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Introduction

Rotor dynamics are widely present in different engineering fields. In the automotive field for example, with the growing use of the electric motors rotating at very high speeds, it has become crucial to understand the dynamic behavior of rotors spinning at very high velocity especially when going through critical speeds. This critical working condition, as well as the presence of bearings or gears in the rotor structure, leads to a fluctuation of the instantaneous angular speed (IAS). However, conventional vibration-monitoring techniques are based on some assumptions on the IAS. The latter is often considered either constant or following a perfect linear or exponential law of variation [START_REF] Lalanne | Rotordynamics prediction in engineering[END_REF]. Those assumptions lead to models which are not able to simulate rotating machinery under fluctuating load conditions. Even though the major part of the scientific works on rotor dynamics focus on the study of the stationary working conditions, the transient response analysis is considered as the most inclusive analysis since it allows the study of different working conditions of the rotating machinery as the start up and shut down processes, stability, and impact [START_REF] Kirk | Transient response of rotor-bearing systems[END_REF]. Since many rotors operate above their critical speeds, a main interest was particularly given to the study of the behavior of rotating machinary when going through one or more critical speeds. Al-Bedoor [START_REF] Al-Bedoor | Transient torsional and lateral vibrations of unbalanced rotors with rotor-to-stator rubbing[END_REF] developed a model for the coupled torsional and lateral vibrations of unbalanced rotors that accounts for the rotor-to-stator rubbing. He showed that a split in resonance is observed due to the rubbing condition when the rotor torsional flexibility is considered. Zhou et Shi [START_REF] Zhou | The analytical imbalance response of jeffcott rotor during acceleration[END_REF] gave an analytical solution for the unbalance response of the Jeffcott rotor during acceleration.They showed that, quantitatively, the motion consists of three parts: a transient vibration at damped natural frequency, a synchronous vibration with the frequency of instantaneous 'synchronous' frequency, and a suddenly occurring vibration at damped natural frequency. Li and Singh [START_REF] Li | Analysis of transient amplification for a torsional system passing through resonance[END_REF] studied also the analytical solutions of the transient response but focused on the envelopes of the lateral displacement, velocity and acceleration of a linear torsional oscillator excited by an instantaneous sinusoidal torque. They also gave a new analytical approximation to find the maximum amplifications and corresponding peak frequencies.

When the dynamic model takes as an input the induced driving torque and not the speed of rotation as a function of time, one must add an equation that describes how the energy source supplies the energy to the equations that govern the corresponding dynamical system. Mutual interaction between the driving source and the rotor motion is observed and we deal in this case with non-ideal problem of passage through resonance or what is also called sommerfeld effect [START_REF] Sommerfeld | Beiträge zum dynamischen ausbau der festigkeitslehe[END_REF]. This interaction manifests itself as a modification of the motor frequency or regime of operation near the resonance and changes in the stable-unstable portions of the dynamical system response [START_REF] Manoel Balthazar | An overview on non-ideal vibrations[END_REF].

In the following study, since we consider as a given of the dynamic problem the induced torque and as an unknown the speed of rotation (IAS), we will be dealing with a non-ideal system. A new dynamic model is then built to simulate the non-stationnary working conditions especially when going through one or more critical speeds. This model is developeed in order to serve as a tool for identification, based on the IAS, for certain parameters of the system as the mass unbalance and damping.

New model describing the rotordynamics

We consider a simple idealized rotor made of a flexible shaft, a rigid disk and supported by flexible damped bearings. The main excitation of the rotor is the mass unbalance (fig. 3). In our approach we consider that a torque is induced to the rotating machinary and we make no preliminary assumption on the rotating speed. The angular displacement about the X and Y axis as well as the spinning angle about the Z axis are calculated using Euler angles as follows:

θ x = θ.cos(φ) (1a) θ y = θ.sin(φ) (1b) 
θ z = φ + ψ (2) 
It is very important to notice here that θ z accounts for both the free body rotating motion as well as for the torsional deformation. 

T = T D + T s + T u (3) 
The finite element method is used and the dsiplacement fields are approximated using shape functions. We denote by {δ} the nodal displacement vector. Then the Lagrange equations are applied, which leads to the following matrix form:

d dt ∂T ∂ δ - ∂T ∂δ = ([M Dconst ] + [M Dvar ({δ c })]) δ + C D ( θz ) δ + [M u (θ z )] δ + {F nlu (θ z )} + [M s ] { δ} + [S gyr ({δ})]{ δ} + {F nl gyr ( {δ})} (4) 
where:

• [M Dconst ] and [M s ] are the classical mass matrices of the disk and the shaft respectively.

• C D ( θzc ) is the classical skew-matrix related to the gyroscopic effects of the disk.

• {F nlu (θ zc )} is the centrifugal force resulting from the mass unbalance and proportional to the square of the spinning speed.

The two matrices [M Dvar ] and [M u ] respectively related to the disk and the mass unbalance result from the assumption of non-stationnary working condition where:

[M Dvar ({δ})] =         0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I Dw 2 θ yc 0 0 0 0 0 -I Dw 2 θ xc 0 0 0 I Dw 2 θ yc -I Dw 2 θ xc 0         (5) [M u (θ z )] = d m u         0 0 0 0 0 cos(θ zc ) 0 0 0 0 0 -sin(θ zc ) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 cos(θ zc ) -sin(θ zc ) 0 0 0 d         (6) 
We notice that, by considering non-stationnary working conditions, matrices with extra-diagonal terms appear in the equation of dynamics of the rotor. Those terms clearly include coupling between the flexural and torsional degrees of freedom. Finally, the matrix [S gyre ] and the force vector {F nl gyre } derive from the new formulation of the gyroscopic effect of the shaft under non-stationnary regime such as:

[S gyre ({δ})] = -N 3 (l) t {δ} t [M g 67 (l)] t -[M g 67 (l)] {δ} N 3 (l) + ∂N 3 ∂z t {δ} t [M g * 67 (l)] t + [M g * 67 (l)] {δ} ∂N 3 ∂z (7) 
and,

{F nl gyr ( {δ}, {δ})} = -N 3 (l) t {δ} t [M g 67 (l)] {δ} -2 N 3 (l) {δ} [M g 67 (l)] {δ} + ∂N 3 ∂z t {δ} t [M g * 67 (l)] {δ} + 2 ∂N 3 ∂z {δ} [M g * 67 (l)] {δ} (8) 
where N 3 is a vector with polynomial shape functions of first order. [M g 67 ] and [M g * 67 ] are skew-symmetric matrices with constant terms obtained by the multiplication of shape function vectors.

Once the strain energy of the shaft and the virtual works of the bearings, assumed to be with linear stiffness and damping are calculated, the classical stiffness matrix is obtained and we finally write the equation of the dynamics of rotating shaft element such as:

([M s ] + [M Dconst ]) { δ} + [C s ] {δ} + [K c ]{δ} = -([S gyr ({δ})] + [M Dvar ({δ})] + [M u (θ zc )]) { δ} -C D ( θzc ) {δ} -{F nl gyr ( {δ})} + {F nlu (θ zc )} + {F ext } (9)

Results and discussions

We consider an example of an idealized rotor with the properties detailed in table 1. The rotor is made of a flexible shaft, a rigid disk and is excited by the presence of a mass unbalance. Table 1: Proprieties of the studied rotor

In this exemple we simulate the start up of a rotor. Therefore a driving torque following the law shown in figure 4 is induced to the system. The aim of applying a constant torque before the linear time-varying one is to better intialize the simulation for the non-stationary regime. It is important to mention that, for this exemple of rotor with the mentioned properties, the first critical speed is at 2527 rpm and the second one is at 26364 rpm. During the accelerarion period the rotor will go through the two mentioned critical speeds.

The simulation results are used for time-frequency analysis for both lateral displacement and instantaneous angular speed.

Figure 5 shows the results for the lateral displacement. As we can see, both the excitation frequency f e and the first natural frequency f 1 contributes to the motion of the rotor. The results are qualitatively coherent with the analytical solution proposed by Zhou et Shi [START_REF] Zhou | The analytical imbalance response of jeffcott rotor during acceleration[END_REF] saying that, during acceleration, the motion consists of three parts: a transient vibration at damped natural frequency, a synchronous vibration with the frequency of instantaneous 'synchronous' frequency, and a suddenly occurring vibration at damped natural frequency. We can see that the rotor has more difficulties crossing the second natural frequency than the first one.

The spectrogram of the instantaneous angular speed ( fig. 6) shows a coupling between the excitation frequency f e and the first eigen frequency f 1 . This simulation result proofs that the IAS, whose analyses is 

Conclusion

The big majority of previous works on the non-stationary rotordynamics were conducted under the assumption of a given law of the rotational speed. In our study, a new dynamic model is built considering no assumption on the IAS. It was shown, for a simple exemple of rotors, that when the IAS is considered as an unknown of the dynamic problem,it is highly influenced by the rotor dynmic properties. Based on the obtained results, we assume that the IAS is a physical quantity which is rich enough with informations about the studied system and that a better analysis using kalman filters is of big intesrest in order to identify the system parameters using the new proposed dynamic model for non-stationnary rotor dynamics.
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 6 Figure 6: Spectrogram of the instantaneous angular speed