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Abstract

This article provides the domain of existence of the Laplace transform of infinitely divisible

negative multinomial distributions, defined by their probability generating functions. It makes it

possible to construct all of these distributions. We give examples in dimensions 2 and 3. We give a

construction and a simulation of negative multivariate distributions in dimension 2.
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1 Introduction

In this article, we consider the following definition, see references in (Bernardoff, 2003). We denote by

N the set of non-negative integers. We shall say that the probability distribution
∑

α∈Nn pαδα on Nn,

where n is a positive integer, is a negative multinomial distribution if there exists an affine polynomial

P (z1, . . . , zn) and λ > 0 such that P (0, . . . , 0) 6= 0, P (1, . . . , 1) = 1, and∑
α∈Nn

pαz
α1
1 · · · zαnn = (P (z1, . . . , zn))

−λ
. (1)

This corresponds to a polynomial which is affine with respect to each zj , j = 1, · · · , n, or for which

∂2/∂z2
jP = 0 for all j = 1, . . . , n. Moreover, P (z1, . . . , zn) =

∑
T∈Pn aT zT , where Pn is the family

of subsets of {1, 2, . . . , n} = [n] , and where zT =
∏
t∈T zt, if z = (z1, . . . , zn) ∈ Rn. For instance, for

n = 2, such P has the form P (z1, z2) = a∅ + a{1}z1 + a{2}z2 + a{1,2}z1z2 with a∅ 6= 0. However, finding

exactly which pairs (P, λ) are compatible is an unsolved problem. Bernardoff (2003) explained why this

distribution is a generalization of the usual negative multinomial distribution defined in (Johnson et al.,

1997).

Before giving the main result, let us make an observation. If α =(α1, . . . , αn) ∈ Nn, then we

denote zα =
∏n
i=1 z

αi
i = zα1

1 . . . zαnn . Let A be any polynomial such that A (0, . . . , 0) = 1, and suppose

that the Taylor expansion (A (z1, . . . , zn))
−λ

=
∑

α∈Nn cα (λ) zα has non-negative coefficients cα (λ) .

Let a1, . . . , an be positive numbers such that
∑

α∈Nn cα (λ) aα1
1 . . . aαnn < ∞. With such a sequence

a = (a1, . . . , an) we associate the negative multinomial distribution
∑

α∈Nn pαδα defined by∑
α∈Nn pαzα = [A (a1z1, . . . , anzn) /A (a1, . . . , an)]

−λ
, thus

P (z1, . . . , zn) = A (a1z1, . . . , anzn) /A (a1, . . . , an) in the notation (1).

Bernardoff (2003) defined the numbers bT = bT (P ) by:

Definition 1 Let P (z) =
∑
T∈Pn aT zT be an affine polynomial P (z1, . . . , zn) such that P (0, . . . , 0) = 0,

and A = 1−P . Let P∗n the family of non-empty subsets of [n]. For T ∈ P∗n, let us introduce the number

bT , in fact a polynomial with respect to the aT , defined by bT = ∂|T |/∂zT (log (1− P ))
∣∣
0
, where |T | is

the cardinality of T and ∂zT =
∏
t∈T ∂zt. Then

bT =

|T |∑
l=1

(l − 1)!
∑
T ∈ΠlT

aT (2)

where ΠT is the set of partitions of T , and Πl
T is the set of partitions of length l of T (if T =

{T1, T2, . . . , Tl} , the partition T of T is of length l).

For instance, for n = 3, b{1} = a{1}, b{1,2} = a{1,2} + a{1}a{2} and b{1,2,3} = a{1,2,3} + a{1}a{2,3} +

a{2}a{1,3} + a{3}a{1,2} + 2a{1}a{2}a{3}. Now, if there is no ambiguity, for simplicity we omit the braces.
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Using the numbers bT , Bernardoff (2003) proves the following theorem.

Theorem 2 Let P (z) =
∑

T∈Pn∗
aT z

T , as before, and suppose that

(1− P (z))
−λ

=
∑

α∈Nn cα (λ) zα. Then cα (λ) > 0 for all positive λ if and only if bT , given by (2), is

non-negative for all T ∈ P∗n.

See examples in dimension n = 2, 3 in (Bernardoff, 2003).

This article is preliminary to another one on the simulation of infinitely divisible negative multinomial

distributions in dimension n > 2. Before writing such an article, knowing all these distributions is a

prerequisite.

This article is organized as follows. Section 2 gives the main result. Section 3 applies the main

result to bivariate and trivariate cases. Section 4 gives a construction of some of these negative multi-

variate distributions in dimension 2. Section 5 gives definition and construction of multifactor negative

multinomial distributions. Section 6 gives simulations for the examples in Section 3.

2 Domain of existence of the Laplace transform

Let A be an affine polynomial on Rn and let λ > 0 be such that A (0, . . . , 0) = 1 and such that

(A (z1, . . . , zn))
−λ

=
∑

α∈Nn cα (λ) zα satisfies cα (λ) > 0 for all α in Nn. The problem of finding the

affine polynomials A = 1 − P such that for all λ > 0, A−λ has non-negative coefficients is solved by

Theorem 2. This is equivalent to finding all negative multinomial distributions on Nn which are infinitely

divisible. We now only consider infinitely divisible negative multinomial distributions. Consider the

discrete measure on Nn, µλ =
∑

α∈Nn cα (λ) δα. The present section aims to describe the convex set

D (µλ) = {θ ∈ Rn,
∑

α∈Nn cα (λ) exp (α1θ1 + · · ·+ αnθn) < +∞}, which is an important object in the

study of the natural exponential family generated by µλ (Bar-Lev et al., 1994; Letac, 1991). The answer

is contained in the following result.

Theorem 3 With the above notation, we denote H = {s ∈ Rn, s1 + · · ·+ sn = 0} . For s ∈ H, we

denote by Rs the smallest positive zero of the polynomial Ps (t) = A (tes1 , . . . , tesn). Then the map

s 7→ s + logRs (1, . . . , 1) is a parametrization by H of a hypersurface in Rn which is the boundary of

D (µλ) . More specifically, if θ is in Rn , θn = (θ1 + · · ·+ θn) /n and s = θ − θn (1, . . . , 1) , then θ is in

D (µλ) if and only if θn < logRs.

Finally, D (µλ) is an open set.

Proof. We first prove that the radius of convergence R of the power series

P−λs (t) =
∑
n∈N

un (λ) tn (3)
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is equal to Rs. This comes from the following fact: since un (λ) > 0, a known result in the theory

of analytic functions (Titchmarsh, 1939, 7.21) implies that t 7→ P−λs (t) is not analytic at R. Since

Ps (0) = 1, Ps (t) > 0 for 0 < t < Rs and Ps (Rs) = 0, clearly R = Rs.

We now observe that if θ = (θ1, . . . , θn) is such that∑
α∈Nn cα (λ) exp (α1θ1 + · · ·+ αnθn) < +∞, then for all p > 0 we have∑
α∈Nn cα (λ) exp [α1 (θ1 − p) + · · ·+ αn (θn − p)] < +∞.

We write θn = (θ1 + · · ·+ θn) /n. The orthogonal projection of θ on H is s = θ − θn (1, . . . , 1) =

(s1, . . . , sn). Thus for all j = 1, . . . , n, we have θj − sj = θn. We claim that θn < logRs. If not, we

have t0 =eθn > Rs. But A
(
eθ1 , . . . eθn

)
is Ps (t0) and the previous remark shows that for all p > 0,

p 7→ Ps (e−pt0) is positive. This contradicts the fact that t0 > Rs.

Conversely, if θ is such that θn < logRs, similar reasoning shows that θ ∈ D (µλ) .

Finally, for t = Rs in (3) the series diverges. A short proof goes as follows:

For any k in N and λ > 0, we define (λ)k = λ (λ+ 1) ... (λ+ k − 1) = Γ (λ+ k) /Γ (λ) , where Γ is

Euler’s gamma function and (λ)0 = 1. We write Ps (t) =
(

1− t
r0

)
· · ·
(

1− t
rk

)
where |rj | > r0 = Rs by

definition of Rs. Thus
∑
n∈N un (λ) tn is the product of the Newton Series

∑
n∈N

1
n! (λ)n

(
t
rk

)n
and the

series corresponding to k = 0 diverges for t = r0. That is,
∑
n∈N un (λ) rn0 = +∞.

Remark 4 With the notations of Theorem 3, if θ is in the boundary of D (µλ), ∃s ∈ H,θ = s +

logRs (1, . . . , 1) , then zi =eθi = Rse
si for i ∈ [n] , and A (z1, . . . , zn) = A (Rse

s1 , . . . , Rse
sn) = 0,

by the definition of Rs.

3 Examples in dimensions 2 and 3

Example 1. For n = 2, we take a1 = 1, a2 = 1 and a1,2 = a > −1 so that the conditions of Theorem 2

are satisfied. Hence A (z1, z2) = 1 − z1 − z2 − az1z2, and for z1 = tes1 , z2 = tes2 , with s1 + s2 = 0, we

have Ps (t) = 1− t (es1 + e−s1)− at2. If s = (s1, s2) , then

Rs =
[
− cosh s1 + (1/2 + a+ 1/2 cosh 2s1)

1/2
]
/a, and we obtain the parametrization of the boundary

of D (uλ) : x = θ1 = s1 + logRs, y = θ2 = −s1 + logRs, whose graphic representation is given in Figure

1.
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Figure 1 : the boundary of D (uλ) for a = − 9
10 ,−

1
2 , 1, 20.

Remark 5 Using Remark 4 we obtain another parametrization of the boundary of D (uλ): θ1 < 0, θ2 =

− log
[
1 + (a+ 1) /

(
e−θ1 − 1

)]
. In addition, because D (µλ) is a convex set, θ = (θ1, θ2) ∈ D (µλ) is

defined by

θ1 < 0, θ2 < − log
[
1 + (a+ 1) /

(
e−θ1 − 1

)]
. (4)

In this case, for a = −1/2, Rs = 2 cosh s1 −
√

2 cosh 2s1 and if we choose s1 = 0, the condition

θ2 < logRs becomes θ2 < − log
(
1 +
√

2/2
)
. As θ2 = − log 2 < − log

(
1 +
√

2/2
)
, then (− log 2,− log 2) ∈

D (µλ). Then, the introduction proves that [A (z1/2, z2/2) /A (1/2, 1/2)]
−λ

= (8− 4z1 − 4z2 + z1z2)
−λ

is a generating function for all λ > 0.

Remark 6 For a = −1/2, the condition (4) gives for θ1 = − log 2, θ2 < − log (3/2) , and θ2 = − log 2 is

suitable. Hence (− log 2,− log 2) ∈ D (µλ) .

Again with a = −1/2, if we choose s1 = log 2, Rs = 5
2 −

1
2

√
17, then θ2 = −2 log 2 < logRs and

θ = s + θ2 (1, 1) = (− log 2,−3 log 2). Then, the introduction proves that

[A (z1/2, z2/8) /A (1/2, 1/8)]
−λ

= (32/13− 16/13z1 − 4/13z2 + 1/13z1z2)
−λ

is a generating function for

all λ > 0.

Remark 7 For a = −1/2, the condition (4) gives for θ1 = − log 2, θ2 < − log (3/2) , and θ2 = −3 log 2

is suitable. Hence (− log 2,−3 log 2) ∈ D (µλ) .

Example 2. For n = 3, the conditions of Theorem 2 are for i, j = 1, 2, 3:

bi = ai > 0 ; aij > −aiaj ; a123 > − (a1a23 + a2a13 + a3a12 + 2a1a2a3)

We take a1 = a2 = a3 = 1, a12 = a13 = a23 = a and a123 = b, so thatA (z) = 1−[(z1 + z2 + z3) + a (z1z2 + z1z3 + z2z3) + bz1z2z3] .

The conditions of Theorem 2 are satisfied for a > −1 and b > −3a− 2. We take a = 1 and b = 0, hence

A (z) = 1−z1−z2−z3−z1z2−z1z3−z2z3. Let z1 = tes1 , z2 = tes2 and z3 = tes2 , with s1 +s2 +s3 = 0.

If s = (s1, s2, s3) , then Ps (t) = 1− (es1 + es2 + e−s1−s2) t− (e−s1 + e−s2 + es1+s2) t2, and we have
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Rs =
−es1−es2−e−s1−s2+(e2s1+e2s2+6es1+s2+e−2(s1+s2)+6e−s1+6e−s2)

1/2

2(e−s1+e−s2+es1+s2 )
.

Finally, the parametrization of the boundary of D (uλ) is x = θ1 = s1 + logRs, y = θ2 = s2 + logRs,

z = θ3 = −s1 − s2 + logRs whose graphic representation is given in Figure 2.
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Figure 2 : The boundary of D (µλ)

If we choose s1 = s2 = s3 = 0, the condition θ3 < logRs becomes θ3 < log
(√

21/6− 1/2
)
. As

θ3 = − log 4 < log
(√

21/6− 1/2
)
, then (− log 4,− log 4,− log 4) ∈ D (µλ). Then, the introduction

proves that [A (z1/4, z2/4, z3/4) /A (1/4, 1/4, 1/4)]
−λ

= (16− 4z1 − 4z2 − 4z3 − z1z2 − z1z3 − z2z3)
−λ

is

a generating function for all λ > 0.

Remark 8 In this case, using Remark 4 we obtain that another definition of θ = (θ1, θ2, θ3) ∈ the bound-

ary of D (uλ) is : θ1 < 0, θ2 < − log
(

1−eθ1

1+eθ1

)
, θ3 = log

(
1−eθ1−eθ2−eθ1+θ2

1+eθ1+eθ2

)
, and another parametriza-

tion of the boundary of D (uλ) is x = θ1 = u, u < 0; y = θ2 = v − log
(

1−eu

1+eu

)
, v < 0; z = θ3 =

log

[
(1−e2u)(1−ev)

1+2eu+ev−euev+e2u

]
. In addition, because D (µλ) is a convex set, θ = (θ1, θ2, θ3) ∈ D (µλ) is defined

by θ1 < 0, θ2 < − log
(

1+eθ1

1−eθ1

)
, θ3 < log

(
1−eθ1−eθ2−eθ1+θ2

1+eθ1+eθ2

)
. Hence (− log 4,− log 4,− log 4) ∈ D (µλ)

because − log 4 < 0,− log 4 < − log (5/3) and − log 4 < − log (4− 4/7) .

4 Construction of bivariate negative multinomial distributions

Before giving the construction and simulation of infinitely divisible negative multinomial distributions,

we recall some definitions, notations and results. We denote by E the expectation. For a random vector

X = (X1, . . . , Xn) with pd µX, we write X ∼ µX.

Definition 9 We fix λ > 0, let P be an affine polynomial. If a random vector X = (X1, . . . , Xn) on Rn

with pd µX is such that its Laplace transform is

LµX
(θ) = E {exp [− (θ1X1 + · · ·+ θnXn)]} = [P (θ)]

−λ
, (5)
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for a set of θ with non empty interior. We denote µX = γ(P,λ), and γ(P,λ) will be called the multi-

variate gamma distribution associated with (P, λ) (Bar-Lev et al.,1994). We say also that γ(P,λ) is the

multivariate gamma distribution with scale parameter P and shape parameter λ.

We remark that LµXi (θi) = (1 + piθi)
−λ

. Hence Xi ∼ γ(pi,λ) where γ(pi,λ) is the ordinary gamma

distribution with scale parameter pi and shape parameter λ such that

γ(pi,λ) (dx) = xλ−1
i p−λi /Γ (λ)exp(−x/pi) 1(0,∞) (x) dx with 1(0,∞) (x) = 1 if x ∈ (0,∞) and 1(0,∞) (x) = 0

if x /∈ (0,∞) .

We give the notation of negative multinomial distribution.

Notation 10 We fix λ > 0, let P be an affine polynomial. If a random vector X = (X1, . . . , Xn) on Nn

with pd µX is such that its pgf gX is

gX (z) = E
(
zX
)

= [P (z)]
−λ

. (6)

We denote µX = NM(P,λ), and NM(P,λ) will be called the negative multinomial distribution associated

with (P, λ).

Let us now recall the definitions and results of Ferrari et al. (2004). An MMPD (Mixed Multivariate

Poisson Distribution) is defined by assuming that the random variables Ni, i = 1, . . . , n are independent

and distributed according to Poisson distributions with means (λ1, . . . , λn), conditioned upon the vector

of intensities λ = (λ1, . . . , λn). In this case, the probability masses of N = (N1, . . . , Nn) are defined as

Pr(N = k) =
∫

(0,∞)n
∏
`

(λ`)
k`

k`!
exp (−λ`)µ (dλ) where µ (dλ) is the probability of λ defined on (0,∞)

n
.

The MMPD defined above is fully characterized by the measure µ (dλ) and will be denoted by MMPD(µ) .

The pgf of N expresses as: gN (z) = Lµ (1− z), where 1 = (1, . . . , 1) . Let A be an affine polynomial

such that A (0, . . . , 0) = 1, and P (z) = A (a1z1, . . . , anzn) /A (a1, . . . , an) for any a = (a1, . . . , an) =

(exp (θ1) , . . . , exp (θn)) , with θ ∈ D (µλ) , and Q (z) = P (1− z) , if Y = (Y1, . . . , Yn) ∼ γ(Q,λ), then we

have N ∼MPPD
(
γ(Q,λ)

)
= NM(P,λ).

Let us denote P (λ) the Poisson distribution with mean λ. Finally, if Ni ∼ P (Yi) , i = 1, . . . , n are

independent, then we have N ∼ NM(P,λ). This allows us to construct and simulate N ∼ NM(P,λ) if

we can construct and simulate Y ∼ γ(Q,λ).

We now consider the case n = 2. Let F pm be the generalized hypergeometric function (Slater, 1966)

defined by

F pm (α1, . . . , αp, β1, . . . , αβm; z) =

∞∑
k=0

(α1)k · · · (αp)k
(β1)k · · · (βm)k

zk

k!
. (7)

For simplification, we denote F 0
m by Fm.

Bernardoff (2018) gave the following proposition:
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Proposition 11 Let P (θ1, θ2) = 1 +p1θ1 +p2θ2 +p1,2θ1θ2 be an affine polynomial where p1, p2 > 0 and

p1,2 > 0. Let γ(P,λ) be the gamma distribution associated with (P, λ) . The measure γ(P,λ) exists if and

only if c = (p1p2 − p1,2) /p2
1,2 > 0. Then, we have

γ(P,λ) (dx1, dx2) =
p−λ1,2

[Γ (λ)]
2 exp

(
− p2

p1,2
x1 −

p1

p1,2
x2

)
(x1x2)

λ−1
(8)

× F1 (λ, cx1x2) 1(0,∞)2 (x1, x2) dx1dx2.

From (Watson, 1966) we also have F1 (λ, z) = Γ (λ) Iλ−1 (2
√
z) z−(λ−1)/2 where Iλ is the modified

Bessel function of order λ. So that we have

γ(P,λ) (dx1, dx2) = c−(λ−1)/2
p−λ1,2

Γ (λ)
exp

(
− p2

p1,2
x1 −

p1

p1,2
x2

)
(x1x2)

(λ−1)/2
(9)

× Iλ−1 (2
√
cx1x2) 1(0,∞)2 (x1, x2) dx1dx2.

This last formula will be used to graphically represent the distribution γ(P,λ) in order to compare it to

the simulation.

We can simplify these constructions by using the following proposition:

Proposition 12 If X ∼ γ(P,λ), P (z1, . . . , zn) =
∑
T∈Pn pT zT , then for b = (b1, . . . , bn) with b1 >

0, . . . , bn > 0, the random vector Y = (Y1, . . . , Yn) = (b1X1, . . . , bnXn) ∼ γ(Q,λ), with Q (z1, . . . , zn) =∑
T∈Pn qT zT such that qT = bT pT . In particular, for b = (1/p1, . . . , 1/pn) , if p = (p1, . . . , pn) , with

p1 > 0, . . . , pn > 0, then we have qi = 1, for i = 1, . . . , n and qT = pT /p
T . As a result, we can construct

Y= (Y1, . . . ,Yn) = (X1/p1, . . . , Xn/pn) , and X = (X1, . . . , Xn) = (p1Y1, . . . , pnYn) . Moreover, if we

define b̃T (P ) = bT

(
P̃
)

, where P̃ is such that P̃T = −p[n]\T /p[n], then we have b̃T (P ) = p[n]b̃T (Q) ,.

This proves that the conditions for infinite divisibility in Bernardoff (2006) are equivalent for γ(P,λ) and

γ(Q,λ).

Walker (2021) gave the following Theorem

Theorem 13 Let Q2 (θ1, θ2) = 1 + θ1 + θ2 + q1,2θ1θ2, an affine polynomial with q1,2 > 0, we define the

random variables (Y1, V1, Y2) as

Y1 ∼ γ(1,λ), V1 ∼ P (rY1) and Y2 = γ( 1
1+r ,λ+V1),

where r > 0 and q1,2 = 1/ (1 + r) , moreover r = 1/q1,2 − 1, then Y = (Y1, Y2) ∼ γ(Q2,λ).

We give the construction of X ∼ γ(P,λ), an infinitely divisible bivariate gamma distribution. We

modify the construction given by Walker (2021) by using Proposition (12) and Theorem (13), and we

give the following theorem.
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Theorem 14 Let P (θ1, θ2) = 1 + p1θ1 + p2θ2 + p1,2θ1θ2 an affine polynomial, where pi > 0 i = 1, 2,

p1,2 > 0, and b̃1,2 = p1p2/p
2
1,2− 1/p1,2 > 0. Let X1 ∼ γ(p1,λ), V1 ∼ P (cX1) and X2 ∼ γ(p1,2/p1,λ+V1) with

c = p1,2b̃1,2/p1, then we have X = (X1, X2) ∼ γ(P,λ).

Proof. Let us defineQ byQ (θ1, θ2) = P (θ1/p1, θ2/p2), hence P (θ1, θ2) = 1+θ1+θ2+p1,2/ (p1p2) θ1θ2, so

that q1,2 = p1,2/ (p1p2) . Using Theorem(13) we have Y1 ∼ γ(1,λ), V1 ∼ P (rY1) and Y2 ∼ γ(1/(1+r),λ+V1),

where r > 0 and q1,2 = 1/ (1 + r) , so that r = p1,2b̃1,2, and p2/ (1 + r) = p1,2/p1, hence Y = (Y1, Y2) ∼

γ(Q,λ).

Inversely, we have P (θ1, θ2) = Q (p1θ1, p2θ2) and X = (X1, X2) = (p1Y1, p2Y2) ∼ γ(P,λ). Because

X1 = p1Y1 and X2 = p2Y2, we have X1 ∼ γ(p1,λ), V1 ∼ P (r/p1X1) and X2 = γ(p1,2/p1,λ+V1), we have

well X ∼ γ(P,λ).

For n = 2, we can now construct and simulate some of the random vectors X ∼ NM(P,λ). Let A2 be an

affine polynomial such that A2 (z1, z2) = 1−a1z1−a2z2−a1,2z1z2. The conditions for infinite divisibility

of NM(P,λ) are a1 > 0, a2 > 0, b1,2 = a1,2 + a1a2 > 0. We consider the case a1 > 0, a2 > 0, b1,2 =

a1,2 + a1a2 > 0. The conditions for a = (a1, a2) are 0 < a1 < 1/a1, 0 < a2 < (1− a1a1) / (a2 + a1,2a1) =

(a2 + b1,2a1/ (1− a1a1))
−1

< 1/a2, and we have 1−a1a1 > 0, 1−a2a2 > 0, 1−a1a1−a2a2−a1,2a1a2 > 0,

a2 + a1,2a1 = a2 (1− a1a1) + b1,2a1 > 0 because b1,2 > 0 and a1 + a1,2a2 = a1 (1− a2a2) + b1,2a2 > 0

because b1,2 > 0.

For a = (a1, a2), we have P2 (z) =
1−a1a1z1−a2a2z2−a1,2a1a2z1z2

1−a1a1−a2a2−a1,2a1a2
and if Q2(z) = P2(1 − z) = 1 +

q1z1 + q2z2 + q1,2z1z2, we have q1 =
(a1+a1,2a2)a1

1−a1a1−a2a2−a1,2a1a2
, q2 =

(a2+a1,2a1)a2

1−a1a1−a2a2−a1,2a1a2
, and q1,2 =

−a1,2a1a2

1−a1a1−a2a2−a1,2a1a2
. We remark that q1 > 0, q2 > 0. In this case q1,2 must check q1,2 > 0 (Bernardoff,

2006), hence a1,2 must check a1,2 < 0. Obviously, we have Q2 (1− z) = P2 (z).

As a result, if Y = (Y1, Y2) ∼ γ(Q2,λ), then X = (X1, X2) such that X1 ∼ P (Y1) , X2 ∼ P (Y2) , and

X1 and X2 are independent, conditioned upon the vector Y, then X ∼ NM(P2,λ).

To simulate X, first we simulate Y = (Y1, Y2) ∼ γ(Q2,λ), second we simulate independently X1 such

that X1 ∼ P (Y1) and X2 such that X2 ∼ P (Y2) , then X = (X1, X2) ∼ NM(P2,λ).

In order to compare the masses of bivariate negative multinomial distributions, we recall the following

result from (Bernardoff et al., 2013).

The Taylor expansions of [A (z)]
−λ

and [P (z)]
−λ

in the neighborhood of (0, ..., 0) will be denoted as

follows: [A (z)]
−λ

=
∑
α∈Nn cα (A, λ) zα, [P (z)]

−λ
=
∑
α∈Nn cα (P, λ) zα.We have cα (P, λ) = cα (A, λ) aα [A (zα)]

λ
.

For the bivariate negative multinomial distributions, let A2 (z) = 1 − a1z1 − a2z2 − a1,2z1z2, and

P2 (z) = (A2 (az) /A2 (a)) for a suitable a = (a1, a2) , we have the following theorem:

Theorem 15 Consider the affine polynomial of order 2 with variables z = (z1, z2) defined by A2 (z) =
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1−a1z1−a2z2−a1,2z1z2, and P2 (z) = A2 (az) /A2 (a) for a suitable a = (a1, a2) . With b1,2 = a1,2 +a1a2,

the coefficient of zα in the Taylor expansion of [A2 (z)]
−λ

and [P2 (z)]
−λ

, can be computed as follows

cα (A2, λ) = (λ)max(α1,α2) (10)

×
min(α1,α2)∑

`=0

(λ+ `)min(α1,γα2)−`

(α1 − `)! (α2 − `)!`!
aα1−`

1 aα2−`
2 b`1,2

and

cα (P2, λ) = [A2 (a1, a2)]
λ
aα1

1 aα2
2 (λ)max(α1,α2) (11)

×
min(α1,α2)∑

`=0

(λ+ `)min(α1,α2)−`

(α1 − `)! (α2 − `)!`!
aα1−`

1 aα2−`
2 b`1,2

5 Definition and construction of multifactor negative multino-

mial distributions

Bernardoff (2018) extended the definition of multivariate gamma distributions to multifactor gamma

distributions by the following definition

Definition 16 We fix Λ = (λ1, . . . , λn, λ) such that λi > λ > 0 for all i = 1, . . . , n. , let P be an affine

polynomial. If a random vector X = (X1, . . . , Xn) on Rn with pd µX is such that its Laplace transform

LµX
(θ) = [P (θ)]

−λ
n∏
i=1

(1 + piθi)
−(λi−λ)

, (12)

for a set of θ with non empty interior. We denote µX = γ(P,Λ), and γ(P,Λ) will be called the multifactor

gamma distribution associated with (P,Λ). We say also that γ(P,Λ) is the multifactor gamma distribution

with scale parameter P and shape parameter Λ.

We have LµXi (θi) = (1 + piθi)
−λi , hence Xi ∼ γ(pi,λi). Bernardoff (2018) also gave the construction

of γ(P,Λ) as follows. If Y = (Y1, . . . , Yn) is a vector of independent random variables such that LµYi (θi) =

(1 + piθi)
−(λi−λ)

, then if Z ∼ γ(P,λ) and Y are independent, then X = Y+Z ∼ γ(P,Λ).This construction

allows us to simulate γ(P,Λ) by simulating Z ∼ γ(P,λ) and Y.

By analogy with the definition of multifactor gamma distributions, let us now define the multifactor

negative multinomial distributions. This is a generalization of negative multinomial distributions.

Definition 17 We fix Λ = (λ1, . . . , λn, λ) such that λi > λ > 0 for all i = 1, . . . , n, let P be an affine

polynomial with respect to the variables z1, . . . , zn , so that P (z) =
∑
S∈[n] pSzS,and N a random vector

such that µN = NM(P,λ). If a random vector T = (T1, . . . , Tn) on Nn with pd µT is such that its pgf is

gT (z) =

n∏
i=1

[P (1, . . . , 1, zi, 1, . . . 1)]
−(λi−λ)

[P (z)]
−λ

, (13)
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then we denote µT =MNM(P,Λ), and MNM(P,Λ) will be called the multifactor negative multinomial

distribution associated with (P,Λ).

Let us recall the definition of the negative binomial distribution on N, of parameters p, λ, p ∈ ]0, 1[ ,

λ > 0 denoted by NB (p, λ): NB (p, λ) =
∑
k∈N

(λ)k
k! p

λ (1− p)k δk. Let N ∼ NB (p, λ) , then its pgf

is E
(
zN
)

= [1/p− q/pz]−λ , with q = 1 − p. We remark that gTi (zi) = [P (1, . . . , 1, zi, 1, . . . 1)]
−λi =

(1/pi − (1− pi) /pizi)
−λi , with P (1, . . . , 1, 0, 1, . . . 1) =

∑
S⊂[n]\{i} pS = 1/pi. This proves that Ti ∼

NB(pi,λi). We also give the construction of T ∼MNM(P,Λ) in this way:

Proposition 18 If M = (M1, . . . ,Mn) is a vector of independent random variables such that E
(
xMi
i

)
=∏n

i=1 [P (1, . . . , 1, zi, 1, . . . 1)]
−(λi−λ)

, then if N ∼ NM(P,λ) and M are independent, then T = N +

M ∼NMM(P,Λ). Clearly, we have MNM(P,Λ) ∼ MMPD
(
γ(Q,Λ)

)
, with Q (z) = P (1− z) and if we

can simulate γ(Q,λ), we can simulate MNM(P,Λ).

6 Simulations

We now apply these results to the examples in Section 3 for A2 (z1, z2) = 1 − z1 − z2 + 1/2z1z2, a =

(1/2, 1/2) and a = (1/2, 1/8) . We respectively have P2 (z1, z2) = 8 − 4z1 − 4z2 + z1z2 and P2 (z1, z2) =

32/13− 16/13z1 − 4/13z2 + 1/13z1z2; Q2 (z1, z2) = 1 + 3z1 + 3z2 + z1z2 and Q2 (z1, z2) = 1 + 15/13z1 +

3/13z2 + 1/13z1z2. Simulations are performed using R software.

The simulations for a sample of size 1,000 of γ(Q2,2) are illustrated by the graphical representations

given in Figure 3.
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Figure 3 : Distribution and simulation

The simulations for a sample of size 1,000 of γ(Q2,(3,4,2)) are illustrated by the graphical representations

given in Figure 4.
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Figure 4 : Simulations of bifactor gamma distributions
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The simulations for samples of size 100,000 of NM(P2,2) are presented in Tables 1 and 2.

Table 1 A2 (z1, z2) P2 (z1, z2) λ a n

1− z1 − z2 + 1/2z1z2 8− 4z1 − 4z2 + z1z2 2 (1/2, 1/2) 100000

c(α1,α2) (P2) relative frequency

α1\α2 0 1 α1\α2 0 1

0 0.015625 0.015625 0 0.01553 0.01631

1 0.015625 0.01953125 1 0.01517 0.01931

Table 2 A2 (z1, z2) P2 (z1, z2) λ a n

1− z1 − z2 + 1/2z1z2
32
13 −

16
13z1 − 4

13z2 + 1
13z1z2 2 (1/2, 1/8) 100000

c(α1,α2) (P2) relative frequency

α1\α2 0 1 α1\α2 0 1

0 0.1650391 0.04125977 0 0.16552 0.04048

1 0.1650391 0.05157471 1 0.16407 0.05320

The simulations for samples of size 100,000 of MNM(P2,(3,4,2)) are presented in Tables 3 and 4.

P2 (z1, z2) P2 (z1, z2)

Table 3 8− 4z1 − 4z2 + z1z2 Table 4 32
13 −

16
13z1 − 4

13z2 + 1
13z1z2

relative frequency relative frequency

α1\α2 0 1 α1\α2 0 1

0 0.00021 0.00052 0 0.05157 0.03208

1 0.00040 0.00115 1 0.07845 0.05114
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