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Abstract

Does exposure to tropical cyclones affect fertility? This paper tackles this issue by
exploiting geolocated microdata from the Malagasy Demographic and Health Survey
together with wind field data generated by tropical cyclones hitting Madagascar during
the 1985-2009 period. The mothers’ fertility history available in the microdata allows
us to construct a panel dataset indicating if a mother gave birth during a given year
and if she has been exposed to a tropical cyclone. By means of panel regressions, that
allows a full control of unobserved heterogeneities, we then estimate the causal effect of
tropical cyclone shocks on female likelihood of giving birth. We find evidence that the
effect of tropical cyclone exposure on motherhood is significantly negative. In particular,
being exposed to wind speed of 100 km/h implies a fall in the probability of giving birth
of 25.6 points in the current year together with further decline of 5.9 and 2.0 points
respectively one and two years after being exposed. Alternative specifications of our
baseline model provide further insights. First, we find mixed evidence of intensification
effects. Second, we find no evidence of non-linearities in the effect. Third, the negative
effect is stronger before 1998. Fourth, the effect of tropical cyclone on motherhood is
persistent since in an extended model estimated coefficients are significantly negative
up to seven years after being exposed. The estimated effect is shown to be robust to
the use of alternative formulation of the wind speed variable but also to an alternative
treatment of geolocated data.
Keywords: Fertility, Tropical cyclone, Madagascar
JEL classifications: J13, O12, Q54, C23
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1 Introduction

The macroeconomic consequences of tropical cyclones, or more generally natural disasters,
have been the subject of intense debates. Certain studies (e.g. Skidmore & Toya (2002),
Hallegatte et al. (2007) or Crespo Cuaresma et al. (2008)) find that natural disasters may have
a positive impact on national income as they could trigger a wave of “Schumpetarian” creative
destruction, namely opportunities to update and adopt more productive new technologies.
In contrast, other studies (e.g. Noy (2009) or Felbermayr & Gröschl (2014)) find that
natural disasters have a negative impact on the economy because the destruction they entail
is detrimental at least in the short run. This lack of conclusive evidence is in part the
consequence of a controversy in the way exposure to natural disasters is measured (Noy (2009)
or Cavallo et al. (2013)).1 In what concerns tropical cyclones, each study measuring the
exposure of a given spatial unit by the wind speed experienced at the surface find that they do
reduce output in the short-term (Strobl (2011), Strobl (2012) or Elliott et al. (2015)) and even
in the long-term (Hsiang & Jina, 2014). While the economic literature now contains many
papers studying the macroeconomic effects of tropical cyclones, evidence about their impacts
on individuals’ life remains scarce. This lack of comprehensive micro-studies, which could
be explained by strong data requirements, leaves many questions unanswered. In particular,
those related to how households reorganize their lives after being impacted by a tropical
cyclone. With the present paper, we fill part of this void by constructing a unique Malagasy
panel dataset combining household geographic location, female fertility history and wind
speed exposure. This allows us to study the effect of tropical cyclone shocks on the decision
of having children.

Understanding how households adjust after an adverse shock is of interest for researchers
and policy makers alike, especially in a context of global warming that is expected to modify
the frequency and the intensity of tropical cyclones in a near future (IPCC (2019) or Knutson
et al. (2020)). In the context of a developing country like Madagascar, children actively
contribute to the household by, e.g., providing care to siblings or grandparents or participating
in housework activities and even sometimes by directly participating in the labor market
(Banerjee & Duflo (2011) or Finlay (2009)). Furthermore, in such a risky environment, when
access to insurance mechanisms is difficult and when many households face uncertainties in
several aspects of daily life, children’s contributions may substitute for standard insurance
and allow households to smooth consumption over time (Banerjee & Duflo (2011), Finlay

1Many studies have used economic and human damages due to disaster from the EM-DAT dataset. The use
of this dataset is accompanied by at least two limitations. First, data on economic damages are collected from
different sources and the quality of reporting changes over time (Strobl, 2012). Second, monetary damages
is likely to be correlated with output, namely the dependent variable in a growth regression (Felbermayr &
Gröschl, 2014).
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(2009) or Pörtner (2014)). As having an extra child could be viewed as the outcome of a
trade-off between the costs and the benefits associated to children, the destruction associated
to a negative weather shock, such as a tropical cyclone, probably induces behavioral changes
regarding the choice of increasing the family size. Until now, very little is known about the
dominant driving forces shaping the post-cyclone fertility behavior.

While existing studies examining the effect of natural disasters on fertility mainly focused
on earthquakes, it is likely that their results cannot be extrapolated to the case of cyclonic
events. First, the macro-literature have shown that the consequences of natural disasters on
economic growth are not identical for all kinds of disasters (Fomby et al. (2013) or Felbermayr
& Gröschl (2014)). We can therefore conjecture that the magnitude or even the direction of
the effect could also be different for fertility depending on the kind of the natural disaster.
Second, empirical studies on earthquakes mainly adopt a “one-event” approach studying
fertility response after an earthquake shock of high intensity (Finlay (2009), Nobles et al.
(2015) or Nandi et al. (2018)). While there is no issue about the causative nature of the effect
unveiled by these studies, they cannot however observe any variability in the frequency or
the magnitude of the disaster events as well as the existence of possible intensification effects.
The database we construct allows to investigate such issues.

We make use of two main databases in our investigation. We first exploit the 1997 and
2008 waves of the Malagasy version of the Demographic and Health Survey (DHS). This
cross sectional household survey has several practical advantages for the problem at hand:
it is representative of the Malagasy population, it contains a large number of observations
and it provides information about individuals’ characteristics. In addition, the DHS provides
the full fertility history of each woman interviewed together with detailed information about
their geographic location. The second database we employ is the Tropical Cyclone Exposure
Database (TCE-DAT) of Geiger et al. (2018). This worldwide data provides high resolution
information about the wind field profile of more than 2,700 cyclonic systems among which
59 threatened Madagascar during the period under scrutiny in this paper. By merging the
geographic information of these two databases, together with the fertility history of the DHS,
we construct a panel data in which we recover, for the 1985-2009 period, the tropical cyclone
exposure of a given mother in a given year. The relationship between changes in tropical
cyclone wind speed exposure and the female likelihood of giving birth is then examined by
means of fixed effect regressions. In doing so, our panel reduced-form framework has many
advantages since only a minimal set of assumptions is imposed. First, having a panel allows
us to overcome threats related to omitted variables by means of a full control of individual
and time fixed effects. Second, insofar as being exposed to tropical cyclone exposure can be
viewed as (quasi-)random, exploiting year-to-year variations in wind speeds experienced by
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inhabitants on the ground enables us to identify their causal effects. In addition, the panel’s
structure can be used as a distributed lag model allowing us to investigate whether the effect
of tropical cyclone shocks is contemporaneous or builds over time.

Our main results can be summarized as follows. First, our set of regressions indicate that
the control for individual and time fixed effects is important. More specifically, models that
fail to isolate their effects show a different impact of tropical cyclones on motherhood. This
further suggests that the decision of increasing the family size is highly correlated with both
mothers’ and annuals’ unobserved components. Second, our panel setup indicates a negative
impact of tropical cyclone exposure on the likelihood of giving birth. The point estimate
suggests that a tropical cyclone shock of mean magnitude, namely approximately 100 km/h in
our sample, induces a fall of 25.6 points in the probability of giving birth in the current year
together with further declines of 5.9 and 2.0 points one and two years after being exposed.
Exploiting the distributed lag nature of our model, we further estimate that the cumulative
effect of such a shock is a reduction of 33.4 points in the likelihood of giving birth. Third,
the estimation of alternative versions of our baseline model allows more nuanced insights.
In particular, we find i) mixed evidence about the existence of a potential intensification
mechanism, ii) no evidence of non-linearities in the causal effect, iii) a stronger effect for
years before 1998 and iv) that the effect of tropical cyclone shocks is persistent since in an
extended model estimated coefficients are significantly negative up to seven years after being
exposed. Our results are estimated to be robust to the use of other measures of tropical
cyclone exposure and to an alternative merging of geolocated data.

Our paper is related to at least three strands of the economic literature. First, by merging
spatially geolocated micro-data with weather variables, our paper is related to a new, but
flourishing, literature that aim to study the effect of weather shocks on socioeconomic variables
(e.g. Deschênes & Greenstone (2011), Kudamatsu et al. (2012), Anttila-Hughes & Hsiang
(2013) or Barreca et al. (2018)). We add to this literature by focusing on the effect of a
specific weather variable, namely tropical cyclones, on fertility . Second, our paper is part of
the literature examining how households respond after an adverse event (e.g. Morduch (1995),
Banerjee & Duflo (2007) or Alam & Pörtner (2018)). Indeed, as in a developing country
context having children enables household to smooth their consumption over time, studying
how they react to a cyclonic event inducing loss of properties, crops and livelihoods enables
us to contribute to the debate on how households respond to a shock. We further add to this
literature by providing evidence for an understudied country, namely Madagascar. Finally,
our paper provides an important contribution to the literature studying the effect of natural
disasters on fertility. To the best of our knowledge, three are the papers closest to us as they
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focus on cyclonic events.2 First, Evans et al. (2010) investigate how US counties fertility
rate respond to storm advisories. They find that low-severity advisories are associated with
a positive fertility effect while high-severity advisories are associated with a negative effect.
Second, Pörtner (2014) examines the effect of hurricane risk and shocks in Guatemala. He
exploits a cross sectional data together with historical data about hurricane occurrence and
find a negative association between fertility and tropical cyclone exposure at the level of
municipalities. Third, Davis (2017) exploits rainfall data as a measure of tropical cyclone
exposure and finds that high level of rainfall in Nicaraguan municipalities are associated
with an increase in fertility. Our paper overcomes many issues of these three papers since
our panel setup allows to alleviate concerns related to mothers’ unobserved heterogeneity.
Furthermore, we rely on a measure of tropical cyclone exposure that is directly related to its
physical intensity and destructiveness while Pörtner (2014) employs historical records and
Evans et al. (2010) advisory data.

The remainder of this paper is as follows. Section 2 is a preliminary describing the
Malagasy context and its tropical cyclone climatology. Section 3 presents in details the data
we use in the empirical analysis. Section 4 develops our econometric framework and discusses
identification assumptions. Section 5 presents the results. Finally, section 6 concludes.

2 Background

2.1 The climatology of tropical cyclones in Madagascar

Tropical cyclones are natural atmospheric phenomena. According to Camargo & Hsiang
(2015), they are considered as the most destructive natural disaster a socieconomic system may
face. A cyclone can be defined as a large, organized systems of winds (driven by convective
processes) that rotate around a center of low atmospheric pressure (Bobrowsky, 2013).3

Tropical cyclones are associated with high speed winds that can be indeed very destructive.
According to the works of Tamura (2009), wind speeds above 72 km/h can already damage
shutters whilst above 90 km/h tiled roofs can already suffer damages. In case of extreme wind
speeds, tropical cyclone can cause severe damage as well as total destruction of properties,
buildings, crops or agricultural areas. However, impacts of tropical cyclones do not only
depend on wind speeds. Given the combination of low-pressure center and wind-induced sea

2Other papers focusing on the post-fertility effect of earthquakes are discussed in subsection 4.1.
3Depending on the basin they are originated, these systems receive different names (Bobrowsky, 2013).

They are called hurricanes in the North Atlantic and northeastern Pacific basins; typhoons in the northwestern
Pacific basin and cyclones in the north Indian basin, the southwestern Pacific, in the southeastern as well as
in the southwestern Indian basins and the Australian region.
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waves, cyclones are also associated with storm surges, heavy rainfall and landslides (Camargo
& Hsiang (2015) or Peduzzi et al. (2012)). Damages and the magnitudes of other hazards
related to tropical cyclones, though not perfectly, are all correlated with the wind strength of
the system (Haiyan et al. (2008) or Jordan & Clayson (2008)).

Separated by the Mozambique channel and located at 350 km of the south-eastern coast of
Africa, Madagascar, the fourth biggest island on Earth, extends from 11◦ 57′S to 25◦ 30′S and
from 43◦ 14′E and 50◦ 27′N. In what concerns tropical cyclones’ activity, Madagascar is part of
the South-West Indian Ocean (SWIO) basin which is under the responsibility of the Regional
Specialized Meteorological Center (RSMC) of La Réunion. Unlike other basins, tropical
systems are considered tropical cyclones when they reach a maximum sustained wind speed of
116 km/h. Below such level, they are not labelled as a tropical cyclone but rather as tropical
storms when their maximum sustained speed is above 63 km/h and tropical depressions when
the sustained speed is below the 63 km/h threshold.4 It should be observed that tropical
systems that reach the category of tropical cyclones are further classified according to the
Saffir-Simpson scale in categories 1 to 5 depending on their maximum sustained wind speeds.
The climatology of cyclonic activity in the SWIO has been extensively studied in Leroux et al.
(2018). They show that, in an average year, about 9.7 tropical systems are observed within the
basin and the half generates wind speeds that allows to characterize them as tropical cyclones.
The cyclonic activity of the SWIO so represents about 11% of global cyclonic activity which
is almost equal to the cyclonic activity generated in the North Atlantic.

Figure 1 depicts the trajectory of all cyclonic systems that threatened Madagascar during
the 1985-2009 period. As shown in the figure, the cyclonic activity around Madagascar has
been considerable during this period. Given its large size, the island has been concerned by 59
cyclonic systems during our sample period (Geiger et al., 2018). As cyclonic systems mainly
move southwestward in the SWIO, the eastern coast of Madagascar has been hit by many
cyclonic systems. The international disaster database (EM-DAT)5 is a natural departure
point to have a first idea of damages related to tropical cyclones in Madagascar. During these
24 years, four million of people have been affected while around 780,000 have been recorded
as homeless after a passing tropical cyclone. Overall, the death toll due to tropical cyclones
amounts to 1,534 people.

4In this paper, we interchangeably use the terms tropical systems, cyclonic systems and tropical cyclones
to designate tropical systems of any magnitude.

5The data is freely available on the following website: https://www.emdat.be/.

6

https://www.emdat.be/


W
ork

ing
pa

pe
r

Figure 1: Trajectories of tropical cyclones making landfall on Madagascar.
Sources: Knapp et al. (2018), Geiger et al. (2017) and authors’ own representation.
Notes: Selected cyclonic systems are from Geiger et al. (2017) data. Trajectories of cyclonic systems are
extracted from Knapp et al. (2018).

2.2 The socio-economic context of Madagascar

Madagascar is one of the poorest countries in the world. According to ICF Macro (2010), per
capita income was of only 347 USD in 2007.6 A vast proportion of the 20 million of Malagasy
people is poor. In particular, 80% of Malagasy people is defined as “extremely” poor as they
lived under the poverty line of 1.25 USD per day per person measured at the 2005 purchasing
power parity (PPP) exchange rate (World Bank, 2015). The Human Development Index of
the United Nation Development Programme was 0.479 in 2005.7 As indicated by Nordman
et al. (2016), the Malagasy economy is very sensitive to external shocks such as exchange
rate fluctuations or natural disaster shocks as well as internal shocks as political crisis. Such
features suggest that some years are entangled with very specific characteristics that may
have an impact on the parents’ decision of having babies. Including time fixed effects in panel
regressions could therefore be relevant (see also section 4).

An important share of the Malagsy population is young and of reproductive age. In
particular, the half of the population was under 20 in 2008 (ICF Macro, 2010). According to
ICF Macro (2010), the Total Fertility Rate (TFR) in Madagascar amounted to 5.2 children

6We choose this statistic because the sample period studied in this paper ends in 2009.
7See also https://www.undp.org/
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per woman in 2003 and to 4.8 in 2008. Despite a slight fall, the Malagasy TFR remains
almost twice larger than those observed in other developing countries (Pörtner, 2017). With
a birth rate of 33‰, Madagascar has one of the highest population growth in the world
(Hernández-Correa, 2012). In the context of developing countries, the timing of birth is
indicative of women ability to control their fertility. In Madagascar, a woman gives birth
for the first time very early since 32% of women aged of 15-19 have already at least one
child (ICF Macro, 2010). The timing between two pregnancies is also a relevant statistic
because the time elapsed between two births could have an incidence on the health of the
child as well as the one of its mother. In that respect, ICF Macro (2010) indicates that 23%
of births take place in a time interval of 24 months or less. Given the poor population living
in Madagascar and the high birth rate, studying the effect of tropical cyclone strikes on the
probability of giving birth is relevant. In particular, such an investigation is indicative of how
poor households with many children adjust family size after an adverse size.

3 Data

3.1 The Demograhic and Health Survey

Our primary source of micro-data about female fertility comes from the Malagasy version
of the DHS. The DHS is a serie of cross sectional surveys conducted in Madagascar roughly
every five years between 1992 and 2009. However, as the geographical information we exploit
to locate the households are missing for the 1992 and 2004 phases, we exclude them from
our analysis. The DHS is conducted by the Malagasy national institute of statistic. As many
national DHS, each Malagasy DHS has benefited from the technical and financial supports
of many international institutions such as the ICF Macro, the United States Agency for
International Development (USAID), the United Nations International Children’s Emergency
Fund (UNICEF) and so on. For each phase of DHS, a nationally representative sample of
women aged of 15 to 49 were interviewed. From these women detailed information about
socio-demographic (such as household composition, education level, number of children or
household well-being) and health characteristics (such as infant mortality, nutritional practice,
malaria prevalence or use of contraceptive) are collected. Among the wide range of information
available in the surveys, we exploit in depth the mother’s fertility history. This retrospective
record allows us to recover information about children’s year of birth and gender or woman’s
age when giving birth. From this fertility history, we construct a panel dataset of women and
we define a binary variable indicating whether the woman gave birth or not during a given
year.

8
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Let us now describe in more detail the sample selection of the Malagasy DHS because
it has important implications for the design of our empirical study. The sample of each
DHS wave is basically a two-level stratified random sample. At the first level, the Malagasy
territory is divided into approximately 21,500 clusters and among them a number of clusters
is randomly selected. In particular, 285 clusters have been selected for the 1997 phase of
the DHS against 600 in 2008. At the second level, for each cluster selected at the first level,
roughly 30 households are randomly selected. The geographical information we exploit to
locate women comes from the first level selection. In particular, for each selected cluster, the
data producer provides geographical information about its centroid. However, to ensure the
confidentiality of selected households, the data producer does not provide the exact latitude
and longitude of the cluster’s centroid but displaces randomly the actual location within a
two (resp. ten) kilometers radius in urban (resp. rural) areas. We then combine information
about household’s location with information about tropical cyclones to retrieve the wind
speed exposure experienced by inhabitants on the ground. To the best of our knowledge,
we are the first to combine such a high resolution geographic information about household
location with high resolution information about wind speed exposure.8

To conduct our research we apply some restrictions to our sample. First, as the geographical
information about clusters’ location are essential, we further drop households living in clusters
without exploitable coordinates. Consequently, we are left out with 268 clusters for the
1997 phase of the DHS and 585 for the 2008 phase.9 For illustrative purposes, we display
in Figure 4 of Appendix A the clusters’ distribution within the Malagasy territory. Second,
as we use the retrospective information about mothers’ fertility, we have to make sure that
a given woman has been exposed to a given tropical cyclone in a given year. To do so, we
follow Kudamatsu (2012) and Anttila-Hughes & Hsiang (2013) by restricting our final sample
to mothers declaring that they “always” live in their current home. Third, as we iterate
backwards to construct our panel database, we drop all records for which the mother’s age is
below the threshold of 15.

Table 1 reports a selection of summary statistics by distinguishing the two waves of DHS
under scrutiny in this paper. In our final sample, the total number of children per woman
is of 3.95 in the 1997 wave of DHS and of 3.70 in the 2008 wave. The average age when
giving birth for the first time is approximately equal to 19 years. More than 25% of women
report having no education while approximately three quarter reports having, at best, a level
equivalent to primary education. This results in a relatively low number of years at school

8Anttila-Hughes & Hsiang (2013) have a similar approach than us but they consider a geographical divide
of Philippine into only 13 regions.

9Missing geographical information are due to i) inconsistencies in geographic coordinates reported and ii)
the incapacity of the data producer to go in some clusters (ICF Macro (1998), ICF Macro (2010)).
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Variable DHS-1997 DHS-2008
Mother’s Age 26.45 26.64

Mother’s age at first birth 18.74 19.01
Mother’s age at first marriage 17.79 17.88

Number of children 3.95 3.70
Years of education 2.84 3.07

No education 0.26 0.28
Primary education 0.51 0.50
Secondary education 0.22 0.21
Tertiary education 0.02 0.02

Table 1: Sample mean of a selection of women characteristics.
Sources: DHS and authors’ own calculations.

(around three years). Overall, changes in women characteristics remain marginal between the
two surveys.

3.2 Tropical cyclone data and wind speed exposure

A prerequisite for our empirical study is a measure of wind speed exposure experienced by
population on the ground. As it is not possible to rely on weather ground station data at a
detailed level in the context of Madagascar, we exploit the worldwide TCE-DAT of Geiger
et al. (2018). To produce the latter, Geiger et al. (2018) calculated an estimate of the lifetime’s
maximum surface wind speed at each spatial location (on a 0.1◦ × 0.1◦ grid over land) for
more than 2,700 landfalling cyclonic systems between 1950 and 2015. The calculation is based
on the The International Best Track Archive for Climate Stewardship (IBTrACS) archive
(Knapp et al., 2010) which contains all the information required by a wind field model such as
Holland (1980) model, widely used on studies on the evaluation of the risks associated with
the landfalling of tropical cyclones (Peduzzi et al., 2012). Geiger et al. (2018) implemented
the revised hurricane pressure-wind model of Holland (2008) in which the maximum surface
wind speed W in m.s−1 (for a given pixel)10 at radial distance r of the center of a given
cyclonic system is defined as follows:

W =
(
bs
ρe

∆p
(
r

rm

))0.5

, (1)

where ρ the surface air density in kg.m−3, e the base of natural logarithms, ∆p the pressure
drop to the cyclone center in hPa as a function of r and rm (the radius of maximum winds).

10For simplicity, we do not add an index to designate pixels.
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The parameter bs depends on ∆p, the temporal intensity change in pressure, the absolute
value of the latitude and the tropical cyclone’s translational speed. Further details on the
development of the parametric equation of bs can be found in Holland (2008). In addition to
the wind field model in equation (1), Geiger et al. (2018) calculated a translational component
multiplied by an attenuation factor (the ratio between the tropical cyclone’s center and the
radius of maximum wind). The translational wind speed decrease with distance from the
cyclonic system’s center is taken into account to provide more realistic estimates of wind
exposure on the ground. To our knowledge, there is no other publicly available dataset
of ground weather station or remote sensing measurement covering the whole territory of
Madagascar with a spatial resolution higher than 0.1◦ × 0.1◦. That is the main reason why
we decided to use the wind speed estimate calculated by Geiger et al. (2018).11

Table 2 and the histogram of Figure 2 show summary statistics of wind speed experienced
by DHS’ clusters when exposure is non-zero.12 Overall, 23.8% of our pairs of cluster-year
observations experienced a positive wind speed exposure. The average wind speed exposure
during the 1985-2008 period is of 103.8 km/h with a standard deviation of 35.3. There is
substantial heterogeneity in our sample insofar 10% of clusters have been exposed to tropical
cyclones’ wind speed above 150 km/h. Observe that the maximum wind speed observed
during our sample period amounts to 259.3 km/h. Such an intense wind speed is due to
tropical cyclone Gafilo, which is among the most severe phenomenon observed since 1985 in
the Southwest Indian Ocean basin. For illustrative purposes, we plot in Figure 5 of Appendix
A the complete wind fields of four selected tropical cyclones that hit Madagascar during the
1985-2009 period.

3.3 Other climatic data

Despite our main focus is on the impact of tropical cyclone exposure on motherhood, we
include two other weather variables in our analysis, namely rainfall and mean temperature.
Their inclusion is meant to avoid noises due to shared secular changes that might be correlated
with tropical cyclone exposure. Our rainfall variable comes from the Climate Hazards group
Infrared Precipitation with Stations (CHIRPS) dataset constructed by Funk et al. (2015).
When constructing this dataset, Funk et al. (2015) combine ground station and satellite
information to obtain a high-resolution (0.05◦ × 0.05◦) gridded data. In what concerns
temperature, we make use of the updated worldwide gridded climate dataset of the Climate
Research Unit (CRU) of the University of East Anglia (Harris et al., 2014). The resolution

11The dataset is referenced as Geiger et al. (2017) and is available at https://dataservices.gfz-
potsdam.de/pik/showshort.php?id=escidoc:2387904

12In doing so, we follow Elliott et al. (2015).
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Wind speed Rainfall Mean temperature
Mean 103.8 15.6 21.7

Standard deviation 35.3 6.5 2.8
Min. 63.0 2.0 16.3

Percentile 1% 63.5 3.6 16.7
Percentile 5% 65.3 5.9 17.5
Percentile 10% 67.5 7.7 18.2
Percentile 25% 75.1 11.8 18.9
Percentile 50% 94.2 14.7 21.9
Percentile 75% 125.5 18.5 23.7
Percentile 90% 151.7 24.3 25.6
Percentile 95% 178.1 28.2 26.1
Percentile 99% 214.4 34.9 26.6

Max. 259.3 46.1 27.0

Table 2: Summary statistics of weather variables for DHS’ clusters during the 1985-2009
period.
Sources: DHS, TCE-DAT of Geiger et al. (2018), CHIRPS dataset of Funk et al. (2015), CRU dataset of
Harris et al. (2014) and authors’ own calculations.
Notes: Wind speed corresponds to the maximum wind speed experienced and is expressed in km/h. Rainfall is
expressed in hundreds of millimeters per year. Mean temperature is the annual average temperature and are
expressed in Celsius degree. For wind speed summary statistics are computed only for non-zero clusters-year
pairs.

level of the latter dataset is however lower than the one of CHIRPS since it is available at a
0.5◦ latitude/longitude grid cells. The last two columns of Table 2 report univariate analyses
of rainfall and mean temperature. Histograms of these two variables are depicted in Figures 6
and 7 of Appendix A.

4 Empirical framework

4.1 Estimated equation

Our empirical strategy consists in estimating different versions of the following baseline model:

yit =
L∑
l=0

(
βWl ×Wi,t−l + βRl ×Ri,t−l + βTl × Ti,t−l

)
+ µi + ηt + ζXit + uit (2)

Where i indexes a given woman and t a given year. The outcome of interest, namely yit, is a
binary variable equal to one if mother i gives birth in year t and zero otherwise. Given that
yit is dichotomous, we therefore rely on a Linear Probability Model (LPM). Here, it should be
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Figure 2: Distribution of maximum wind speed experienced by DHS clusters (1985-2009).
Sources: DHS, TCE-DAT (Geiger et al., 2018) and authors’ own calculations.
Notes: The light blue vertical line represents the mean of the distribution. The light pink vertical line represent
the median of the distribution. Maximum wind speeds are expressed in km/h.

mentioned that such a practice is standard in the empirical literature dealing with dependent
dichotomous variable in a panel setup (Anttila-Hughes & Hsiang (2013), Kudamatsu (2012)
or Kudamatsu et al. (2012)).13 In equation (2), βjl with j ∈ [W,R, T ] are coefficients to be
estimated. Our weather variable of main interest corresponds to tropical cyclone exposure
of woman i in year t measured by the maximum wind speed (due to tropical cyclone) W .14

The latter variable is obtained by merging the clusters’ geographic location with maximum
wind speeds estimated in (1). As usual in SWIO, the wind speed variable is then expressed in
kilometer per hour (km/h). We also include as controls two others weather variables: rainfall
R expressed in hundreds of millimeters per year, and annual land surface mean temperature
T measured in Celsius degree. We justify the inclusion of these two variables as an attempt
to reduce problems related to omitted variables. If there are correlations or shared secular
changes among weather variables, studying the impact of a weather variable in isolation
could be problematic (Dell et al., 2014). In particular, it is arguable that the tropical cyclone
exposure of a given spatial unit may be correlated with its surface temperature or its rainfall
level. In that respect, Hsiang (2010) finds that each additional Celsius degree in country’s
local surface temperature is associated with a 9.36 km/h increase in local wind exposure in

13It is well known that the incidental parameter problem complicates the estimation of panel models including
fixed effects. In contrast to linear models, it is not possible to removed fixed effects with the traditional
within transformation. Moreover, estimating them directly leads to biased estimates of all parameters (see
also Wooldridge (2010) or Croissant & Millo (2018)).

14For each birth occurring in a given calendar year t, we carefully check that exposure to tropical cyclone
wind speed in calendar year t and t− 1 occurs at least nine months before the birth.
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the Caribbean basin countries.15 Consequently, the non-inclusion of temperature or rainfall in
equation (2) could introduce a bias in βWl , because in such a context the coefficient on wind
speed exposure could capture the combined effect of the three weather variables. To take
into account that some delays could exist between the moment when parents decide to have
a baby and the actual occurrence of the birth, we employ a distributed lag model. In our
baseline specification, the three weather variables enter our model contemporaneously and
up to lag L = 2. Doing so, allows us to investigate whether tropical cyclones impact fertility
behavior contemporaneously or with some temporal lags.16 We include woman fixed effects
µi to control for unobserved and time-invariant characteristics that could potentially affect
women likelihood of childbearing. These unobserved factors could be female’s (time-invariant)
preference for having a large family. Such a preference concept can also be rationalized by
emphasizing the opportunity cost of taking care of children. Women having lower outside
options on the labor market probably have a higher opportunity cost of spending time in
labor market activities leading them to have more babies and to devote more time to children
education. We also flexibly account for year-specific components shared by all women using
a year fixed effect ηt. Including such time fixed effects becomes even more relevant in the
Malagasy context. For instance, the political crisis that followed the presidential elections of
December 2001 triggered a severe economic recession. Arguably, such a time fixed effect may
impact the decision of having children. Moreover, the inclusion of these time fixed effects
ensure that the relationship of interest are identified from idiosyncratic shocks. Xit is a vector
of time-varying woman’s characteristics such as age and age squared while ζ is the vector of
estimated coefficients associated to these controls. Finally, uit is the usual error term.

In equation (2) the coefficients of main interest are the set of βWl . They reveal the effect of
wind speed exposure in period t− l on woman likelihood of motherhood in t. A positive sign
for βWl suggests that wind speed exposure increase woman likelihood of giving birth while a
negative sign suggests the opposite. At this stage, it should be observed that current evidence
about the effect of natural disasters on fertility is mixed. On the one hand, certain papers as
those of Nobles et al. (2015) or Nandi et al. (2018) stress that women have more children after
a disaster because they follow a replacement effect behavior due to mortality within the family
or within an extended group often called the “community”. Furthermore, in a developing
country context, Finlay (2009) suggests that to overcome a negative disaster shock parents are
more likely to increase their family size. Indeed, in such a context, children often participate
to the labor market or to domestic activities very early so that they could lead to a net
increase in household income. Carta et al. (2012) suggest that fertility could help mothers to

15Hsiang (2010) computes this with a panel setup including country and year fixed effects together with
country’s specific trends.

16We also include up to ten lags of each weather variable in a sensitivity analysis. See subsection 5.2.
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overcome the traumatic and stressful experience triggered by the disaster. On the other hand,
other papers, as those of Kochar (1999) or Evans et al. (2010), indicate that the opportunity
cost of children education increases after a natural disaster. Consequently, parents are likely
to postpone the decision of having babies to devote more time to other specific activities,
especially reconstruction or working on the labor market. Moreover, natural disasters could
trigger a period of uncertainty both in terms of income and in terms of available livelihood
(Davis (2017) or Pörtner (2014)). Combined with the fact that couples may anticipate that
babies born after a disaster may have worse health outcome (Pörtner, 2014), it is likely that
motherhood decreases after the occurrence of a natural disaster. It should be observed that
the estimated βWl of equation (2) are silent about the mechanism behind the impact of tropical
cyclone exposure on fertility. However, as the direction of the impact is mainly an empirical
question, our econometric framework allows us to discriminate between economic mechanisms
suggesting a positive response of fertility after the occurrence of natural disasters from those
suggesting a negative response.

4.2 Identifying assumption

A first natural option when estimating equation (2) is to employ a standard Ordinary Least
Square (OLS) regression by pooling all cross-sections together and without transforming the
data. Due to the exogenous nature of tropical cyclone wind speed on our fertility variable,
it is unlikely that reverse causation is a concern. Arguably, exposure to wind speed could
impact motherhood but the reverse effect seems impossible. However, a pooling model still
suffers from the omitted variable bias.17 In particular, if a correlation exists between women’s
unobserved components and their fertility behavior, putting the former into the error term is
problematic as it has the potential of leading to inconsistent estimates (Wooldridge, 2010).
That is why, our preferred specification throughout this paper is the one including both types
of fixed effects.

Insofar fixed effects are included into equation (2), variables are expressed in deviations
from the individual and temporal sample means (Croissant & Millo, 2018). Our identification
so emphasizes year-to-year variations in levels from the observed means. As a consequence,
the fixed effect coefficients associated to wind speed could be interpreted as the impact of
tropical shocks on woman probability of giving birth.18 Given the nature of our estimated
effect, it is legitimate to raise question about the external validity of our study, especially
in a context of anthropogenic warming. Indeed, one could argue that the effect of short-run

17As recalled by Dell et al. (2014), in a pooling model context increasing the number of control variables
does not necessarily reduce the omitted variable bias.

18It should be observed that the same interpretation holds for temperature and rainfall.
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changes of a given weather variable on some economic outcome differs from the effect of a
long-run and gradual change in the same weather variable. In particular, economic agents
(households, firms or policy makers) may engage in actions aiming to mitigate the negative
effect of climate change or to increase their coping capacity. In what concern tropical cyclones,
it is expected that climate change would decrease their frequency while it would increase
their average intensity and the proportion of cyclonic systems reaching very intense levels
(of category 4-5 of the Saffir-Simpson scale) (Knutson et al., 2020). Consequently, it is likely
that tropical cyclones would still act as a shock so that the focus on year-to-year variations
remains a relevant departure point.

The main assumption we rely on to identify the causal effect of tropical cyclones on fertility
is randomness in individual’s exposure. Being exposed to cyclonic systems can be viewed
as (quasi-)random insofar cyclonic systems’ formation but also their exact trajectories and
magnitude are stochastic and difficult to predict. When occurring, tropical cyclones generate
recognizable wind speeds of high magnitude hitting (quasi-)randomly large spatial units so
that inhabitants living in these areas experience the exposure and those living in non-affected
areas experience any exposure. There are potentially two issues about the randomness
nature of tropical cyclones’ exposure and both are related to the progress of meteorologists
in forecasting tropical cyclones’ occurrence. First, meteorologists have made progress in
forecasting the seasonal frequency of tropical systems (Klotzbach et al., 2019). Second, it
is now possible to forecast the occurrence of a tropical cyclone a few days before a tropical
cyclone’s landfall. From our point of view, such possibilities have almost no incidence on our
identification strategy because our focus is on year-to-year variations. In particular, if seasonal
forecasts have a higher predictive power, the year-to-year variations in tropical cyclones’ wind
speed of a given spatial units remains for a large part unpredictable for scientists and so for
inhabitants potentially concerned by tropical cyclones. As regard to short run forecasting,
it implicitly assumes that inhabitants living in areas under the threat of a cyclonic system
have a perfect access to the information (by means of a radio, television or newspapers). This
is however not necessarily the case in the context of Madagascar. In particular, ICF Macro
(2010) documents that 54% of female Malagasy listen the radio at least once a week and
that only 19% watch television at least once a week. The same statistics amount to 40% and
14% according to ICF Macro (1998). Such statistics suggest that an important proportion of
Malagasy people have not a full access to information. Despite this, it remains possible that
information about the occurrence of tropical cyclones circulates by means of other channels,
such as networks, so that we cannot totally exclude that individuals could engage in action to
protect their home and their livelihood or evacuate. Such possibilities have some implications
on the interpretation of our results. More specifically, the effect we estimate could be viewed
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as the effect of tropical cyclone shocks after households engage in adaptive behaviors (if
any). It should be observed that, despite such behaviors, inhabitants cannot overcome all
the negative effects of tropical cyclones so that a degradation in their living environment
is perceptible and may have a consequence on their decision of having children. Insofar
year-to-year variations in the exposition to tropical cyclones shocks are (quasi-)random, our
reduced-form panel framework imposes relatively few identifying assumptions while ensuring
a causative interpretation.

5 Results

This section presents the results obtained by estimating the econometric model detailed in
the previous section with panel data methods. It also proposes many robustness checks. All
estimations have been done with the R software (R Core Team, 2019) by using tools provided
by the “plm” package of Croissant & Millo (2008).

5.1 Main results

The Table 3 reports regression results of alternative estimations of equation (2). To see
how the inclusion of mother fixed effects µi and time fixed effects ηt alter the results, we
sequentially add them throughout columns (1)-(4).

Column (1) reports the results of a model without individual and annual fixed effects. It
so corresponds to the pooling model. Such a model shows a significantly negative relationship
between wind speed exposure in t and t− 1 and motherhood in t. For exposure occurring
in t− 2, we rather witness a positive association. In what concerns the other two weather
variables, the model unveils a positive association between rainfall in t and t− 1 and fertility
in t, while the opposite is observed in t− 2. Such a switching behavior is also observed for
mean temperature. While the model of column (1) is a natural departure point, it does not
account for unobserved heterogeneity, preventing any causative interpretation of tropical
cyclone exposure on motherhood.

In columns (2) and (3), we include either individual fixed effects or annual fixed effects.
The main finding that stands out from these two columns is about the magnitude of coefficients
associated to wind speed. Depending on the fixed effect included in the regression, values of
βWl change. As an example, let us focus on βW1 . From an estimate of βW1 of −0.0593 in model
(1), the model of column (2) provides an estimate of −0.0710 while the one of column (3)
finds βW1 = −0.0429.19 Such changes indicate that strong correlations exist between mother

19Differences among estimated coefficients associated to βW
1 of model (1), (2) and (3) are statistically

significant at the 5% level.
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fixed effects, time fixed effects and the likelihood of giving birth. Given the sensitivity of the
results to the inclusion of fixed effects, our preferred specification is the one controlling for
individual and time unobserved heterogeneity.20

The last column of Table 3, reports results of the estimation of the complete version of
equation (2), namely the one including both kinds of fixed effects to the model. It shows
a negative impact of tropical cyclone wind speed shocks on mothers’ likelihood of giving
birth. The estimated relationship is consistently negative for all lags of wind speed and
even for cyclonic events occurring two calendar years before the birth. An extra wind speed
exposure in t equivalent to the sample average, namely 103.8 km/h, induces a fall of 25.6
points (103.8×−0.2461) in women likelihood of giving birth in the current year.21 Exposure
to tropical cyclone shocks of mean intensity in t− 1 and t− 2 further reduces the probability
of having babies in t of 5.9 (103.8×−0.0564) and 2.0 (103.8×−0.0189) percentage points
respectively. The distributed lag nature of our empirical model allows us to compute the
cumulative effect of tropical cyclones by summing up the three coefficients on wind speed.
In the context of our preferred specification ∑L=2

l=0 β
W
l = −0.3214, suggesting that following

a tropical cyclone shock of mean intensity, the medium-run reduction in the probability of
giving birth is of 33.4 points. Overall, the results of column (4) is suggestive that the effect
of tropical cyclone exposure on the decision of having children is persistent. We further
investigate this issue in subsection 5.2. To our knowledge, we are the first to document such
evidence by using detailed information about individual location and wind speed exposure.
In what concerns the other two weather variables, the model of column (4) shows a positive
significant impact for rainfall shocks occurring in t and for temperature shocks occurring in t,
t− 1 and t− 2.

5.2 Sensitivity

Overall, the panel estimates of the last subsection unveils that a tropical cyclone shock leads
to a significant fall in mothers’ likelihood of giving birth. These findings could be sensitive
to different choices made when estimating the baseline model. To ensure that the main
message of this paper holds but also in order to produce more nuanced insights, we check the
sensitivity of our results along six different dimensions: i) the use of alternative formulation

20To further motivate this choice, we apply the Lagrange multiplier test. In particular, we test for the
presence of individual, time and both kinds of fixed effects. Each time, the tests point toward the presence of
fixed effects. As the presence of individual and time fixed effect is not rejected, the model included both of
them are our preferred specification.

21A similar metric shows that the probability of giving birth for mothers exposed to very extreme wind
speed (e.g of 250 km/h), as those generated by Gafilo in 2004, falls of about 61.6 points in the current calendar
year.
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(1) (2) (3) (4)

Coefficients on wind speed

Max. Wind in t (βW0 ) -0.2053*** 0.2074*** -0.2436*** -0.2461***
(0.0023) (0.0024) (0.0025) (0.0026)

Max. Wind in t− 1 (βW1 ) -0.0593*** -0.0710*** -0.0429*** -0.0564***
(0.0022) (0.0023) (0.0024) (0.0025)

Max. Wind in t− 2 (βW2 ) 0.0069* -0.0055*** -0.0040 -0.0189***
(0.0022) (0.0023) (0.0025) (0.0026)

Coefficients on rainfall

Rainfall in t (βR0 )
0.2954*** 0.2804*** 0.2677*** 0.3996***
(0.0338) (0.0426) (0.0421) (0.0522)

Rainfall in t− 1 (βR1 )
0.0948*** 0.2047** -0.0022 0.0580
(0.0349) (0.0420) (0.0438) (0.0507)

Rainfall in t− 2 (βR2 )
-0.2755*** -0.1826*** -0.1295** -0.0248
(0.0334) (0.0417) (0.0410) (0.0498)

Coefficients on mean temperature

Mean Temp. in t (βT0 )
-4.0206*** 3.5547 *** -0.1501* 4.4704 ***
(0.5239) (0.6555) (1.5011) (1.6293)

Mean Temp. in t− 1 (βT1 )
-0.4802 6.5316*** 5.1759 11.9460***
(0.5312) (0.6246) (1.7207) (1.8447)

Mean Temp. in t− 2 (βT2 )
4.9857*** 12.5595 *** -4.5409*** 7.1820***
(0.4801) (0.6216) (1.5390) (1.8094)

Mother fixed effects No Yes No Yes
Annual fixed effects No No Yes Yes
Observations 155108 155108 155108 155108

Table 3: Main regression results
Sources: DHS, TCE-DAT of Geiger et al. (2018), CHIRPS dataset of Funk et al. (2015), CRU dataset of
Harris et al. (2014) and authors’ own calculations.
Notes: Significant levels: * 10%, ** 5%, *** 1%. All regressions include women’ age and its square. Model
of column (1) does not include fixed effects. Model of column (2) only includes individual fixed effects (µi).
Model of column (3) only includes annual fixed effects (ηt). Model of column (4) includes both individual and
annual fixed effects.
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of the tropical cyclone’s variable, ii) the sample period, iii) the presence of non-linearities,
iv) the presence of intensification mechanism, v) the number of lags and vi) the merging
of geolocated data. Results of all alternative estimations are reported in Tables 4, 5 and
6. To facilitate the comparison with the baseline estimate, the first column or the first row
of each table repeats estimation results from column (4) of Table 3. Finally, it should be
observed that, to save some spaces, Tables 4 to 6 report only estimated coefficients associated
to tropical cyclones.22

Tropical cyclone variable An important robustness check is to establish whether the
results are similar when alternative formulations of our measure of tropical cyclone exposure
are employed. We tackle this issue by considering three other measures of tropical cyclone
incidence.

First, we notice that the economic literature followed different strategies to approach
tropical cyclones’ exposure or more generally disaster exposure. In particular, some empirical
papers that aim to estimate the impact of a natural disaster on the economy rely on dummy
variables (Skidmore & Toya, 2002). This dummy is equal to one if a given spatial unit,
typically a country or a region, has been exposed to a disaster during a given period. We
so replace our wind speed variables by a dummy for positive tropical cyclone exposure in a
given year. Corresponding results are reported in column (2) of Table 4.

More recently, rather than using directly the wind speed experienced by a given spatial
unit, many papers construct ad-hoc indexes of potential destruction (also called a damage
function).23 The intuition behind such indexes follow Emanuel (2011). More specifically,
below a certain threshold W̄ it is unlikely that wind speed provokes substantial physical
damages so that the level of physical destruction could be assumed to be zero. However, once
wind speed generated by the cyclonic system is above W̄ , the level of damages increases but
in a non-linear fashion. To understand how such alternative measures of tropical cyclone
exposure affect our conclusion, we then run two other checks.

In the first one, we follow a similar strategy than Strobl (2012) and we construct the
following index of potential destruction:

Dit = W λ
it if Wit > W̄and zero otherwise (3)

When constructing Dit, two parameters are of importance because they shape its functional
form. On the one hand, λ which corresponds to the parameter relating the maximum surface
wind speed experienced to the level of damages. On the other hand, W̄ which is the threshold

22Complete results remain available upon request.
23Examples include Strobl (2011), Strobl (2012), Bertinelli & Strobl (2013) or Mohan & Strobl (2017).
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above which the level of destruction becomes perceptible. Different values of these two
parameters have been proposed but empirical evidence about them is scarce, especially for
the Malagasy context. In the US context, Emanuel (2005) suggests that the level of damages
can be approached by the cubic value of the maximum wind speed observed at the surface.
By contrast, Nordhaus (2006) suggests that destructiveness increases with the eight power of
maximum wind speed.24 In what concerns W̄ , Strobl (2012) and Bertinelli & Strobl (2013)
set it to 177 km/h (the value above which a cyclonic system falls in the third category level of
the Saffir-Simpson scale) while Mohan & Strobl (2017) select a value of 119 km/h (the value
above which a cyclonic system falls in the first category level of the Saffir-Simpson scale).
Without further evidence about these parameters, we choose λ = 3 as suggested by Emanuel
(2005) or Strobl (2011) and we fix W̄ = 93 km/h as indicated by Emanuel (2011). Column
(3) of Table 4 shows results of this alternative estimation.

In the second one, we follow Emanuel (2011) and we construct the following index fct
capturing the proportion of damaged property:

fct = v3
ct

1 + v3
ct

(4)

with

vct =
MAX

(
Wct − W̄ , 0

)
W ∗ − W̄

. (5)

Where c denotes a cluster and W ∗ corresponds to the threshold at with half of buildings is
damaged. Again, we lack of strong empirical evidence when choosing an appropriate value for
W ∗. Here, as we fix W̄ to 93 km/h, we set W ∗ to 166 km/h, namely the threshold of wind
speed at which the RSMC of La Réunion labeled a tropical system as an “intense” tropical
cyclone. Corresponding results are reported in column (4) of Table 4.

Inspection of columns (2)-(4) of Table 4 leads to some straightforward comments. First,
the qualitative patterns of our results are entirely preserved since estimated coefficients on
the three different measures of wind speed are almost all negative. Second, the quantitative
patterns observed are broadly consistent with our baseline estimate even if the non-linear
nature of the wind speed variable of models of columns (3) and (4) has some interpretative
incidence. Thus, for a level of destruction in t equivalent to the mean of the damage function,
the models of column (4) (resp. column (3)) indicates that a mother is 0.5 points (resp. 1.0)
less likely to give birth in t + 1. The negative effects are sharply higher when considering
events generating extreme wind speeds of 250 km/h. In particular, for such a level of exposure,
the probability of motherhood falls of -5.3 points (resp. -13.8 points) for the index of potential

24In the context of US coastal counties, Strobl (2011) proposes an estimates of 3.17 for λ.
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Baseline Wind speed variable Sample period Merging
(1) (2) (3) (4) (5) (6) (7)

Coefficients on wind speed

βW0
-0.2461*** -28.8878*** −5.02e−06*** -44.9245*** -0.2672*** -0.2407*** -0.2727***
(0.0026) (0.2839) (1.01e−07) (1.1576) (0.0040) (0.0035) (0.0026)

βW1
-0.0564*** -6.3773*** −7.93e−07*** -5.7713*** -0.0926*** -0.0524*** -0.0641***
(0.0025) (0.2782) (9.42e−08) (1.0620) (0.0044) (0.0033) (0.0025)

βW2
-0.0189*** -2.8768*** −7.37e−09 0.1740 -0.0156*** -0.0311*** -0.0191***
(0.0026) (0.2853) (9.73e−08) (1.1074) (0.0048) (0.0032) (0.0026)

Obs. 155108 155108 155108 155108 67297 72361 155108

Table 4: Alternative specifications - Robustness
Sources: DHS, TCE-DAT of Geiger et al. (2018), CHIRPS dataset of Funk et al. (2015), CRU dataset of
Harris et al. (2014) and authors’ own calculations.
Notes: Significant levels: * 10%, ** 5%, *** 1%. All regressions include mother fixed effects (µi), time fixed
effects (ηt), controls for rainfall (Rt, Rt−1 and Rt−2) and mean temperature (Tt, Tt−1 and Tt−2), women’ age
and its square.
The model of column (1) corresponds to the baseline model. The model of column (2) is the one using dummy
variables in place of the baseline wind speed variable. The model of column (3) is the one using the index
of potential destruction of equation (3) in place of the baseline wind speed variable. The model of column
(4) is the one using the index of equation (4) in place of the baseline wind speed variable. Columns (5) and
(6) respectively correspond to the estimation of the baseline estimate for years before and after 1998. The
model of column (7) is the one using pixels within a circle of 20 km radius from the centroïd of each cluster to
compute wind speed exposure, rainfall and temperature.

destruction of equation (4) (resp. equation (3)). As regard to the use of a dummy variable,
the model of column (2) suggests that being exposed to a tropical cyclone reduces likelihood
of childbearing of 28.97 points in t, 6.4 in t+ 1 and 2.9 in t+ 2.

Overall, the use of other measures of tropical cyclone exposure shows that our main result
does not depend of the choice of the wind speed variable. The three alternative measures used
in this section have however many limitations since either they do not exploit the variability
generated by Wit (model of column (2)), or they rely on parameters for which evidence is
missing in the context of Madagascar (models of column (3) and (4)). That is in part why,
our preferred specification is the one that directly uses the wind speed variable of Geiger et al.
(2018).

Sample period Implicitly, our baseline model assumes that the estimated effect is an
average over the entire sample under scrutiny. However, it is possible that the decision of
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having children changes over time. We address this possibility by estimating equation (2) for
two sub-periods. The first one spans the 1985-1997 period while the second one the 1998-2008
period. Results are respectively reported in columns (5) and (6) of Table 4.

The main insight of these alternative panel estimations is as follow: before 1998 tropical
cyclone exposure in t and t − 1 has a stronger effect on women likelihood of pregnancies
than after 1998. For instance, being exposed to tropical cyclone shocks of mean intensity in
t decreases the likelihood of giving birth in t+ 1 of 9.6 points before 1998 against 5.4 after
1998. Overall, considering alternative sample periods is suggestive that the decision of having
children is less related to tropical cyclone exposure in recent years.
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Merging of geolocated information The available information about household location
is displaced up to ten kilometers from the exact cluster’s position (see also subsection 3.1).
Up to now, we extract weather information only from the pixel in which centroid’s clusters
belongs. We test the robustness of our results to this choice. In particular, from each centroid
coordinate we draw a circle of 20 km radius and we compute the mean of each weather variable
using pixels within the circle. We then use these averaged values as independent variables in
equation (2). Corresponding results are shown in column (7) of Table 4.

Using this alternative merging has almost no incidence on the results. In particular, point
estimates of βWl are not statistically different from the baseline.

Non-linearities Our baseline model implicitly assumes that the fertility response to tropical
cyclone shocks is linear. However, the literature examining the effect of weather shock on
economic variables often indicates that effects are likely to be nonlinear. In particular,
Emanuel (2011) or Nordhaus (2010) suggest that damages exponentially increase with the
level of wind speed experienced at the ground. Despite such suggestions, it is however not
straightforward that other socioeconomic variables also respond non-linearly to wind speed
exposure, especially in a context when household microdata is used. Here, in order to reveal
a possible non-linear relationship, we follow a non-parametric approach by breaking wind
speed up into four bins. Such an approach has two main advantages. On the one hand, it is
simply to implement. On the other hand, it is flexible and does not impose any functional
forms to our wind speed explanatory variable. We so construct three dummies taking one
when wind speed falls within the bin and zero otherwise. Specifically, w̃1

t = 1(Wt ∈ [100; 149[),
w̃2
t = 1(W ∈ [150; 200[) and w̃3

t = 1(W ∈ [200; 300[).25 We report related results in Table 5.
Given standard errors associated to point estimates, we cannot conclude that the post-

fertility effect of tropical cyclone shock is non-linear in maximum wind speed. The linear
approximation we use in our baseline model appears as a relevant departure point.

Intensification mechanism We now further test the hypothesis that the effect of cyclonic
systems on female motherhood builds over time. Indeed, it is possible that the impact of a
tropical cyclone shock in a given year t, as revealed by our panel estimate of equation (2),
is magnified if in past years (e.g. in t − 1), the same woman has also been exposed to a
tropical cyclone. As Dell et al. (2014), we call such a mechanism the intensification effect.
We consider such a possibility by interacting wind speed exposure in a given period t with a
dummy variable indicating that in the last five years, a given woman i has also been exposed
to at least two tropical cyclones. Our set of dummy variables are denoted as W̃i,t−l. The

25Implicitly, the first bin w̃0
t = 1(Wt ∈ [0; 99[) serves as reference in the regression.
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βW0 βW1 βW2 ωW0 ωW1 ωW2

Baseline -0.2461*** -0.0564*** -0.189*** - - -
(0.0026) (0.0025) (0.0026) - - -

Intensification -0.2468*** -0.0550*** -0.0179*** -0.0087 -0.0289*** -0.0093
(0.0026) (0.0026) (0.0026) (0.0092) (0.0087) (0.0090)

Table 6: Alternative specifications – Intensification mechanims
Sources: DHS, TCE-DAT of Geiger et al. (2018), CHIRPS dataset of Funk et al. (2015), CRU dataset of
Harris et al. (2014) and authors’ own calculations.
Notes: Significant levels: * 10%, ** 5%, *** 1%. All regressions include mother fixed effects (µi), time fixed
effects (ηt), controls for rainfall (Rt, Rt−1 and Rt−2) and mean temperature (Tt, Tt−1 and Tt−2), women’ age
and its square.

estimated equation has now the following form:

yit =
L∑
l=0

(
βWl ×Wi,t−l + βRl ×Ri,t−l + βTl × Ti,t−l

)
+

L∑
l=0

(
ωWl × W̃i,t−1−l

)
+µi+ηt+ζXit+uit,

(6)
where the ωWl are parameters to be estimated. Their interpretations are different from those
of βWl . For instance, let l = 0 so that we are interested in interpreting βW0 and ωW0 . The
first estimated coefficient, namely βW0 , corresponds to the effect of wind speed exposure in
period t on current likelihood of motherhood. However, the second one, namely ωW0 , captures
a different effect because it is the incremental effect of wind speed exposure on motherhood in
period t if, in addition the woman has been exposed to at least two tropical cyclones between
t− 1 and t− 5. Consequently, the intensification parameters, namely ωWl , explore if the effect
of a tropical cyclone shock depends on the pattern of previous shocks.

The last row of Table 6 explores the possibility of intensification effects by adding W̃i,t−1−l

to the model. Overall, evidence about intensification mechanisms is mixed. The three ωWl
are estimated to be negative. Nevertheless, estimated coefficients are significant only for
t− 1. Such a finding suggests that the impact of wind speed exposure in t− 1 is magnified if
between t− 2 and t− 6 the mother has also been exposed to at least two tropical cyclones.
In such a case the total effect of wind speed exposure amounts to -0.0839 (namely, βW1 + ωW1 ).
Our model does not provide sufficient statistic power to conclude about the existence of such
intensification for events occurring in t and t− 2.

Number of lags In the baseline model, we include up to two lags of each weather variable.
Here, we reconsider the main specification by adding up to ten lags of weather variables into
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the model.26 The latter model allows us to investigate more precisely the medium to long-run
effects of tropical cyclones on fertility. For illustrative purpose, we display the cumulative
effect of wind speed exposure on motherhood in Figure 3 while values of the coefficients are
left as an appendix material (see Table 7 of Appendix B).27

As shown in Figure 3, the effect of tropical cyclone shocks on the likelihood of giving
birth persists over time. Furthermore, with a time window of ten year we do not observe any
strong offsetting behavior, namely a strong positive effect of wind speed exposure for some
lags. The Table 7 of Appendix B shows that estimated coefficients are statistically negative
up to lag l = 7. Exploring the distributed lag nature of that model, Figure 3 indicates that
the cumulative effect of an extra wind speed exposure amounts to ∑L=10

l=0 βWl = −0.560.28 In
what concerns the other two weather variables, Figures 8 show that when accounting for ten
lags, the negative effect of rainfall shocks is persistent while the one of temperature shocks
act mainly the first four year after the exposure. Overall, extending the model to allows the
inclusion of more lags shows that the effect of tropical cyclone shocks has the potential to
reduce the probability of motherhood in the medium to long run.
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Figure 3: Cumulative effect of wind speed exposure on the likelihood of giving birth.
Sources: DHS, TCE-DAT of Geiger et al. (2018), CHIRPS dataset of Funk et al. (2015), CRU dataset of
Harris et al. (2014) and authors’ own calculations.
Notes: Black solid lines correspond to the cumulative sum of the points estimated, blue error bands are
confidence intervals (at 5% degree of significance) associated. The regression include mother fixed effects
(µi), time fixed effects (ηt), controls for rainfall (from Rt to Rt−10) and mean temperature (from Tt to Tt−10),
women’ age and its square.

26As rainfall data is available only from 1981, we drop all observations prior to 1991 because it is not
possible to obtain ten lags of the rainfall variable before that year

27We also display in Figures 8 and 9 of Appendix B the cumulative effects for rainfall and temperature
shocks.

28The lower bound (at a 95% degree of confidence) of this estimate is -0.629 while the upper bound is
-0.490.
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6 Discussion

6.1 Interpreting the evidence

As discussed in subsection 4.1, empirical evidence about the effect of cyclonic systems, or
more generally natural disasters, on fertility is mixed. Some papers find a positive impact
and explains it by either the replacement effect (Nobles et al. (2015) or Nandi et al. (2018))
or by the fact that motherhood is a way to cope after an emotionally traumatic experience
(Carta et al., 2012). In contrast, others studies find a negative effect and explain it by
uncertainties generated by the disaster shock (Davis (2017) or Pörtner (2014)) or the increase
in the opportunity cost of having babies (Kochar (1999) or Evans et al. (2010)). By taking
advantage on a unique panel dataset combining household geographic location, female fertility
history and wind speed exposure, our empirical study points toward a negative effect. We
are not saying that replacement effect does not exist nor that motherhood is not viewed as
a manner to recover after tropical cyclone shocks in Madagascar but our empirical study
suggests that they are not the dominant driving forces behind post-disaster motherhood. In
contrast, our reduced-form econometric framework is indicative that tropical cyclone shocks
modify household living environment in a manner that is likely to alter the timing of the
decision of having children.

Given our results, a legitimate question is about the true nature of the post-disaster
decision of having babies. Indeed, the negative causal impact we observed could be either
an unintended consequence of tropical cyclone shocks or a deliberate decision of postponing
fertility. It is however difficult to provide a clear answer to such an issue with our panel data
because we do not observe contraceptive prevalence or the frequency of sexual intercourse over
time. Furthermore, exploiting the DHS cross section, in which such information is available,
could also be unsatisfactory because it prevents us to control for individual and time fixed
effects. Consequently, as an attempt to fix ideas, we turn to the economic literature. In
that respect, three papers could be enlightening. First, Hernández-Correa (2012) finds that
Malagasy women experiencing adverse shocks are more likely to use contraceptive such as
pills or condoms. However, as Hernández-Correa (2012) exploits a cross-section, its results is
potentially affected by the presence of unobserved heterogeneity. Second, a recent empirical
study of Alam & Pörtner (2018) allows us to have a more comprehensive view of the mechanism
at work after a negative shock. From Tanzanian panel data that allows for a full control of
individual unobserved heterogeneity, their conclusions are twofold. On the one hand, the
likelihood of pregnancies decreases after an income shock.29 On the other hand, a crop loss
induces a statistically significant increases in the use of contraceptives. Third, exploiting

29The income shock of Alam & Pörtner (2018) corresponds to an accidental crop loss.
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a panel dataset of women in Uganda, Abiona (2017) finds that an unanticipated rainfall
shock increases the likelihood of using contraceptives for childbirth control. Taken together,
these three studies suggest that adverse shocks increase the demand for contraceptive so that
the decision to postpone motherhood can be viewed as deliberate. We however agree that
such a conclusion should be further confirmed by other empirical studies that ideally observe
contraceptive use over time and control for unobserved heterogeneity.

6.2 Concluding remarks

By taking advantage on a unique opportunity to match geolocated household micro-data with
wind field data generated by cyclonic systems, we construct a panel dataset that allows the
investigation of the effect of exposure to tropical cyclones shocks on motherhood. Contrary to
what has been found for earthquakes, our empirical model points toward a negative effect of
tropical cyclone shocks on mothers’ likelihood of giving birth. We also find that such effects
are not only contemporaneous but also persistent.

The empirical evidence emerging from this paper is suggestive that the occurrence of
tropical cyclone shocks acts as an adverse shock generating uncertainties and increasing
the opportunity cost of taking care of children. However, the panel data we constructed
does not allow us to provide a definitive answer about the true nature of the decision of
postponing fertility. On this specific topic, we still need further empirical evidence especially
in a country where fertility rates remain high. The investigation of such issues would be
probably enlightening. They are, however, beyond the scope of this paper and are on our
agenda for futures researches.
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Figure 4: Distribution of DHS clusters - DHS-1997 (left) and DHS-2008 (right).
Sources: DHS and authors’ own representation.

36



W
ork

ing
pa

pe
r●●●

●●●
●●●
●

●
●●
●●●
●
●
●●●

●

●●●●●●●
●●●
●
●●●●●●●●●●●●●●●●

●●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

N

(a) Honorinina (1986)
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(b) Geralda (1994)
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(c) Hudah (2000)
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(d) Gafilo (2004)

Figure 5: Wind fields of four selected tropical cyclones making landfall on Madagascar.
Sources: DHS, TCE-DAT of Geiger et al. (2017) and authors’ own representation.
Notes: Wind speeds correspond to the maximum wind speed observed for a given pixel. Wind speeds are
expressed in km/h. For panel (a) and (b), clusters selected for the 1997 phase of the DHS are displayed. For
panel (c) and (d), clusters selected for the 2008 phase of the DHS are displayed.

37



W
ork

ing
pa

pe
r

Rainfall
0 10 20 30 40 50

0

50

100

150

200

250

Figure 6: Distribution of rainfall experienced by DHS clusters (1985-2009).
Sources: DHS, CHIRPS dataset of Funk et al. (2015) and authors’ own calculations.
Notes: The light blue vertical line represents the mean of the distribution. The light pink vertical line represent
the median of the distribution. Rainfall is expressed in hundreds of millimeters per year.
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Figure 7: Distribution of mean temperature experienced by DHS clusters (1985-2009).
Sources: DHS, CRU dataset of Harris et al. (2014) and authors’ own calculations.
Notes: The light blue vertical line represents the mean of the distribution. The light pink vertical line represent
the median of the distribution. Mean temperature is the annual average temperature and is expressed in
Celsius degree.

39



W
ork

ing
pa

pe
r

B Model with ten lags

2 4 6 8 10

−
5

−
4

−
3

−
2

−
1

0

Years after the exposure 

C
um

ul
at

ed
 c

oe
ffi

ci
en

ts

Figure 8: Cumulative effect of rainfall shocks on the likelihood of giving birth.
Sources: DHS, TCE-DAT of Geiger et al. (2018), CHIRPS dataset of Funk et al. (2015), CRU dataset of
Harris et al. (2014) and authors’ own calculations.
Notes: Black solid lines correspond to the cumulative sum of the points estimated, blue error bands are
confidence intervals (at 5% degree of significance) associated. The regression include mother fixed effects
(µi), time fixed effects (ηt), controls for rainfall (from Rt to Rt−10) and mean temperature (from Tt to Tt−10),
women’ age and its square.
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Figure 9: Cumulative effect of temperature shocks on the likelihood of giving birth.
Sources: DHS, TCE-DAT of Geiger et al. (2018), CHIRPS dataset of Funk et al. (2015), CRU dataset of
Harris et al. (2014) and authors’ own calculations.
Notes: Black solid lines correspond to the cumulative sum of the points estimated, blue error bands are
confidence intervals (at 5% degree of significance) associated. The regression include mother fixed effects
(µi), time fixed effects (ηt), controls for rainfall (from Rt to Rt−10) and mean temperature (from Tt to Tt−10),
women’ age and its square.
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