the mask
is concatenated to the imputed data before fitting a MLP. Concatenating the mask is a widespread
pratice to account for MNAR data.

All MLPs are implemented with PyTorch [Paszke et al., 2019]. A validation set is used to choose
MLPs’ depth (1, 2 or 5), width (1d, 5d or 10d), initial learning rate (ranging from 5.10−4 to 10−2)
and weight decay (ranging from 10−6 to 10−3). Adam is used with an adaptive learning rate: the
learning rate is divided by 5 each time 10 consecutive epochs fail to decrease the training loss by at
least 1e-4. Early stopping is triggered when the validation score does not improve by at least 1e-4
for 12 consecutive epochs. The batch size is set to 100, and ReLUs are used as activation functions.
Finally for NeuMiss the depth is set to 20. Note that since the weights of NeuMiss are shared,
increasing its depth does not increase its number of parameters. For gradient boosted regression trees,
several hyperparameters are chosen using the validation set including the maximum number of leaves
for each tree (from 50 to 600), the maximum number of iterations for the boosting process (from 100
to 300), as well as the minimum number of samples per leaf (from 10 to 50).

The experiments use training sets of size n = 100 000 and validation and test sets of size n = 10 000.
The code for all experiments is available at https://github.com/marineLM/Impute_then_
Regress.

6.2 Experimental results
The results are presented in Figure 4 as well as in Figure 8 (Appendix B.3).

Chaining oracles fails when both curvature is high and correlation is low. The chained oracle
has a performance close to that of the Bayes predictor in all cases except when the wave or break
functions are applied to low correlation data. This observation illustrates well Proposition 4.1.
Intuitively, the Bayes predictor for each missing data pattern is a smoothed version of f?, and it is
all the more smoothed that there is uncertainty around the likely values of the missing data. In the

Chaining oracles
Oracle impute + MLP

NeuMiss + MLP
MICE + MLP

MICE & mask + MLP
mean impute + MLP

mean impute & mask + MLP
Gradient-boosted trees

high correlation: easy low correlation: hard high correlation: easy low correlation: hard

0.4 0.2 0.0

Chaining oracles
Oracle impute + MLP

NeuMiss + MLP
MICE + MLP

MICE & mask + MLP
mean impute + MLP

mean impute & mask + MLP
Gradient-boosted trees

0.4 0.2 0.0 0.3 0.2 0.1 0.0 0.2 0.1 0.0
Drop in R2 compared to Bayes predictor

MCAR

Bowl Wave

MNAR
Gaussian
self masking

Figure 4: Performances (R2 score on a test set) compared to that of the Bayes predictor across 10
repeated experiments.
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low correlation setting, the uncertainty is such that f? is not a good proxy anymore for the Bayes
predictor.

Regressing on oracle conditional imputation provide excellent performances. Contrary to the
chained oracles, Oracle + MLP is close to the Bayes rate in all cases. This result should be put into
perspective with Proposition 4.2, which states that there is no continuous regression function g such
that g ◦ΦCI is Bayes optimal unless it is f?. Indeed, as the MLP can only learn continuous functions,
it shows that there are continuous functions g such that g ◦ ΦCI , even though it is not Bayes optimal,
performs very well.

Adding the mask is critical in MNAR settings with mean and MICE imputations In MNAR
settings, missingness carries information that can be useful for prediction. However, both the mean
and iterative conditional imputation output an imputed dataset in which the missingness information
is more difficult to retrieve. For this reason, it is common practice to concatenate the mask with the
imputed data to expose the missingness information to the predictor. Our experiments show that
under self-masking (MNAR), adding the mask to the mean or iteratively imputed data markedly
improves performances. Note that NeuMiss does not require adding the mask as an input since the
missingness information is already incorporated via the non-linearities.

NeuMiss+MLP performs best among Impute-then-Regress predictors. In all settings, NeuMiss
performs best. GBRT performs poorly here possibly because they are not well adapted to approximate
smooth functions. Finally, note that when the difficulty of the problem increases, for example with a
lower correlation, then (i) the performance of the Bayes predictor decreases and (ii) the differences in
performance among methods is reduced, as in the lower right panel.

7 Conclusion
Impute-then-regress procedures assemble standard statistical routines to build predictors suited for
data with missing values. However, we have shown that seeking the best prediction of the outcome
leads to different tradeoffs compared to inferential purposes. Given a powerful learner, almost all
imputations lead asymptotically to the optimal prediction, whatever the missingness mechanism. A
good choice of imputation can however reduce the complexity of the function to learn. Though
conditional expectation can lead to discontinuous optimal regression functions, our experiments show
that it still leads to easier learning problems compared to simpler imputations. In order to adapt the
imputation to the regression function, we proposed to jointly learn these two steps by chaining a
trainable imputation via the NeuMiss networks and a classical MLP. An empirical study of non-linear
regression shows that it outperforms impute-then-regress procedures built on standard imputation
methods as well as gradient-boosted trees with incorporated handling of missing values. In further
work, it would be useful to theoretically characterize the learning behaviors of Impute-then-Regress
methods in finite sample regimes.
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Supplementary materials – What’s a good imputation to predict
with missing values?

A Proofs
A.1 Proof of Lemma A.1

Lemma A.1. Let φ(m) ∈ C∞
(
R|obs(m)|,R|mis(m)|) be the imputation function for missing data pat-

ternm, and letM(m) =
{
x ∈ Rd : xmis = φ(m)(xobs)

}
. For allm,M(m) is an |obs|−dimensional

manifold.

Proof. Let:

h(m) : Rd → R|mis|

x 7→ xmis − φ(m)(xobs)

Regular value: We will show that 0mis is a regular value of h(m). By definition [see p21 in Guillemin

and Pollack, 1974], a point y ∈ R|mis| is a regular value of h(m) if dh(m)
x is surjective at every point

x such that h(m)(x) = y. The mapping dh(m)
x is linear and can be represented by the Jacobian of

h(m) at x:

Jh(m)(x) =

(
A Id

)
, A ∈ R|mis|×|obs|, Id ∈ R|mis|×|mis|.

Given the structure of Jh(m)(x), it is obviously of rank |mis| at every point x. Thus dh(m)
x is

surjective at every point x, and it is true in particular for the points x such that h(m)(x) = 0. We
conclude that by definition, 0mis is a regular value of h(m).

Preimage theorem: By the Preimage theorem ([Guillemin and Pollack, 1974], p.21), since 0 ∈ Rmis
is a regular value of h(m) : Rd → R|mis|, then the the preimage

(
h(m)

)−1
(0) is a submanifold of

Rd of dimension d− |mis| = |obs|.

Since by definition,
(
h(m)

)−1
(0) =M(m), we have thatM(m) is a |obs|−dimensional mainfold.

A.2 Proof of Lemma A.2

Lemma A.2. Let m and m′ be two distinct missing data patterns with the same number of missing
values |mis|. Let φ(m) ∈ C∞

(
R|obs(m)|,R|mis(m)|) be the imputation function for missing data

pattern m, and letM(m) =
{
x ∈ Rd : xmis = φ(m)(xobs)

}
. We define similarly φ(m′) andM(m′).

For almost all imputation functions φ(m) and φ(m′),

dim
(
M(m) ∩M(m′)

)
=

{
0 if |mis| > d

2

d− 2|mis| otherwise.
(9)

Proof. According to Thom Transversality theorem ([Golubitsky, 1973], p.54) with:

• W =M(m′),

• f = φ(m),

• k = 0 (note that as stated p.37, J0(X,Y ) = X × Y and j0f(x) = graph(f)),
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we have that
{
φ(m) ∈ C∞(R|obs|,R|mis|) | graph(φ(m)) tM(m′)

}
is a residual subset of

C∞(R|obs|,R|mis|) in the C∞ topology. In other words, the fact that graph(φ(m)) is transverse to
M(m′) is a generic property. Put differently, almost all functions φ(m) have their graph transverse to
M(m′). Note that here the notion of almost all has to be understood in its topological sense, and not
in its measure theory sense.

Suppose that |obs| < d
2 . According to Lemma A.1, M(m′) is a |obs|−dimensional manifold.

Moreover we just showed that for almost all φ(m), graph(φ(m)) tM(m′). Applying Proposition
4.2 of [Golubitsky, 1973] (p.51) with W = M(m′) and f = graph(φ(m)), we obtain thatM(m)

andM(m′) are disjoint, since, by definition,M(m) is the image of graph(φ(m)). Consequently, the
dimension of their intersection is 0.

Suppose that |obs| ≥ d
2 . According to the theorem p.30 of [Guillemin and Pollack, 1974],

since M(m) and M(m′) are transverse submanifolds of Rd, their intersection is again a man-
ifold with codim(M(m) ∩ M(m′)) = codim(M(m)) + codim(M(m′)). This implies that
dim(M(m) ∩M(m′)) = 2|obs| − d.

A.3 Proof of Theorem 3.1
Theorem 3.1 (Bayes consistency of Impute-then-regress procedures). Assume the data is generated
according to (1). Then, for almost all imputation function Φ ∈ FI∞, the function g?Φ ◦ Φ is Bayes
optimal. In other words, for almost all imputation functions Φ ∈ FI∞, a universally consistent
algorithm trained on the imputed data Φ(X̃) is Bayes consistent.

Proof. Let φ(m) ∈ C∞
(
R|obs(m)|,R|mis(m)|) be the imputation function for missing data pattern m,

and letM(m) =
{
x ∈ Rd : xmis = φ(m)(xobs)

}
. According to Lemma A.1, for all m,M(m) is an

|obs|−dimensional manifold.M(m) corresponds to the subspace where all points with missing data
pattern m are mapped after imputation.

Let us order missing data patterns according to their number of missing values, with the pattern of
all missing entries ranked first and the pattern of all observed entries ranked last. Two patterns with
the same number of missing values are ordered arbitrarily. We use m(i) to refer to the missing data
pattern ranked in ith position.

Let g? be the function defined as follows: for all i,

∀Z = Φ(X̃) ∈M(m(i)) \
⋃

m(k)<m(i)

M(m(k)), g?(Z) = f̃?(X̃).

For a given missing data pattern m(i), by distributivity of intersections across unions, we have:

M(m(i))
⋂ ⋃

m(k)<m(i)

M(m(k))

 =
⋃

m(k)<m(i)

(
M(m(i))

⋂
M(m(k))

)

If m(k) has strictly more missing values than m(i), then by Lemma A.1 dim(M(m(k))) <
dim(M(m(i))), and thus dim(M(m(k)) ∩M(m(i))) < dim(M(m(i))). Moreover, If m(k) has the
same number of missing values as m(i), then by Lemma A.2, for almost all imputation func-
tions φ(m(k)) and φ(m(i)), dim(M(m(k)) ∩M(m(i))) < dim(M(m(i))). We conclude that for all
m(k) < m(i),M(m(k))∩M(m(i)) is a subset of measure zero inM(m(i)). Finally, since a countable
union of sets of measure zero has measure zero, we obtain that ∪

m(k)<m(i)

(
M(m(i)) ∩M(m(k))

)
has

measure zero inM(m(i)).

Let’s now compute the risk of g? ◦ Φ:

R(g? ◦ Φ) =
∑
M=m

P (M = m)

∫
Xobs

P (Xobs|M = m)
(
f̃?(X̃)− g? ◦ Φ(X̃)

)2

(10)
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For a given missing data pattern m, Φ(X̃) ∈ M(m). Moreover, we constructed g? such that g? ◦
Φ(X̃) = f̃?(X̃) for all Φ(X̃) ∈M(m) except on a set that we just showed to be of measure zero for
almost all imputation functions. As a result, the function Xobs 7→ f̃?(X̃)− g? ◦Φ(X̃) is zero almost

everywhere for a given m, and the function Xobs 7→ P (Xobs|M = m)
(
f̃?(X̃)− g? ◦ Φ(X̃)

)2

is
also zero almost everywhere. Since the integral of a function that vanishes almost everywhere is
equal to 0, we conclude thatR(g? ◦Φ) = 0. Since the risk cannot be negative, g? ◦Φ is a minimizer
of the risk and thus it is Bayes optimal.

A.4 Examples of transverse and nontransverse manifolds in 2D.
Theorem 3.1 is true for almost all imputation functions and not all of them. Thus, we can construct
examples with particular choices of imputation functions that lead to nontransverse manifolds, and
consequently for which Impute-then-Regress procedures are not Bayes optimal. We provide such an
example below.

Consider a dataset with points x ∈ R2, and let a ∈ R. Let Φ
(0,1)
2 (x1) = a ∗ x1 be the imputation

function for x2 when only x1 is observed. And let Φ
(1,0)
1 (x2) = 1

ax2 be the imputation function for
x1 when only x2 is observed. In this particular case shown in Figure 5 (bottom), the manifolds on
which the data with either x1 missing or x2 missing are projected are exactly the same (the same line
in the 2D space). Thus they are nontransverse and consequently Theorem 3.1 does not hold.

However according to the Thom transversality theorem, almost all imputation functions will lead to
transverse manifolds.

M(0,1)

M(1,0)

M(1,1)
M(0,0)

X1

X
2

M(0,1)

M(1,0)

M(1,1)

M(0,0)

X1

X
2

Figure 5: Example - Linear imputation manifolds in two di-
mensions Manifolds represented for linear imputation functions.
M(0,0) is the whole plane. Note thatM(1,1) need not be at the
intersection of the two lines, it depends on the imputation function
chosen. With linear imputation functions, M(0,1) and M(1,0)

are transverse if and only if the two lines are not coincident.Top:
Transverse manifolds. Bottom: Nontransverse manifolds.

A.5 Proof of Lemma A.3

Lemma A.3.

∀X ∈ Rp, ∀mis ⊆ J1, pK , H(X) 4 H̄+ =⇒ Hmis,mis(X) 4 H̄+
mis,mis

Proof. Let X ∈ Rp, and let m be a missing data pattern with observed (resp. missing) indices obs
(resp. mis). H(X) 4 H̄+ is equivalent to:

∀u ∈ Rp, u>
(
H̄+ −H(X)

)
u ≥ 0. (11)

Let V ⊆ Rp be a subspace such that for any v in V , vobs = 0. Since V ⊆ Rp, (11) implies:

∀v ∈ V, v>
(
H̄+ −H(X)

)
v ≥ 0

⇐⇒ ∀vmis ∈ R|mis |, v>mis
(
H̄+
mis,mis −Hmis,mis(X)

)
vmis ≥ 0

⇐⇒ Hmis,mis(X) 4 H̄+
mis,mis

A.6 Proof of Lemma 4.1
Lemma 4.1 (First order approximation). Assume that the data is generated according to (1). More-
over assume that (i) f? ∈ C2(S,R) where S ⊂ Rd is the support of the data, and that (ii)
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there exists positive semidefnite matrices H̄+ ∈ P+
d and H̄− ∈ P+

d such that for all X in S,
H̄− 4 H(X) 4 H̄+ with H(X) the Hessian of f? at X . Then for all X in S and for all missing
data patterns:

1

2
tr
(
H̄−mis,misΣmis|obs,M

)
≤ f̃?(X̃)− f?(XCI) ≤ 1

2
tr
(
H̄+
mis,misΣmis|obs,M

)
(5)

where Σmis|obs,M is the covariance matrix of the distribution of Xmis given Xobs and M .

Proof. Without loss of generality, suppose that we reorder variables such that we can write X =
(Xobs, Xmis). Consider the function

f?mis : R|mis| → R
Xmis 7→ f?(Xobs, Xmis)

Since f? ∈ C2
(
Rd,R

)
, we have f?mis ∈ C2

(
R|mis|,R

)
. Therefore, we can write the first order

Taylor expansion (see Theorem 2.68 in Folland [2002]) of f?mis around E [Xmis|Xobs,M ]:

f?mis(Xmis) =f?(Xobs,E [Xmis|Xobs,M ])

+∇f?mis(Xobs,E [Xmis|Xobs,M ])> (Xmis − E [Xmis|Xobs,M ])

+R (Xmis − E [Xmis|Xobs,M ]) ,

(12)

where R is the Lagrange remainder satisfying

R (Xmis − E [Xmis|Xobs,M ]) =

1

2
(Xmis − E [Xmis|Xobs,M ])

>
Hmis,mis(c) (Xmis − E [Xmis|Xobs,M ]) ,

for some c in the ball B (E [Xmis|Xobs,M ] , ‖Xmis − E [Xmis|Xobs,M ] ‖2). By assumption, for
all X , H(X) 4 H̄+. Therefore, according to Lemma A.3, we have Hmis,mis(X) 4 H̄+

mis,mis for
any missing data pattern, which leads to:

R (Xmis − E [Xmis|Xobs,M ]) ≤
1

2
(Xmis − E [Xmis|Xobs,M ])

>
H̄+
mis,mis (Xmis − E [Xmis|Xobs,M ]) .

Using equality (12), we get:

f?(Xobs, Xmis)− f?(Xobs,E [Xmis|Xobs,M ])

−∇f?mis(Xobs,E [Xmis|Xobs,M ])> (Xmis − E [Xmis|Xobs,M ])

≤ 1

2
(Xmis − E [Xmis|Xobs,M ])

>
H̄+
mis,mis (Xmis − E [Xmis|Xobs,M ])

Finally, taking the expectation with regards to P (Xmis|Xobs,M) on both sides, we obtain

E [f?(Xobs, Xmis)|Xobs,M ]− f?(Xobs,E [Xmis|Xobs,M ]) ≤ 1

2
tr(H+>

mis,misΣmis|obs,M ), (13)

where we have used the fact that, for any vector X ∈ Rd and for any H ∈ P+
d ,

X>HX = tr(X>HX) = tr(HXX>).

Following a similar reasoning, we can show that:

E [f?(Xobs, Xmis)|Xobs,M ]− f?(Xobs,E [Xmis|Xobs,M ]) ≥ 1

2
tr(H−>mis,misΣmis|obs,M ) (14)

Together, inequalities (13) and (14) conclude the proof.
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A.7 Proof of Proposition 4.1
Proposition 4.1 ((Non-)Consistency of chaining oracles). The function f? ◦ ΦCI is Bayes optimal if
and only if the function f? and the imputed data XCI satisfy:

∀M s.t. P (M) > 0, E [f?(X)|Xobs,M ] = f?(XCI) almost everywhere. (6)

Besides, under the assumptions of Lemma 4.1, the excess risk of chaining oracles compared to the
Bayes riskR? is upper-bounded by:

R(f?◦ΦCI)−R? ≤ 1

4
EM

[
max

(
tr
(
H̄−mis,misΣmis|obs,M

)2
, tr
(
H̄+
mis,misΣmis|obs,M

)2)]
(7)

Proof.

Y − f?(XCI) =(Y − f̃?(X̃)) + (f̃?(X̃)− f?(XCI)) (15)(
Y − f(XCI)

)2
=(Y − f̃?(X̃))2 + (f̃?(X̃)− f?(XCI))2 (16)

+ 2(Y − f̃?(X̃))(f̃?(X̃)− f?(XCI) (17)

=(Y − f̃?(X̃))2 + (f̃?(X̃)− f?(XCI))2 (18)

+ 2(f?(X)− f̃?(X̃))(f̃?(X̃)− f?(XCI)) (19)

+ 2ε(f̃?(X̃)− f?(XCI)) (20)

E
[(
Y − f?(XCI)

)2]
=R? + E

[(
f̃?(X̃)− f?(XCI)

)2
]

(21)

where we used the definition of the Bayes rate. Moreover, term (20) vanishes when tak-
ing the expectation w.r.t ε because E [ε|Xobs,M ] = 0 and ε in uncorrelated with X or M ,
and term (19) vanishes when taking the expectation w.r.t Xmis|Xobs,M because by definition
EXmis|Xobs,M [f?(Xobs, Xmis)] = f̃?(X̃).

Clearly, f? � ΦCI is Bayes optimal if ans only if:

E
[(
f̃?(X̃)− f?(XCI)

)2
]

= 0 (22)

⇐⇒
∑
M

∫
P (Xobs,M)

(
f̃?(X̃)− f?(XCI)

)2

dXobs = 0 (23)

⇐⇒ ∀M,Xobs : P (Xobs,M) > 0, f̃?(X̃) = f?(XCI) almost everywhere. (24)

where equality 24 is true since all terms are positive.

Besides, by Lemma 4.1, we have:

1

2
tr
(
H̄−mis,misΣmis|obs,M

)
≤ f̃?(X̃)− f?(XCI) ≤ 1

2
tr
(
H̄+
mis,misΣmis|obs,M

)
. (25)

By convexity of the square function, it follows that:(
f̃?(X̃)− f?(XCI)

)2

≤ 1

2
max

(
tr
(
H̄−mis,misΣmis|obs,M

)2
, tr
(
H̄+
mis,misΣmis|obs,M

)2)
.

(26)

Finally, by taking the expectation on both sides:

E
[(
f̃?(X̃)− f?(XCI)

)2
]
≤

1

2
EM

[
max

(
tr
(
H̄−mis,misΣmis|obs,M

)2
, tr
(
H̄+
mis,misΣmis|obs,M

)2)]
.

(27)

Combining equation (21) with inequality (27) concludes the proof.
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A.8 Proof of Proposition 4.2
Proposition 4.2 (Regression function discontinuities). Suppose that f? ◦ ΦCI is not Bayes optimal,
and that the probability of observing all variables is strictly positive, i.e., for all x, P (M =
(0, . . . , 0), X = x) > 0. Then there is no continuous function g such that g ◦ ΦCI is Bayes
optimal.

Proof. We will prove this result by contradiction. Suppose that (i) f? ◦ΦCI is not Bayes optimal, (ii)
the probability of observing all variables is strictly positive, (iii) there exists a function g continuous
such that g ◦ ΦCI is Bayes optimal.

Following a reasoning similar to the one in the proof of proposition 4.1, we can show that g ◦ ΦCI is
Bayes optimal if and only if:

∀M,Xobs : P (Xobs,M) > 0, E [f?(X)|Xobs,M ] = g(XCI) almost everywhere.

In particular since for all x, the joint probability P (M = (0, . . . , 0), X = x) of observing all
variables is strictly positive, g should satisfy this equality for M = (0, . . . , 0), i.e.:

f?(X) = g(X) almost everywhere.

Since g is continuous, it implies g = f?. Since by assumption, f? is not Bayes optimal, then g is not
either, which is a contradiction.

A.9 Example of a case where no continuous corrected imputation exists.
Let:

f? : R2 → R
(X1, X2) 7→ X3

2 − 3X2

and let:

X2 = X1 + ε with E [ε|X1,M = (0, 1)] = 0

E
[
ε2|X1,M = (0, 1)

]
= σ2, σ2 > 1

E
[
ε3|X1,M = (0, 1)

]
= 0

Suppose that X2 is missing. Then the Bayes predictor is given by:

f̃?(X1,M = (0, 1)) = E [f?(X)|X1,M = (0, 1)]

= E
[
X3

2 − 3X2|X1,M = (0, 1)
]

= E
[
(X1 + ε)

3 − 3 (X1 + ε) |X1,M = (0, 1)
]

= E
[
X3

1 + ε3 + 3X1ε
2 + 3X2

1 ε− 3X1 − 3ε)|X1,M = (0, 1)
]

= X3
1 + 3X1(σ2 − 1)

Clearly, the Bayes predictor for M = (0, 1) is:

• continuous,

• non-decreasing since σ2 > 1,

• lim
X1→+∞

f̃?(X1,M = (0, 1)) = +∞ and lim
X1→−∞

f̃?(X1,M = (0, 1)) = −∞.

Proof by contradiction: Suppose that there exists a function Φ : R→ R (i) continuous and (ii) such
that for all X1, f?(X1,Φ(X1)) = f̃?(X1,M = (0, 1)).

Let x+
1 ∈ R such that f̃?(X1 = x+

1 ,M = (0, 1)) > 2. x+
1 exists since lim

X1→+∞
f̃?(X1,M =

(0, 1)) = +∞. Clearly,

f?(x+
1 , X2) = f̃?(x+

1 ,M = (0, 1)) ⇐⇒ X2 = x+
2 with x+

2 > 2.
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Figure 6: Graph of X2 7→ f?(X1, X2)

Similarly, let x−1 ∈ R such that f̃?(X1 = x−1 ,M = (0, 1)) < −2. x−1 exists since
lim

X1→−∞
f̃?(X1,M = (0, 1)) = −∞. Clearly,

f?(x−1 , X2) = f̃?(x−1 ,M = (0, 1)) ⇐⇒ X2 = x−2 with x−2 < −2.

So Φ must satisfy:
Φ(x−1 ) = x−2 < −2

Φ(x+
1 ) = x+

2 > 2

Note that since the Bayes predictor is non-decreasing, we have x−1 < x+
1 . Since Φ is continuous,

there exists x̌1 ∈
[
x−1 , x

+
1

]
and x̂1 ∈

[
x−1 , x

+
1

]
such that x̌1 < x̂1 and Φ(x̌1) = −1 and Φ(x̂1) = 1.

It implies that:
f?(x̌1,Φ(x̌1)) = f?(x̌1,−1) = 2 > −2 = f?(x̂1, 1) = f?(x̂1,Φ(x̂1)).

This implies that the function X1 7→ f?(X1,Φ(X1)) cannot be non-decreasing. Since the Bayes
predictor is non-decreasing, the two cannot be equal. CONTRADICTION.

A.10 Proof of Proposition 4.3
We start by proving the result for a given missing pattern m ∈ {0, 1}d. Take r ∈ {1, . . . , d− 1} and
consider a missing pattern m such that |obs(m)| = r. We let F : Rr × Rd−r → R defined, for all
(xobs, xmis) as

F (xobs, xmis) = f?(xobs, xmis)− f̃?(xobs,m). (28)
Our aim is to find, for all xobs, a value xmis (depending continuously on xobs) satisfying

F (xobs, xmis) = 0. (29)
To this aim, we check the assumptions of Theorem 6 in Arutyunov and Zhukovskiy [2019] for the
function F . The desired conclusion will follow.

Since f? is uniformly continuous and twice continuously differentiable, condition 1−3 of Theorem 6
in Arutyunov and Zhukovskiy [2019] are satisfied. To verify the next condition, we have to prove that
there exists (xobs,0, xmis,0) such that F (xobs,0, xmis,0) = 0. Note that this is equivalent to finding
(xobs,0, xmis,0) satisfying

f?(xobs,0, xmis,0) = f̃?(xobs,0,m) = E [f?(X)|Xobs = xobs,0,M = m] , (30)

by definition of the regression function f̃?. By assumption, the support of Xmis|Xobs = xobs,0,M =
m is connected. Therefore, the intermediate value theorem can be applied and proves the existence
of a pair (xobs,0, xmis,0) satisfying equation (30). Finally, by assumption, the regularity condition
(GR1) in Arutyunov and Zhukovskiy [2019] is satisfied. This proves that there exists a continuous
mapping φ(m) : Rr → Rd−r such that

F (xobs, φ
(m)(xobs)) = 0. (31)

The previous reasoning holds for all missing patterns m, such that |mis(m)| ≥ 1. Besides the result
is clear for r = 0 since the imputation function is reduced to a constant in this case (no components
of X are observed). On the contrary, in the case where all covariates are observed (r = d), no
imputation function is needed. Therefore, the result holds for all 0 ≤ r ≤ d, which concludes the
proof.
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B Additional results
B.1 NeuMiss+MLP architecture

x� m̄ −

µ� m̄

W (0) + W (0) + W (0) + MLP Y

�m̄ �m̄ �m̄

Neumann block Non-linearity

Figure 7: (Non-linear) NeuMiss+MLP network architecture with a Neumann block of depth 3 —
m̄ = 1−m. MLP stands for a standard multi-layer perceptron with ReLU activations.

B.2 Expressions of f?bowl, f?wave and f?break and the corresponding Bayes predictors.
Expressions of f?bowl, f?wave and f?break. The functions f? used in the experimental study are
defined as:

f?bowl(X) =
(
β>X + β0 − 1

)2
f?wave(X) = (β>X + β0 − 1) +

∑
(ai,bi)∈S

ai Φ
(
γ
(
β>X + β0 + bi

))
f?break(X) =

(
β>X + β0

)
+ 3× 1β>X+β0>1

where Φ the standard Gaussian cdf, γ = 20
√

π
8 and S = {(2,−0.8), (−4,−1), (2,−1.2)}. β

is chosen as a vector of ones rescaled so that var(β>X) = 1. These functions are depicted in
Figure 3.

Expressions of the Bayes predictors. The expressions of the corresponding Bayes predictors are
given by:

f̃?bowl(X̃) = E [f?bowl(X)|Xobs,M ] (32)

=
(
β>obsXobs + β>misµmis|obs,M + β0 − 1

)2
+ β>misΣmis|obs,Mβmis (33)

f̃?wave(X̃) = E [f?wave(X)|Xobs,M ] (34)

= β>obsXobs + β>misµmis|obs,M + β0 − 1 (35)

+
∑

(ai,bi)∈S

ai Φ

β>obsXobs + β>misµmis|obs,M + β0 + bi√
1/γ2 + β>misΣmis|obs,Mβmis

 (36)

f̃?break(X̃) = E [f?break(X)|Xobs,M ] (37)

= β>obsXobs + β>misµmis|obs,M + β0 + 3

(
1− Φ

(
1− µmis|obs,M

β>misΣmis|obs,Mβmis

))
(38)

with µmis|obs,M and Σmis|obs,M the mean and covariance matrix of the conditional distribution
P (Xmis|Xobs,M). Below, we give the expression of these parameters for the MCAR and Gaussian
self-masking missing data mechanisms. Let µmis|obs and Σmis|obs the mean and covariance matrix
of the conditional distribution P (Xmis|Xobs). Since the data is generated according to a multivariate
Gaussian distribution N (µ,Σ), we have:

µmis|obs = µmis + Σmis|obsΣ
−1
obs(Xobs − µobs)

Σmis|obs = Σmis,mis − Σmis,obsΣ
−1
obsΣobs,mis

In the MCAR case, we simply have Σmis|obs,M = Σmis|obs and µmis|obs,M = µmis|obs. In the
Gaussian self-masking case, it has been shown in Le Morvan et al. [2020a] that P (Xmis|Xobs,M) is
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again Gaussian but with parameters:

Σmis|obs,M =
(
D−1
mis,mis + Σ−1

mis|obs

)−1

µmis|obs,M = Σmis|obs,M

(
D−1
mis,misµ̃mis + Σ−1

mis|obsµmis|obs

)
where µ̃ and D are parameters of the Gaussian self-masking missing data mechanism. Finally, we
detail below the derivations to obtain the expression of the Bayes predictors.

Derivation of the Bayes predictor for f?bowl.

f?bowl(X) =
(
β>X + β0 − 1

)2
(39)

=
(
β>obsXobs + β>misXmis + β0 − 1

)2
(40)

=
(
β>obsXobs + β>mis(Xmis − µmis|obs,M ) + β>misµmis|obs,M + β0 − 1

)2
(41)

=
(
β>obsXobs + β>misµmis|obs,M + β0 − 1

)2
+
(
β>mis(Xmis − µmis|obs,M )

)2
(42)

+ 2β>mis(Xmis − µmis|obs,M )
(
β>obsXobs + β>misµmis|obs,M + β0 − 1

)
(43)

Now taking the expectation with regards to P (Xmis|Xobs,M), the last term vanishes and we get:

E [f?bowl(X)|Xobs,M ] =
(
β>obsXobs + β>misµmis|obs,M + β0 − 1

)2
+ β>misΣmis|obs,Mβmis (44)

Derivation of the Bayes predictor for f?wave.

f?wave(X) = (β>X + β0 − 1) +
∑

(ai,bi)∈S

ai Φ
(
γ
(
β>X + β0 + bi

))
(45)

= (β>obsXobs + β>misXmis + β0 − 1) (46)

+
∑

(ai,bi)∈S

ai Φ
(
γ
(
β>obsXobs + β>misXmis + β0 + bi

))
(47)

Define T (m) = β>misXmis. Since P (Xmis|Xobs,M) is Gaussian in both the MCAR and Gaussian
self-masking cases, P (T (m)|Xobs,M) is also Gaussian with mean and variance given by:

µ
T (m)|Xobs,M = β>misµmis|obs,M (48)

σ2

T (m)|Xobs,M
= β>misΣmis|obs,Mβmis (49)

To compute the Bayes predictor, we now need to compute the quantity:

ET (m)|Xobs,M

[
Φ
(
γ
(
β>obsXobs + T (m) + β0 + bi

))]
This expectation can then be computed following [Bishop, 2006] (section 4.5.2) which gives the
result.

Derivation of the Bayes predictor for f?break.

f?break(X) =
(
β>X + β0

)
+ 3× 1β>X+β0>1 (50)

E [f?break(X)|Xobs,M ] = β>obsXobs + β>misµmis|obs,M + β0 (51)

+ 3×
∫
P (Xmis|Xobs,M)1β>

obsXobs+β>
misXmis+β0>1dXmis (52)

Let U (m) = βobsXobs + βmisXmis + β0. Since P (Xmis|Xobs,M) is Gaussian in both the MCAR
and Gaussian self-masking cases, P (U (m)|Xobs,M) is also Gaussian with mean and variance given
by:

µ
U(m)|Xobs,M = β>obsXobs + β>misµmis|obs,M + β0 (53)

σ2

U(m)|Xobs,M
= β>misΣmis|obs,Mβmis (54)
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Using the law of the unconscious statistician, we get:

E [f?break(X)|Xobs,M ] = β>obsXobs + β>misµmis|obs,M + β0 (55)

+ 3×
∫
P (U (m)|Xobs,M)1U(m)>1dU

(m) (56)

= β>obsXobs + β>misµmis|obs,M + β0 (57)

+ 3×
[
1− P

(
U (m) ≤ 1|Xobs,M

)]
(58)

= β>obsXobs + β>misµmis|obs,M + β0 (59)

+ 3×
[
1− ΦU(m)|Xobs,M (1)

]
(60)

B.3 Supplementary experiments with f∗break.

Chaining oracles
Oracle impute + MLP

NeuMiss + MLP
MICE + MLP

MICE & mask + MLP
mean impute + MLP

mean impute & mask + MLP
Gradient-boosted trees

high correlation: easy low correlation: hard

0.2 0.1 0.0

Chaining oracles
Oracle impute + MLP

NeuMiss + MLP
MICE + MLP

MICE & mask + MLP
mean impute + MLP

mean impute & mask + MLP
Gradient-boosted trees

0.3 0.2 0.1 0.0
Drop in R2 compared to Bayes predictor

MCAR

Break

MNAR
Gaussian
self masking

Figure 8: Performances (R2 score on a test set) compared to that of the Bayes predictor across 10
repeated experiments.
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