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Abstract
The aim of this work is to provide a new model describing the dynamic behavior of the rotating machinery

working under non-stationary conditions with no assumption on the IAS. This new model will provide an

identification tool for the rotor parameters. An example of a simple rotor made of a flexible shaft, a rigid

disk, bearings and a mass unbalance is considered. The model shows a coupling between the torsional

and flexural behavior and it is proven that, owing to this coupled behavior, the signal of the IAS contains

information about, not only the rotation frequency of the response of the rotor, but also about its flexural

behavior, when operating under non-stationary conditions.

1 Introduction

Rotor dynamics are widely present in different engineering fields. In the automotive field for example, with

the growing use of the electric motors rotating at very high speeds, it has become crucial to understand the

dynamic behavior of rotors spinning at very high velocity especially when going through critical speeds.

This critical working condition, as well as the presence of bearings or gears in the rotor structure, leads to

a fluctuation of the instantaneous angular speed (IAS). However, conventional vibration-monitoring tech-

niques are based on some assumptions on the IAS. The latter is often considered either constant or following

a perfect linear or exponential law of variation [1]. Those assumptions lead to models which are not able to

simulate rotating machinery under fluctuating load conditions.

Even though the major part of the scientific works on rotor dynamics focus on the study of the stationary

working conditions, the transient response analysis is considered as the most inclusive analysis since it allows

the study of different working conditions of the rotating machinery as the start up and shut down processes,

stability, and impact [2].

Since many rotors operate above their critical speeds, a main interest was particularly given to the study

of the behavior of rotating machinary when going through one or more critical speeds. Al-Bedoor [3] de-

veloped a model for the coupled torsional and lateral vibrations of unbalanced rotors that accounts for the

rotor-to-stator rubbing. He showed that a split in resonance is observed due to the rubbing condition when

the rotor torsional flexibility is considered. Zhou et Shi [4] gave an analytical solution for the unbalance

response of the Jeffcott rotor during acceleration.They showed that, quantitatively, the motion consists of

three parts: a transient vibration at damped natural frequency, a synchronous vibration with the frequency of

instantaneous ‘synchronous’ frequency, and a suddenly occurring vibration at damped natural frequency. Li

and Singh [5] studied also the analytical solutions of the transient response but focused on the envelopes of

the lateral displacement, velocity and acceleration of a linear torsional oscillator excited by an instantaneous

sinusoidal torque. They also gave a new analytical approximation to find the maximum amplifications and

corresponding peak frequencies.
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When the dynamic model takes as an input the induced driving torque and not the speed of rotation as a

function of time, one must add an equation that describes how the energy source supplies the energy to the

equations that govern the corresponding dynamical system. Mutual interaction between the driving source

and the rotor motion is observed and we deal in this case with non-ideal problem of passage through reso-

nance or what is also called sommerfeld effect [6]. This interaction manifests itself as a modification of the

motor frequency or regime of operation near the resonance and changes in the stable-unstable portions of the

dynamical system response [7].

In the following study, since we consider as a given of the dynamic problem the induced torque and as an

unknown the speed of rotation (IAS), we will be dealing with a non-ideal system. A new dynamic model

is then built to simulate the non-stationnary working conditions especially when going through one or more

critical speeds. This model is developeed in order to serve as a tool for identification, based on the IAS, for

certain parameters of the system as the mass unbalance and damping.

2 New model describing the rotordynamics

We consider a simple idealized rotor made of a flexible shaft, a rigid disk and supported by flexible damped

bearings. The main excitation of the rotor is the mass unbalance (fig.3). In our approach we consider that a

torque is induced to the rotating machinary and we make no preliminary assumption on the rotating speed.

Mass unbalance
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Figure 1: Rotor simplified model

Euler angles are used to discribe the motion of the rotor. The coordinate systems used in developing the

model are shown in the following figure, wherein, (XYZ) is the fixed reference frame and (UVW) is the

rotating reference frame which coincides with the principle axis of the cross section of the shaft. A first

rotation by an angle Φ about the Z−axis is done then by an angle θ about the new X’-axis and finally by

an angle Ψ about the final W’-axis. The latter, combined to the torsional deformation, is considered as an

unknown of the dynamic problem.

The angular displacement about the X and Y axis as well as the spinning angle about the Z axis are calculated

using Euler angles as follows:

θx = θ.cos(φ) (1a)

θy = θ.sin(φ) (1b)

θz = φ+ ψ (2)

It is very important to notice here that θz accounts for both the free body rotating motion as well as for the

torsional deformation.
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Figure 2: Euler angles

First the kinetic energy calculation is done. This energy is obtained by the sum of the contribution of the

different components of the rotor, namely the disk, the shaft and the mass unbalance.

T = TD + Ts + Tu (3)

The finite element method is used and the dsiplacement fields are approximated using shape functions. We

denote by {δ} the nodal displacement vector. Then the Lagrange equations are applied, which leads to the

following matrix form:

d

dt

(

∂T

∂δ̇

)

−
∂T

∂δ
= ([MDconst] + [MDvar({δc})])

{

δ̈
}

+
[

CD(θ̇z)
]{

δ̇
}

+ [Mu(θz)]
{

δ̈
}

+ {Fnlu(θz)}

+ [Ms] ¨{δ}+ [Sgyr ({δ})]{δ̈}+ {Fnlgyr( ˙{δ})}

(4)

where:

• [MDconst] and [Ms] are the classical mass matrices of the disk and the shaft respectively.

•
[

CD(θ̇zc)
]

is the classical skew-matrix related to the gyroscopic effects of the disk.

• {Fnlu(θzc)} is the centrifugal force resulting from the mass unbalance and proportional to the square

of the spinning speed.

The two matrices [MDvar] and [Mu] respectively related to the disk and the mass unbalance result from the

assumption of non-stationnary working condition where:

[MDvar({δ})] =

















0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 IDw

2
θyc

0 0 0 0 0 − IDw

2
θxc

0 0 0 IDw

2
θyc − IDw

2
θxc

0

















(5)
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[Mu(θz)] = dmu

















0 0 0 0 0 cos(θzc)
0 0 0 0 0 −sin(θzc)
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

cos(θzc) −sin(θzc) 0 0 0 d

















(6)

We notice that, by considering non-stationnary working conditions, matrices with extra-diagonal terms ap-

pear in the equation of dynamics of the rotor. Those terms clearly include coupling between the flexural and

torsional degrees of freedom.

Finally, the matrix [Sgyre ] and the force vector {Fnlgyre} derive from the new formulation of the gyroscopic

effect of the shaft under non-stationnary regime such as:

[Sgyre ({δ})] = −〈N3(l)〉
t {δ}t [Mg

67
(l)]t − [Mg

67
(l)] {δ} 〈N3(l)〉

+

〈

∂N3

∂z

〉t

{δ}t [Mg∗
67
(l)]t + [Mg∗

67
(l)] {δ}

〈

∂N3

∂z

〉

(7)

and,

{Fnlgyr( ˙{δ}, ˙{δ})} = −〈N3(l)〉
t
(

˙{δ}
t
[Mg

67
(l)] ˙{δ}

)

− 2
(

〈N3(l)〉 ˙{δ}
)(

[Mg
67
(l)] ˙{δ}

)

+

〈

∂N3

∂z

〉t
(

˙{δ}
t
[Mg∗

67
(l)] ˙{δ}

)

+ 2

(〈

∂N3

∂z

〉

˙{δ}

)

(

[Mg∗
67
(l)] ˙{δ}

)

(8)

where 〈N3〉 is a vector with polynomial shape functions of first order. [Mg
67
] and [Mg∗

67
] are skew-symmetric

matrices with constant terms obtained by the multiplication of shape function vectors.

Once the strain energy of the shaft and the virtual works of the bearings, assumed to be with linear stiffness

and damping are calculated, the classical stiffness matrix is obtained and we finally write the equation of the

dynamics of rotating shaft element such as:

([Ms] + [MDconst
]) ¨{δ}+ [Cs] ˙{δ}+ [Kc]{δ} =

− ([Sgyr({δ})] + [MDvar
({δ})] + [Mu(θzc)])

¨{δ}

−
[

CD(θ̇zc)
]

˙{δ}

−
(

{Fnlgyr( ˙{δ})}+ {Fnlu(θzc)}
)

+ {Fext}

(9)

3 Results and discussions

We consider an example of an idealized rotor with the properties detailed in table 1. The rotor is made of a

flexible shaft, a rigid disk and is excited by the presence of a mass unbalance.
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Figure 3: rotor exemple

Symbol Quantity Value

L shaft length 0.6m
R1 shaft radius 0.01m
R2 disk radius 0.08m
h thickness of the disk 0.03m
ρ mass per unit volume 7800 kg.m−3

E young modulus 2.1011 N.m−2

mu mass unbalance 1% of the mass of the disk

d eccentricity of the mass unbalance 0.1m

kxx1, kxx2 stiffness along x-axis of the left and right

bearings

1.e8 N.m−1

kyy1, kyy2 stiffness along y-axis of the left and right

bearings

1.e8 N.m−1

cxx1, cxx2 damping along x-axis of the left and right

bearings

2e2N.s.m−1

cyy1, cyy2 damping along y-axis of the left and right

bearings

2e2N.s.m−1

Table 1: Proprieties of the studied rotor

In this exemple we simulate the start up of a rotor. Therefore a driving torque following the law shown in

figure 4 is induced to the system. The aim of applying a constant torque before the linear time-varying one

is to better intialize the simulation for the non-stationary regime. It is important to mention that, for this

exemple of rotor with the mentioned properties, the first critical speed is at 2527 rpm and the second one is

at 26364 rpm. During the accelerarion period the rotor will go through the two mentioned critical speeds.

The simulation results are used for time-frequency analysis for both lateral displacement and instantaneous

angular speed.

Figure 5 shows the results for the lateral displacement. As we can see, both the excitation frequency fe and

the first natural frequency f1 contributes to the motion of the rotor. The results are qualitatively coherent

with the analytical solution proposed by Zhou et Shi [4] saying that, during acceleration, the motion consists

of three parts: a transient vibration at damped natural frequency, a synchronous vibration with the frequency

of instantaneous ‘synchronous’ frequency, and a suddenly occurring vibration at damped natural frequency.

We can see that the rotor has more difficulties crossing the second natural frequency than the first one.

The spectrogram of the instantaneous angular speed ( fig.6) shows a coupling between the excitation fre-

quency fe and the first eigen frequency f1. This simulation result proofs that the IAS, whose analyses is
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Figure 4: Torque law as a function of time

Figure 5: Spectrogram of the lateral displacement

neglected by previous research works, contains informations about the system dynamic properties. Consid-

ering the IAS as an unknown of the dynamic problem and not as a given law as a fonction of time provides

us with a new source of informations about the rotor dynamics. Further analysis using Kalman filters will

allow a better exploitation of the IAS in order to do a better tracking of the frequencies in the time-frequency
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domain.

Figure 6: Spectrogram of the instantaneous angular speed

4 Conclusion

The big majority of previous works on the non-stationary rotordynamics were conducted under the assump-

tion of a given law of the rotational speed. In our study, a new dynamic model is built considering no

assumption on the IAS. It was shown, for a simple exemple of rotors, that when the IAS is considered as

an unknown of the dynamic problem,it is highly influenced by the rotor dynmic properties. Based on the

obtained results, we assume that the IAS is a physical quantity which is rich enough with informations about

the studied system and that a better analysis using kalman filters is of big intesrest in order to identify the

system parameters using the new proposed dynamic model for non-stationnary rotor dynamics.
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