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Best practices in machine learning for chemistry 
 

Nongnuch Artrith1,2, Keith T. Butler3, François-Xavier Coudert4, Seungwu Han5, Olexandr 
Isayev6,7, Anubhav Jain8, Aron Walsh9,10 

 

As statistical tools based on machine learning become integrated into chemistry research 
workflows, we discuss the elements necessary to train and report reliable, repeatable, and 
reproducible models. 
 

Chemistry has long benefited from the power of applying models to interpret patterns in 
data. Standard relations range from the Eyring equation in chemical kinetics, the scales of 
electronegativity to describe chemical stability and reactivity, to the ligand-field approaches 
that connect molecular structure and spectroscopy. Such models are typically in the form of 
reproducible closed-form equations and remain relevant over the course of decades. 
However, the rules of chemistry are often limited to specific classes of systems (e.g. 
electron counting for polyhedral boranes) and conditions (e.g. thermodynamic equilibrium 
or a steady state). Beyond the limits where simple analytical expressions are applicable or 
sophisticated numerical models can be computed, statistical modelling and analysis are 
becoming valuable research tools in chemistry. These present an opportunity to discover 
new or more generalised relationships that have previously escaped human intuition. Yet, 
practitioners of these techniques must follow careful protocols to achieve similar levels of 
validity, reproducibility and longevity as established methods. The purpose of this Comment 
is to suggest a standard of "best practices" to ensure that the models developed through 
statistical learning are robust and observed effects are reproducible. We hope that the 
associated checklist will be useful to authors, referees, and readers to guide the critical 
evaluation of, and provide a degree of standardisation to, the training and reporting of 
machine learning (ML) models. We propose that publishers can create ML manuscript 
submission guidelines and reproducibility policy along with the provided checklist. We hope 
that many scientists will spearhead this campaign and voluntarily provide an ML checklist to 
support their papers. 
 
The application of statistical ML techniques to chemical systems has a long history1, but 
increasing computer power has recently led to an unprecedented growth of the field2,3. 
Extending the previous generation of high-throughput methods, and building on the many 
extensive and curated databases available, the ability to map between the chemical 
structure and physical properties of molecules and materials has been widely demonstrated 

                                                 
1 J. Gasteiger and J. Zupan, Angew. Chem. Int. Ed. 32, 503 (1993); https://doi.org/10.1002/anie.199305031  
2 A. Aspuru-Guzik et al, Nature Chem. 11, 286 (2019); https://www.nature.com/articles/s41557-019-0236-7  
3 K. T. Butler et al, Nature 559, 547 (2018); https://doi.org/10.1038/s41586-018-0337-2  
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using supervised learning for both regression (e.g. reaction rate) and classification (e.g. 
reaction outcome) problems. Molecular modelling has benefited, for example, from 
interatomic potentials based on Gaussian processes4 and artificial neural networks5 that 
can reproduce structural transformations at a fraction of the cost required by standard first-
principles simulation techniques. The research literature itself has become a valuable 
resource for mining latent knowledge using natural language processing, as recently 
applied to extract synthesis recipes for inorganic crystals6. Beyond data-mining of known 
facts, efficient exploration of chemical hyperspace including the solution of inverse design 
problems is becoming possible through the application of autoencoders and generative 
models7.  
 
Unfortunately, the lack of transparency surrounding data-driven methods lead scientists to 
question the validity of obtained results8. As even the findings of important experimental 
studies could not be replicated, some argue that science is in “reproducibility crisis”9. The 
transition to an open science ecosystem that includes reproducible research workflows and 
the publication of supporting data in machine-readable formats is ongoing within 
chemistry10. In computational chemistry, reproducibility and implementations of mainstream 
methods like density functional theory has been investigated11. This, and other studies12, 
proposed for open standards that are complemented by the availability of online databases. 
The same must be done for data-driven methods. ML for chemistry represents a 
developing area where data is a vital commodity, but protocols and standards have not 
been firmly established. As with any scientific report, it is essential that sufficient 
information and data is made available for an ML study to be critically assessed and 
repeatable. As a community, we must work together to significantly improve the efficiency, 
effectiveness and reproducibility of ML models and datasets by adhering to the FAIR 
(findable, accessible, interoperable, reusable) guiding principles for scientific data 
management and stewardship13.  
 
Below, we outline a set of guidelines to consider when building and applying ML models. 
These should assist in the development of robust models, in providing clarity for 

                                                 
4 V. L. Deringer et al, J. Phys. Chem. Lett. 9, 2879 (2018); https://doi.org/10.1021/acs.jpclett.8b00902    
5 J. Behler, Angew. Chem. Int. Ed. 56, 12828 (2017); https://doi.org/10.1002/anie.201703114  
6 O. Kononova et al, Sci Data 6, (2019); https://www.nature.com/articles/s41597-019-0224-1  
7 B. Sanchez-Lengeling and A. Aspuru-Guzik, Science 361, 360 (2018); 
https://doi.org/10.1126/science.aat2663  
8 M. Hutson, Science 359, 725 (2018); https://doi.org/10.1126/science.359.6377.725 
9 D. Fanelli, PNAS 115, 2628 (2018); https://doi.org/10.1073/pnas.1708272114 
10 F. X. Coudert, Chem. Mater. 29, 2615 (2017);  https://pubs.acs.org/doi/10.1021/acs.chemmater.7b00799 
11 K. Lejaeghere et al, Science 351, aad3000 (2016); 
https://science.sciencemag.org/content/351/6280/aad3000  
12 D. G. A. Smith et al, WIREs Comp. Mater. Sci. 11, e1491 (2021); 
https://onlinelibrary.wiley.com/doi/10.1002/wcms.1491  
13 M. D. Wilkinson et al, Sci. Data 3, 160018 (2016); https://doi.org/10.1038/sdata.2016.18  
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manuscripts, and in building the credibility needed for statistical tools to gain widespread 
acceptance and utility in chemistry.  
 
1. Data sources. The quality, quantity and diversity of available data set an upper limit on 
the accuracy and generality of any derived models. There are established chemical 
databases that contain structures and properties derived from combinations of 
measurements and/or simulations14. When the data is home-made, as in constructing a 
training set for ML interatomic potentials, the detailed condition of data generation should 
be provided for reproducibility. It is important to recognise that most data sources are 
biased. Bias can originate from the method used to generate or acquire the data, for 
example, an experimental technique that is more sensitive to heavier elements, or 
simulation-based datasets that favour materials with small crystallographic unit cells due to 
limits on computational power available. Bias can also arise from the context of a dataset 
compiled for a specific purpose or by a specific sub-community, as recently explored for 
reagent choice and reaction conditions used in inorganic synthesis15. A classic example of 
the perils of a biased dataset came on November 3, 1948, when The Chicago Tribune 
headline declared “Dewey Defeats Truman” based on projecting results from the previous 
day’s presidential election. In truth, Truman handily defeated Dewey (303–189 in the 
Electoral College). The source of the error? The use of phone-based polls at a time when 
mostly wealthy (and Republican-leaning) citizens owned phones. One can imagine 
analogous sampling errors regarding chemical datasets, where particular classes of “hot” 
compounds such as metal dichalcogenides or halide perovskites may feature widely, but do 
not represent the diversity of all materials. 
 
We distinguish between two cases: (i) static datasets (e.g. from published databases) lead 
to a linear model construction process from data collection → model training; (ii) dynamic 
datasets (e.g. from guided experiments or calculations) lead to an iterative model 
construction process that is sometimes referred to as active learning16, with data collection 
→ model training → use model to identify missing data → repeat. It is important to identify 
and discuss the source and limitations of the dataset including consequences of bias.17 
Bias may of course be intended and desirable, e.g. the construction of interatomic 
potentials from regions of a potential energy surface that are most relevant18. Databases 
often evolve over time, with new data added (continuously or by batch releases). For 
reasons of reproducibility, it is crucial that these databases use some mechanism for 
version control (e.g. release numbers, Git versioning, or timestamps) as part of the 
metadata and maintain long-term availability to previous versions of the database. We 

                                                 
14 L. Glasser, J. Chem. Educ. 93, 542 (2016); https://doi.org/10.1021/acs.jchemed.5b00253  
15 X. Jia et al, Nature 573, 251 (2019); https://www.nature.com/articles/s41586-019-1540-5  
16 J. S. Smith et al, J. Chem. Phys. 148, 241733 (2018); https://doi.org/10.1063/1.5023802  
17 J. Sieg et al, J. Chem. Inf. Model. 59, 947 (2019); https://doi.org/10.1021/acs.jcim.8b00712  
18 N. Artrith et al, J. Chem. Phys. 148, 241711 (2018); https://doi.org/10.1063/1.5017661  
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recommend listing all data sources, documenting the strategy for data selection, and 
including access dates or version numbers. If data is protected or proprietary, a minimally 
reproducible example using a public dataset can be an alternative. 
 
2. Data cleaning and curation. Raw datasets often contain errors, omissions, or outliers. 
A recent study of mechanical properties found that materials databases can contain 10 to 
20% of unphysical data19. Cleaning steps include removing duplicates, entries with missing 
values, incoherent or unphysical values, or type conversions. Data curation may also have 
been performed before publication of the original dataset. This cleaning of the data can 
also include normalisation and homogenisation, where several sources are combined. 
Attention should be given to the characterisation of possible discrepancies between 
sources, and the impact of homogenisation on derived ML models. The importance of a 
careful data curation has been highlighted in the closely related field of 
cheminformatics 20 , 21 . One seminal study showed examples of how accumulation of 
database errors and incorrect processing of chemical structures could lead to significant 
losses of predictive ability of ML models22. When errors are identified in public databases, it 
is important to communicate these to the dataset maintainer as part of the research 
process.   
 
The ability of a model to be “right for the wrong reasons” can occur when the true signal is 
correlated with a false one in the data. In one notable example, a high-accuracy ML model 
was trained to predict the performance of Buchwald−Hartwig cross-coupling23 The findings 
prompted a debate that almost the same accuracy could be achieved if all features in the 
dataset are replaced with random strings of digits24. We recommend describing all cleaning 
steps applied to the original data, while also providing an evaluation of the extent of data 
removed and modified through this process. As it is impossible to check large databases 
manually, the implementation and sharing of semi-automated workflows integrating data 
curation pipelines is crucial.  
 
3. Data representation. The same type of chemical information can be represented in 
many ways. The choice of representation (or encoding) is a critical choice in model 
building, which can be as important for determining model performance as the ML method 
itself. It is therefore essential to evaluate different methods when constructing a new model. 

                                                 
19 S. Chibani and F.-X. Coudert, Chem. Sci. 10, 8589 (2019); https://doi.org/10.1039/C9SC01682A  
20 A. Tropsha, Mol. Inf. 29, 476 (2010); https://doi.org/10.1002/minf.201000061  
21 P. Gramatica et al, Mol. Inform. 31, 817 (2012); https://doi.org/10.1002/minf.201200075  
22 D. Young, T. Martin, R. Venkatapathy, and P. Harten, QSAR Comb. Sci. 27, 1337 (2008); 
https://onlinelibrary.wiley.com/doi/abs/10.1002/qsar.200810084 
23 D. T. Ahneman, J. G. Estrada, S. Lin, S. D. Dreher, and A. G. Doyle, Science 360, 186 (2018); 
https://science.sciencemag.org/content/360/6385/186 
24 K. V. Chuang and M. J. Keiser, Science 362, (2018); 
https://science.sciencemag.org/content/362/6416/eaat8603  
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For the representation of molecules and extended crystals, various approaches have been 
developed. Some capture the global features of the entire molecule or crystallographic unit 
cell, while others represent local features such as bonding environments or fragments, and 
some combine both aspects. Both hand-crafted descriptors that make use of prior 
knowledge (often computationally efficient) and general learned descriptors (unbiased but 
usually computationally demanding) can be used. In chemistry, it is beneficial if the chosen 
representation obeys physical invariants of the system such as symmetry25. While there is 
merit in developing new approaches, comparison with established methods (both in 
accuracy and cost) is advisable so that advantages and disadvantages are clear. We 
recommend drawing from the experience of published chemical representation schemes, 
and their reference implementations in standard open libraries such as RDKit 
(https://www.rdkit.org), DScribe (https://singroup.github.io/dscribe), and Matminer 
(https://hackingmaterials.lbl.gov/matminer) before attempting to design new ones. 
 
4. Model choice. Many flavours of ML exist, from classical algorithms such as the support 
vector machines, ensemble methods like random forests, to deep learning methods 
involving complex neural network architectures. High accuracy in tasks involving chemical 
problems has been reported for graph-based neural networks designed to represent 
bonding interactions between elements26,27. Transfer learning techniques make it possible 
to train more powerful models from the smaller datasets that are common in chemistry, with 
one success case being the retraining of a general-purpose interatomic potential based on 
a small dataset of high-quality quantum mechanical calculations 28 . However, the 
sophistication of a model is unrelated to the appropriateness for a given problem: more 
complex is not always better! In fact, model complexity comes often comes with the cost of 
reduced transparency and interpretability. A report of using a 6-layer neural network to 
predict earthquake aftershocks29 was the subject of vigorous online debate, as well as a 
formal rebuttal 30  demonstrating that a single neuron with only 2 free parameters (as 
opposed to the 13,451 of the original model) could provide the same level of accuracy. This 
case highlights the importance of baselines that include selecting the most frequent class 
(classification), always predicting the mean (regression), or comparing results against a 
model with no extrapolative power such as a 1-nearest-neighbor, which essentially “looks 
up” the closest known data point when making a prediction. In cases where ML alternatives 
for conventional techniques are proposed, a comparison with the state of the art is another 
important baseline test and a general measure of the success of the model. We 
                                                 
25 B. J. Braams and J. M. Bowman, Int. Rev. Phys. Chem. 28, 577 (2009); 
https://doi.org/10.1080/01442350903234923  
26 C. Chen et al, Chem. Mater. 31, 3564 (2019); https://doi.org/10.1021/acs.chemmater.9b01294  
27 T. Xie and J. C. Grossman, Phys. Rev. Lett. 120, 145301 (2018); 
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.120.145301    
28 J. S. Smith et al, Nature Comm. 10, 2903 (2019); https://www.nature.com/articles/s41467-019-10827-4  
29 P. M. R. DeVries et al, Nature 560, 632 (2018); https://www.nature.com/articles/s41586-018-0438-y  
30 A. Mignan and M. Broccardo, Nature 574, E1 (2019); https://www.nature.com/articles/s41586-019-1582-8  
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recommend justifying your model choice by including baseline comparisons to simpler, 
even trivial, models. 
 
5. Model training and validation. Training a robust model must balance underfitting and 
overfitting, which is important for both the model parameters (e.g. weights in a neural 
network) and hyperparameters, such as kernel parameters, activation functions, and the 
choice and parameters of the training algorithm. Three datasets are involved in model 
construction and selection. A training set is used as an optimisation target for models to 
learn from for a given choice of hyperparameters. An independent validation set is used to 
detect overfitting during training of the parameters. The model hyperparameters are 
optimised against the performance on the validation set. A test set of unseen data is then 
used to assess the accuracy of the final model and again to detect overfitting. These three 
sets can be formed from random splits of the original data set, or by first clustering the data 
into similar types to ensure a diverse split is achieved. In estimating the training accuracy, 
the mean squared errors are usually inspected and reported, but it should be confirmed 
that the accuracy is achieved uniformly over the whole dataset. The computational 
intensiveness of the training process should also be reported as the utility of the approach 
to others will depend on the data and resource required. For example, sequence-based 
generative models are a powerful approach for molecular de novo design but training them 
using recurrent neural networks is currently only feasible if one has access to state-of-the-
art graphics processing units and millions of training samples31. 
 
Following conventional terminology, the validation set is only used during training, whereas 
the independent test set is used for assessing a trained model prior to application. 
However, the accuracy of a trained model on an arbitrary test set is not a universal metric 
for evaluating performance. The test set must be representative of the intended application 
range. For example, a model trained on solvation structures and energies under acidic 
conditions may be accurate on similar data, but will unlikely transfer to basic conditions. 
Reliable measures of test accuracy can be difficult to formulate. One study assessed 
accuracy of ML models trained to predict steel fatigue strength or critical temperature of 
superconductivity using random cross-validation or clustered by diversity splitting strategy. 
In the later scenario, the model accuracies dropped substantially (2-4x performance 
reduction). The models were extremely fragile to the introduction of new yet slightly 
different data to the point of losing any predictive power.  
 
Methods of validation that aim to test extrapolative (versus interpolative) performance are 
being developed either by holding out entire classes of compounds (known as leave-class-

                                                 
31 M. Olivecrona, T. Blaschke, O. Engkvist, and H. Chen, J. Cheminformatics 9, 48 (2017); 
https://jcheminf.biomedcentral.com/articles/10.1186/s13321-017-0235-x 
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out selection or scaffold split) for testing32 or by holding out the extreme values in the 
dataset for testing33. Another industry standard approach is time-split cross-validation,34 
where a model is trained on historical data available at a certain date and tested on data 
that is generated later, simulating the process of prospective validation. We recommend 
stating how the training, validation, and test sets were obtained, as well as the sensitivity of 
model performance with respect to the parameters of the training method, e.g. when 
training is repeated with different random seeds or ordering of the dataset. Validation 
should be performed on data related to the intended application. 
 
6. Code and Reproducibility 
There is a reproducibility crisis across all fields of research. If we set aside cases of outright 
misconduct and data fabrication, the selective reporting of positive results is widespread.  
Going deeper, data dredging (or p-value hacking) is a manipulation technique to find 
outcomes that can be presented as statistically significant, thus dramatically increasing the 
observed effect. Hypothesizing After the Results are Known (HARKing) involves presenting 
a post hoc hypothesis in a research report as if it were, in fact, an a priori hypothesis. To 
strengthen public trust in science and improve reproducibility of published research, it is 
important for authors to make their data and code publicly available. This goes beyond 
purely computational studies, and initiatives like the “dark reactions project” show the 
unique value of failed experiments that have never been reported in literature35. 
 
The first 5 steps require many choices to be made by researchers to train meaningful ML 
models. While the reasoning behind these choices should be reported, this is not sufficient 
to meet the burden of reproducibility36. Many variables that are not typically listed in the 
methods section of a publication can play a role in the final result – the devil is in the 
hyperparameters. Even software versions are important as default variables often change. 
For large developments, the report of a standalone code, for example in the Journal of 
Open Source Software, may be appropriate. It is desirable to report auxiliary software 
packages and versions required to run the reported workflows, which can be achieved by 
listing all dependencies, by exporting the software environment (e.g. Conda environment) 
or by providing standalone containers (e.g. Docker containers) for running the code. A 
number of initiatives are being developed to support the reporting of reproducible workflows 
including https://www.commonwl.org, https://www.researchobject.org and 
https://www.dlhub.org. We recommend that, at the minimum, a script or electronic notebook 
should be provided that contains all parameters to reproduce the results, ideally in an 

                                                 
32 B. Meredig et al, Mol. Syst. Des. Eng., 3, 819 (2018); https://doi.org/10.1039/C8ME00012C  
33 Z. Xiong et al, Comp. Mater. Sci. 171, 109203 (2020); https://doi.org/10.1016/j.commatsci.2019.109203  
34 R. P. Sheridan, J. Chem. Inf. Model. 53, 783 (2013); https://doi.org/10.1021/ci400084k  
35 P. Raccuglia et al, Nature 533, 73 (2016); https://www.nature.com/articles/nature17439 
36 https://www.nationalacademies.org/our-work/reproducibility-and-replicability-in-science 
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online repository that guarantees long-term archiving (e.g. a repository archived with a 
permanent DOI).  
 
These new adventures in chemical research are only possible thanks to those who have 
contributed to the underpinning ML techniques, algorithms, codes, and packages.  
Developments in this field are supported by an open-source philosophy that includes the 
posting of preprints and making software openly and freely available. Future progress 
critically depends on these researchers being able to demonstrate the impact of their 
contributions. In all reports, remember to cite the methods and packages employed to 
ensure that the development community receive the recognition they deserve. The 
suggestions put forward in this Comment have emerged from interactions with many 
researchers, and are in line with other perspectives on this topic37,38. While there is great 
power and potential in the application and development of machine learning for chemistry, 
it is up to us to establish and maintain a high standard of research and reporting.  
 

                                                 
37 A. Yu-Tung et al, Chem. Mater. 32, 4954 (2020); https://doi.org/10.1021/acs.chemmater.0c01907  
38 P. Riley, Nature 572, 27 (2019); https://www.nature.com/articles/d41586-019-02307-y  
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A suggested author and reviewer checklist for reporting and evaluating machine learning 
models. 
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