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Abstract

This article provides the domain of existence of the Laplace transform of infinitely divisible
negative multinomial distributions, defined by their probability generating functions. It makes it
possible to construct all of these distributions. We give examples in dimensions 2 and 3. We give a
construction and a simulation of negative multivariate distributions in dimension 2.
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1 Introduction

In this article, we consider the following definition, see references in (Bernardoff, 2003). We denote by
N the set of non-negative integers. We shall say that the probability distribution }__ yn Pada on N7,
where n is a positive integer, is a negative multinomial distribution if there exists an affine polynomial
P (z1,...,%,) and A > 0 such that P(0,...,0)#0, P(1,...,1) =1, and
7 partt oz = (P2, z) (1)
aeN?
This corresponds to a polynomial which is affine with respect to each z;,j = 1,---,n, or for which
82/82]2P = 0 for all j = 1,...,n. Moreover, P (21,...,2,) = ZTG,B" arz’, where 3, is the family
of subsets of {1,2,...,n} = [n], and where 2z = [[,cr 2, if z = (21,...,2,) € R™. For instance, for
n = 2, such P has the form P (z1,22) = ag + ag1y21 + aqay22 + ag1,232122 with ap # 0. However, finding
exactly which pairs (P, \) are compatible is an unsolved problem. Bernardoff (2003) explained why this
distribution is a generalization of the usual negative multinomial distribution defined in (Johnson et al.,

1997).

Before giving the main result, let us make an observation. If a =(aq,...,a,) € N”, then we
denote z* = [, 2" = 2" ...2%". Let A be any polynomial such that A(0,...,0) = 1, and suppose
that the Taylor expansion (A (z1,...,2,)) " = Y aenn Ca (M) 2% has non-negative coefficients cq ().
Let aj,...,a, be positive numbers such that ) yn ca (A)af! ... a5 < co. With such a sequence
a=(ay,...,a,) we associate the negative multinomial distribution EaeNn Pabe defined by

Y aenn Paz® = [A(a121,. .., 0,2,) /A (a1, .. .,an)]_’\ , thus
P(z1,...,2n) = A(ayz1,...,a0p2,) /A (a1,...,ay,) in the notation (1).
Bernardoff (2003) defined the numbers by = by (P) by:

Definition 1 Let P (z) = Y rcq, arz?® be an affine polynomial P (21, ..., z,) such that P (0,...,0) = 0,
and A =1—P. Let B} the family of non-empty subsets of [n]. For T € B¥, let us introduce the number
br, in fact a polynomial with respect to the ar, defined by by = 971/92" (log (1 — P»‘o’ where |T| is
the cardinality of T and 027 = [I;cr Oz Then

7|

br=> -1y ar (2)

=1 Tel,
where Il is the set of partitions of T, and Il is the set of partitions of length | of T (if T =
{T1,T>,..., T}, the partition T of T is of length 1).

For instance, for n = 3,b{1} = a{1}, b{l’g} = a{1,2} + a{130{2} and b{1’273} = {123} T a{130{2,3} +

ag2yaq1,3) +agsyaqi 2y + 2aqyaq2yaq3y. Now, if there is no ambiguity, for simplicity we omit the braces.



Using the numbers by, Bernardoff (2003) proves the following theorem.

_ T
Theorem 2 Let P (z) = ZTG‘BH*CLTZ , as before, and suppose that
(1-P(2)" = Y aenn Ca (A) 2% Then co (N) = 0 for all positive X if and only if by, given by (2), is

non-negative for all T € B

See examples in dimension n = 2,3 in (Bernardoff, 2003).

This article is preliminary to another one on the simulation of infinitely divisible negative multinomial
distributions in dimension n > 2. Before writing such an article, knowing all these distributions is a
prerequisite.

This article is organized as follows. Section 2 gives the main result. Section 3 applies the main
result to bivariate and trivariate cases. Section 4 gives a construction of some of these negative multi-
variate distributions in dimension 2. Section 5 gives definition and construction of multifactor negative

multinomial distributions. Section 6 gives simulations for the examples in Section 3.

2 Domain of existence of the Laplace transform

Let A be an affine polynomial on R™ and let A > 0 be such that A(0,...,0) = 1 and such that
(A(z1,. .. z)) = Y cenn Ca (A) 2% satisfies cq (M) > 0 for all a in N™. The problem of finding the
affine polynomials A = 1 — P such that for all A > 0, A~ has non-negative coefficients is solved by
Theorem 2. This is equivalent to finding all negative multinomial distributions on N which are infinitely
divisible. We now only consider infinitely divisible negative multinomial distributions. Consider the
discrete measure on N™, py = 37 cyn Ca (A) 0o The present section aims to describe the convex set
D (px) = {0 € R", > cyn Ca (A) exp (a101 + - -+ + apby,) < 400}, which is an important object in the
study of the natural exponential family generated by uy (Bar-Lev et al., 1994; Letac, 1991). The answer

is contained in the following result.

Theorem 3 With the above notation, we denote H = {s€R",s;+---+ s, =0}. For s € H, we
denote by Rs the smallest positive zero of the polynomial Ps(t) = A(te®',... te*"). Then the map
s — s+ logRs(1,...,1) is a parametrization by H of a hypersurface in R™ which is the boundary of
D (). More specifically, if 0 is in R™ , 0, = (01 +---+0,) /n ands =0 —0,, (1,...,1), then 0 is in
D (uy) if and only if 8,, < log Rs.

Finally, D (uy) is an open set.

Proof. We first prove that the radius of convergence R of the power series

P8 =) ua (W) 3)

neN



is equal to Rs. This comes from the following fact: since w, (A) > 0, a known result in the theory
of analytic functions (Titchmarsh, 1939, 7.21) implies that ¢ ~ P, * (¢) is not analytic at R. Since
P, (0)=1, Ps(t) >0 for 0 <t < Rg and Ps (Rs) =0, clearly R = Rs.

We now observe that if @ = (0y,...,6,) is such that
> aenn Ca (A)exp (a1 + - - + anby) < +o0, then for all p > 0 we have
Y aenn Ca (A explag (01 —p) + - + ap (0, — p)] < +o0.

We write 6,, = (61 + -+ + 6,) /n. The orthogonal projection of @ on H iss = 6 — 0, (1,...,1) =
(G sn). Thus for all j = 1,...,n, we have §; — s; = 0,,. We claim that 0, < log Rs. If not, we
have tg =e’» > Rs. But A(e”,...e"") is Ps(to) and the previous remark shows that for all p > 0,
p — Ps (e Pty) is positive. This contradicts the fact that g > Rs.

Conversely, if @ is such that 6,, < log Rs, similar reasoning shows that 8 € D (uy).

Finally, for ¢ = Rs in (3) the series diverges. A short proof goes as follows:

For any k in N and XA > 0, we define (A\), = A(A+1)...(A+k—1) =T (A+k)/T'(\), where ' is
Euler’s gamma function and (A), = 1. We write P (t) = (1 - i) (1 — —k) where |rJ > rg = Rs by

definition of Rs. Thus Y

| =7
nen Un (A) ¢ is the product of the Newton Series Y, =7 ( (i) and the

series corresponding to k = 0 diverges for t = ro. That is, )y un (A) 1y = +o0.

Remark 4 With the notations of Theorem 3, if 0 is in the boundary of D (uy), 3s € H,0 = s +
log Rs (1,...,1), then z; =e% = Rge® fori € [n], and A(z1,...,2,) = A(Rse®,..., Rge®n) = 0,
by the definition of Rs.

3 Examples in dimensions 2 and 3

Example 1. For n =2, we take a1 =1, az =1 and a;2 = @ > —1 so that the conditions of Theorem 2
are satisfied. Hence A (z1,22) = 1 — 21 — 20 — az1 22, and for z; = te®!, zo = te®?, with s; + so = 0, we
have Ps (t) =1 —t (e’ + e %) — at?. If s = (s1,52), then

Rs = |—coshs; + (1/2+ a+ 1/2cosh 251)1/2 /a, and we obtain the parametrization of the boundary
of D (uy):x =06y =s1 +logRs, y =0 =—s1 + log Rs, whose graphic representation is given in Figure
1.
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Figure 1 : the boundary of D (uy) for a = —%7 —%7 1, 20.

Remark 5 Using Remark 4 we obtain another parametrization of the boundary of D (uy): 61 < 0,03 =
—log [L4 (a+1)/(e™® —1)]. In addition, because D (uy) is a convex set, § = (61,02) € D (py) is
defined by

01 <0,0, < —log[1+ (a+1)/ (e —1)]. (4)

In this case, for a = —1/2, Ry = 2coshs; — v/2cosh2s; and if we choose s; = 0, the condition
05 < log R becomes 65 < — log (1 + \/5/2) .Asfy, = —log2 < —log (1 + \/5/2), then (—log2, —log2) €
D (py). Then, the introduction proves that [A (z1/2,22/2) /A (1/2, 1/2)]_”\ = (8 —4dz; —4dzg + 2129)

is a generating function for all A > 0.

Remark 6 Fora = —1/2, the condition (4) gives for 01 = —log2, 03 < —log (3/2), and 03 = —log?2 is
suitable. Hence (—log2,—log2) € D (i) .

[\el[S3

Again with a = —1/2, if we choose s; = log2, Rs = 2 — %\/17, then 0y = —2log?2 < log Rs and
0 =s+0y(1,1) = (—log2,—3log2). Then, the introduction proves that
[A(21/2,22/8) JA(1/2,1/8)] " = (32/13 — 16/1321 — 4/1325 + 1/132125) " is a generating function for

all A > 0.

Remark 7 For a = —1/2, the condition (4) gives for 61 = —log?2, 02 < —log(3/2), and 03 = —3log 2
is suitable. Hence (—log2,—3log2) € D (uy) .

Example 2. For n = 3, the conditions of Theorem 2 are for i,7 = 1,2, 3:
bi =a; 20 ;a5 > —aa; ; a123 = — (a1a23 + aza13 + azaiz + 2a1a2a3)
Wetakea; = as = a3 = 1,a12 = a13 = as3 = aand aja3 = b, sothat A (2) = 1—[(21 + 22 + 23) + a (2122 + 2123 + 2223) -
The conditions of Theorem 2 are satisfied for a > —1 and b > —3a — 2. We take a = 1 and b = 0, hence
A(z) =1—21 — 20— 23 — 2129 — 2123 — 2223. Let 21 = te®?, zp = te®2 and z3 = te®?, with s; +s2+s3 = 0.

If s = (s1,52,83), then Ps (t) =1 — (1 +e%2 + e 517%2)t — (e + e %2 4+ e*1"52)¢2 and we have



_eSl_eS2 _e~ 51 —S2+(9231 +e252 1 geS11T52 Lo 2(s1+52) | ge— 51 +6e_52)1/2

2(e~s1+e—s24es1152)

R =

Finally, the parametrization of the boundary of D (uy) is * = 61 = s1 +log Rs, y = 02 = s3 + log Ry,

z =03 = —s1 — s3 + log Rs whose graphic representation is given in Figure 2.
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Figure 2 : The boundary of D (uy)

If we choose s; = s; = s3 = 0, the condition 65 < log Rs becomes 65 < log (\/21/6 — 1/2). As
U3 = —log4 < log(v21/6 —1/2), then (—log4,—log4,—log4) € D (uy). Then, the introduction
proves that [A (z1/4, 20/4, z3/4) JA(1/4,1/4,1/4)] > = (16 — 42, — 420 — 423 — 2129 — 2123 — 2923) " is

a generating function for all A > 0.

Remark 8 In this case, using Remark 4 we obtain that another definition of @ = (61, 62, 03) € the bound-
61+09

- 786 798 799 —e
ary of D (uy) is : 61 < 0,02 < —log (LTQD ,05 = log (W

) , and another parametriza-

tion of the boundary of D (uy) is ¢ = 61 = u,u < 0;y = 03 = v — log (ﬁ—gz),v < 0z =03 =
(17921&)(17‘?1’)

l+2e“+e“7e“e”+e2“

by 01 < 0,05 < —log(”eel) ,03 < log (M> Hence (—log4, —log4,—log4) € D (uy)

1—e?1 1+e?1+ef2

log . In addition, because D (uy) is a convez set, @ = (61,02,05) € D (uy) is defined

because —log4d < 0,—log4 < —log (5/3) and —log4 < —log (4 — 4/7).

4 Construction of bivariate negative multinomial distributions

Before giving the construction and simulation of infinitely divisible negative multinomial distributions,
we recall some definitions, notations and results. We denote by E the expectation. For a random vector

X = (Xy,...,X,) with pd pux, we write X ~ px.

Definition 9 We fiz A > 0, let P be an affine polynomial. If a random vector X = (X1,...,X,) on R"

with pd ux is such that its Laplace transform is

Lux (0) = E{exp [— (X1 + - + 0, X,)]} = [P (0)] 7, ()



for a set of 6 with non empty interior. We denote ux = vy(px), and ypxy will be called the multi-
variate gamma distribution associated with (P,\) (Bar-Lev et al.,1994). We say also that V(P 1S the

multivariate gamma distribution with scale parameter P and shape parameter .

We remark that L, (6;) = (1 +pi6;)"" . Hence X; ~ Y(p:,x) Where 7, 3y is the ordinary gamma
distribution with scale parameter p; and shape parameter A such that
Vips.ny (@) = 277 i )T (N)exp(—2/pi) 1(0,00) (¥) dz with 1(g o) () = Lif 2 € (0,00) and 1(g o0y (z) =0
if x ¢ (0,00) .

We give the notation of negative multinomial distribution.

Notation 10 We fix A > 0, let P be an affine polynomial. If a random vector X = (X1,...,X,) on N"

with pd ux is such that its pgf gx is
gx (2) = E (%) = [P (2)] . (6)

We denote ux = NM(p,A), and NM(pﬁ)\) will be called the negative multinomial distribution associated
with (P, \).

Let us now recall the definitions and results of Ferrari et al. (2004). An MMPD (Mixed Multivariate
Poisson Distribution) is defined by assuming that the random variables N;, i = 1,...,n are independent
and distributed according to Poisson distributions with means (A1, ..., A, ), conditioned upon the vector
of intensities A = (A1,...,A,). In this case, the probability masses of N = (Ny,...,N,) are defined as
Pr(N = k) f(o I IL (A,ﬁjlkz exp (—A¢) i1 (d\) where p (d)) is the probability of A defined on (0, 00)".
The MMPD defined above is fully characterized by the measure p (d\) and will be denoted by MMPD (p) .
The pgf of N expresses as: gn (z) = L, (1 —2), where 1 = (1,...,1). Let A be an affine polynomial
such that A(0,...,0) = 1, and P(z) = A(a121,...,a,2,) /A(a1,...,0,) for any a = (a1,...,0a,) =
(exp (01),...,exp (0n)), with @ € D (ux), and Q(z) = P(1 —2),if Y = (Y1,...,Yn) ~ ¥, then we
have N ~MPPD(v(g,»)) = NMp.).

Let us denote P (\) the Poisson distribution with mean A. Finally, if N; ~ P (Y;) , i =1,...,n are
independent, then we have N ~ A/ Mp ). This allows us to construct and simulate N ~ N Mpy if
we can construct and simulate Y ~ g ).

We now consider the case n = 2. Let F? be the generalized hypergeometric function (Slater, 1966)
defined by

oo

Fﬁ;(al,...,ap,ﬁl,...,aﬂm;z)ZW’Z._ (7)

k=0

For simplification, we denote F by F,,.

Bernardoff (2018) gave the following proposition:



Proposition 11 Let P (01,62) = 1+ p1601 + p2ba + p1,26162 be an affine polynomial where p1,p2 > 0 and
p12 > 0. Let y(px) be the gamma distribution associated with (P,\). The measure Y(p,n) exists if and

only if ¢ = (p1p2 — p1,2) /pi o > 0. Then, we have

Y
P12 P2 P1 A—1
dxy,dxs) = ~——exp | ——x1 — —=2 1T 8
Yp (dry, dzs) TP p( S 1 o 2)( 1%2) (8)

x F1 (\ cxix9) 1(0,00)2 (21, x2) dr1das.

From (Watson, 1966) we also have Fy (\,2) = I'(\) In_1 (2v/2) 2~ A~1/2 where I, is the modified

Bessel function of order \. So that we have

-
—(A— P12 P2 1 (A=1)/2
dr.drs) = ¢—(A-D/2 152 RPN 4+ 9
Yp (dry, drg) = ¢ oY exp p1,2x1 p1,2x2 (z122) (9)

X I)\,l (2«/01‘1!1)2) 1(0,00)2 ({L‘hxz) dxldxg.

This last formula will be used to graphically represent the distribution v(p, ) in order to compare it to
the simulation.

We can simplify these constructions by using the following proposition:

Proposition 12 If X ~ ), P(21,...,2,) = ZTG‘Bn prz’, then for b = (by,...,b,) with by >
0,...,b, > 0, the random vector Y = (Y1,...,Y,) = (01 X1,..., 00 X0n) ~ vy, with Q (21,...,2,) =
ey, qrzr such that qr = bTpr. In particular, for b = (1/p1,...,1/pn), if p=(D1,..-,pn) , with
p1 >0,...,p, >0, then we have ¢; = 1, fori=1,...,n and qr = pr/p*. As a result, we can construct
Y=(Y1,...,Yn) =(X1/p1,.. -, X0/Pn), and X =(X1,...,Xn) = (01Y1,...,0nYn). Moreover, if we
define br (P) = br (ﬁ), where P is such that Pp = —Pm]\T/Pln], then we have br (P) = p["]gT Q) ,.
This proves that the conditions for infinite divisibility in Bernardoff (2006) are equivalent for ~p,x) and

7@
Walker (2021) gave the following Theorem

Theorem 13 Let Q2 (61,02) = 1+ 01 + 02 + g1,20102, an affine polynomial with g1 2 > 0, we define the

random variables (Y1,V1,Ys) as

Y1 ~va0), Vi ~P(rY1) and Yz = V(A

i+r°
where r >0 and q12 = 1/ (147), moreover r = 1/q12 — 1, then Y = (Y1,Y2) ~ y(@,,2)-
We give the construction of X ~ 7(p ), an infinitely divisible bivariate gamma distribution. We

modify the construction given by Walker (2021) by using Proposition (12) and Theorem (13), and we

give the following theorem.



Theorem 14 Let P (61,02) = 1+ p161 + p2bs + p1,20102 an affine polynomial, where p; > 01 = 1,2,
p12 >0, andgl,g = plpg/p%’z —1/p12 2 0. Let X1 ~ yp, 0y, Vi~ P (cX1) and Xo ~ Yp, o /pi atvi) With
c= p1,25172/p1, then we have X = (X1, X2) ~ y(px)-

Proof. Let us define Q by Q (61,602) = P (61/p1,62/p2), hence P (01, 02) = 14-014+02+4p1 2/ (p1p2) 6162, so
that g2 = p1,2/ (p1p2) . Using Theorem(13) we have Y1 ~ v¢5), Vi ~ P (rY1) and Yo ~ Y1 /(145) 2411)5
where r > 0 and ¢1 2 =1/ (1 + ), so that r = pLQZLQ, and pa/ (1 +r) = p1,2/p1, hence Y = (Y1, Y3) ~
Y@

Inversely, we have P (01,02) = Q (p161,p202) and X = (X1, X2) = (p1Y1,p2Y2) ~ Y(p,»). Because
X1 = p1Y1 and Xy = paYa, we have X1 ~ 7y, 2y, Vi ~ P (r/p1X1) and Xo = Y(p, 5/p, A+171), We have
well X~ y(py)-

[

For n = 2, we can now construct and simulate some of the random vectors X ~ N Mp ). Let Az be an
affine polynomial such that Ay (21, 22) = 1 —a121 —as22 — a1 221 22. The conditions for infinite divisibility
of N/\/l(pA) are a1 2 0, az 2 0, b1 2 = a12 +ajaz = 0. We consider the case a; > 0, ag > 0, by 2 =
aj 2 + ajaz > 0. The conditions for a = (a1, az) are 0 < a3 < 1/a1,0 < a2 < (1 —a101) / (a2 + a1 201) =
(ag + b1 21/ (1 — alal))_1 < 1/as, and we have 1 —aja; > 0, 1 —asas > 0, 1 —aja; —agay —aq 2aiag > 0,
as + a1 201 = az (1 —ajar) + b1 2a1 > 0 because by o > 0 and aq + a1,202 = a1 (1 — ag0a2) + by 202 > 0
because by 2 = 0.

For a = (a;,a3), we have Py (z) = 1‘”11“:3;(?3252:312?&32“22 and if Q2(z) = Po(1 —2z) = 1+

(a1+a1,2a2)a; _ (ag+ai 2a1)az
l—ajay—azaz—ay,2aiaz’ 92 l—ajay—azaz—aj 2aiaz

q121 + @222 + q1 22122, we have ¢1 = , and q12 =

—ai, 20102
l—aja;—azaz—aj 2aiaz

2006), hence a; 2 must check aj 2 < 0. Obviously, we have Q2 (1 — z) = P, (z).

. We remark that ¢; > 0, g2 > 0. In this case ¢ 2 must check ¢; 2 > 0 (Bernardoff,

As a result, if Y = (Y1,Y2) ~ ¥(@,,»), then X = (X1, X3) such that X; ~ P (Y1), Xo ~ P (Y2), and
X1 and X, are independent, conditioned upon the vector Y, then X ~ N M p, »).

To simulate X, first we simulate Y = (Y7,Y3) ~ Y(Q2,n), second we simulate independently X; such
that X1 ~ P (Y1) and X, such that Xy ~ P (Y2), then X = (X1, Xo) ~ N Mp, »).

In order to compare the masses of bivariate negative multinomial distributions, we recall the following
result from (Bernardoff et al., 2013).

The Taylor expansions of [A (z)]™* and [P (z)] " in the neighborhood of (0, ...,0) will be denoted as

follows: [A (2)] 7 = X cnm Ca (A, N) 2%, [P (2)] 7 = 3 cum Ca (PoA) 2. We have cq (P, ) = cq (A, \) a® [A (2)].

For the bivariate negative multinomial distributions, let Az (z) = 1 — a121 — az22 — a1,22122, and

P> (z) = (A (az) /A3 (a)) for a suitable a = (a1, as), we have the following theorem:

Theorem 15 Consider the affine polynomial of order 2 with variables z = (21, 22) defined by Az (z) =



1—ay121 —agza —a1,221 22, and Pa (z) = Az (az) /Az (a) for a suitable a = (a1, az) . With by 2 = a1 2+aja2,

the coefficient of 2 in the Taylor expansion of [As (z)]" and [Py (z)] ™", can be computed as follows

Cq (A2a >‘) = ()‘)max(al,az) (10)
min(a1,02)
aLe (>‘ + E)min((xl,'yag)—e a1 —4 ag—ébé
(a1 — O (ag — 11" 72 712
£=0
and
Ca (PQ, )\) == [A2 (a17 a2)}>\ a?lagz ()\)max(al,ag) (11)

min(ay,az) ()\"‘E)min(al,cm)*f ay—L jan—Lpt
1,2

% (a1 — 0 (az — Ol ®2

£=0
5 Definition and construction of multifactor negative multino-
mial distributions

Bernardoff (2018) extended the definition of multivariate gamma distributions to multifactor gamma

distributions by the following definition

Definition 16 We fit A =(Ay,..., A\p, A) such that \; 2 A >0 foralli=1,...,n. , let P be an affine

polynomial. If a random vector X = (X1,...,X,) on R™ with pd pux is such that its Laplace transform
n
- —(Ai—A
Ly (6) = [P O] [ (1 pi6) ™, (12)
i=1

for a set of & with non empty interior. We denote ux = y(p,a), and v(p,a) will be called the multifactor
gamma distribution associated with (P, A). We say also that v(p,a) is the multifactor gamma distribution

with scale parameter P and shape parameter A.

We have L, (0;) = (1+ pif;) ", hence X; ~ Y(p:,x;)- Bernardoff (2018) also gave the construction
of y(p,a) as follows. If Y = (Y1,...,Y,) is a vector of independent random variables such that L, (¢;) =
1+ pzﬂi)*()‘i#‘) , then if Z ~ y(p y) and Y are independent, then X =Y +Z ~ v(p 5).This construction
allows us to simulate y(p Ay by simulating Z ~ v(p ) and Y.

By analogy with the definition of multifactor gamma distributions, let us now define the multifactor

negative multinomial distributions. This is a generalization of negative multinomial distributions.

Definition 17 We fixt A =(\1,..., A\, ) such that A\; 2 A > 0 for alli =1,...,n, let P be an affine
polynomial with respect to the variables z1,. .., z, , so that P (z) = ZSe[n] psz®,and N a random vector

such that un = J\/'M(RA), If a random vector T = (T1,...,T,,) on N™ with pd pr is such that its pgf is

gr (z) = f[ P(1,... 1z,1,... )] Y NP @), (13)
i=1
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then we denote pp = MN M p ry, and MN M p ry will be called the multifactor negative multinomial
distribution associated with (P, A).

Let us recall the definition of the negative binomial distribution on N, of parameters p, A, p € ]0,1][,
A > 0 denoted by NB(p,A): NB(p,\) = > en (/,\C)!’“p)‘ (1—p)" 6. Let N ~ NB(p,A\), then its pgf
is E(2N) = [1/p— q/pz]_)‘, with ¢ = 1 — p. We remark that g7, (z;) = [P(1,...,1,2;,1,... 1)}_)‘7’ =
(1/pi = (1= pi) /pize) ™, with P(1,...,1,0,1,...1) = Y gy Ps = 1/pi. This proves that T
NB(%M). We also give the construction of T ~ MJ\/’M(RA) in this way:

2

Proposition 18 IfM = (M, ..., M,) is a vector of independent random variables such that E (xiwl>
e, P, 12,1, 1)]_(/\i_/\) , then if N ~ NM(py) and M are independent, then T =N +

M ~NMMpay. Clearly, we have MN M p py ~ MMPD(V(Q’A)) , with Q(z) = P (1 —z) and if we

can simulate v, x), we can simulate MN M p ).

6 Simulations

We now apply these results to the examples in Section 3 for Ay (z1,22) = 1 — 21 — 20 + 1/22129, a =
(1/2,1/2) and a = (1/2,1/8). We respectively have P (21, 22) = 8 — 421 — 429 + 2129 and Py (21,22) =
32/13 —16/132z1 —4/1329 + 1/132122; Q2 (21,22) = 1+ 321 + 322 + 2122 and Q2 (21, 22) = 1+ 15/132 +
3/1325 + 1/132125. Simulations are performed using R software.

The simulations for a sample of size 1,000 of (¢, 2) are illustrated by the graphical representations

given in Figure 3.

11



Simulation of bivariate gamma distribution

Density graph
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Figure 3 : Distribution and simulation

The simulations for a sample of size 1,000 of v(q,,(3,4,2)) are illustrated by the graphical representations

given in Figure 4.
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Figure 4 : Simulations of bifactor gamma distributions
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The simulations for samples of size 100,000 of N'Mp, 5 are presented in Tables 1 and 2.

‘ Table 1 ‘ As (21, 22) ‘ Py (21, 22) ‘ A ‘ a n ‘

‘ ‘ 17,21*2’24*1/22122 ‘ 8*421*4224’2122 ‘ 2 ‘ (1/2.1/2) 100000 ‘

‘ Clar,a) (Pz) H relative frequency ‘
ar\az 0 1 aq\a2 0 1
0 0.015625 0.015625 0 0.01553 | 0.01631
1 0.015625 0.01953125 1 0.01517 | 0.01931
‘ Table 2 ‘ As (21, 22) ‘ Py (z1,22) ‘ A ‘ a ‘ n ‘

32 16 4 1
i3 — ngl — T3Z2 + 1—321,22

‘ ‘ 1—z1—2+1/2212 2 ‘ (1/2,1/8) ‘ 100000 ‘

‘ Clar,az) (P2) H relative frequency ‘
ag\az 0 1 ar\ e 0 1
0 0.1650391 0.04125977 0 0.16552 | 0.04048
1 0.1650391 0.05157471 1 0.16407 | 0.05320

The simulations for samples of size 100,000 of MN M p, (3.4,2)) are presented in Tables 3 and 4.

Py (21, 22) Py (21, 22)
Table 3 | 8 — 421 — 429 + 2120 || Table 4 % - %zl — %22 + %zle
relative frequency relative frequency
ar\ag 0 1 ar\az 0 1
0 0.00021 | 0.00052 0 0.05157 0.03208
1 0.00040 | 0.00115 1 0.07845 0.05114
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