
HAL Id: hal-03243258
https://hal.science/hal-03243258

Submitted on 31 May 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Rate-dependent adhesion of viscoelastic contacts, Part I:
Contact area and contact line velocity within model

randomly rough surfaces
G. Violano, A. Chateauminois, L. Afferrante

To cite this version:
G. Violano, A. Chateauminois, L. Afferrante. Rate-dependent adhesion of viscoelastic contacts, Part I:
Contact area and contact line velocity within model randomly rough surfaces. Mechanics of Materials,
2021, 160, pp.103926. �10.1016/j.mechmat.2021.103926�. �hal-03243258�

https://hal.science/hal-03243258
https://hal.archives-ouvertes.fr


Mechanics of Materials 160 (2021) 103926

A
0

s
r
s

Contents lists available at ScienceDirect

Mechanics of Materials

journal homepage: www.elsevier.com/locate/mecmat

Rate-dependent adhesion of viscoelastic contacts, Part I: Contact area and
contact line velocity within model randomly rough surfaces
G. Violano a,∗, A. Chateauminois b, L. Afferrante a

a Department of Mechanics, Mathematics and Management, Polytechnic University of Bari, Via E. Orabona, 4, 70125, Bari, Italy
b Soft Matter Science and Engineering Laboratory (SIMM), PSL Research University, UPMC Univ Paris 06, Sorbonne Universités, ESPCI Paris, CNRS, 10 rue
Vauquelin, 75231 Paris cedex 05, France

A R T I C L E I N F O

Keywords:
Viscoelasticity
Adhesion
Surface roughness
Energy release rate

A B S T R A C T

In this work, we investigate dissipative effects involved during the detachment of a smooth spherical glass
probe from a viscoelastic silicone substrate patterned with micro-asperities. As a baseline, the pull-off of a
single asperity, millimeter-sized contact between a glass lens and a smooth poly(dimethylsiloxane) (PDMS)
rubber is first investigated as a function of the imposed detachment velocity. From a measurement of the
contact radius 𝑎(𝑡) and normal load during unloading phase, the dependence of the strain energy release rate
𝐺 on the velocity of the contact line 𝑣𝑐 = 𝑑𝑎∕𝑑𝑡 is determined under the assumption that viscoelastic dissipation
is localized at the edge of the contact. These data are incorporated into Muller’s model (Muller, 1999) in order
to predict the time-dependence of the contact size. Similar pull-off experiments are carried out with the same
PDMS substrate patterned with spherical micro-asperities with a prescribed height distribution. From in situ
optical measurements of the micro-contacts, scaling laws are identified for the contact radius 𝑎 and the contact
line velocity 𝑣𝑐 . On the basis of the observed similarity between macro and microscale contacts, a numerical
solution is developed to predict the reduction of the contact radius during unloading.

In most of adhesion tests on soft compliant spheres (Lorenz et al.,
0. Introduction
2013; Tiwari et al., 2017), the measured detachment force is generally
Adhesion is of paramount importance in the contact mechanics of
micro and nano systems as, at the molecular scale, adhesive interactions
between atoms are ‘strong’ compared to the usual forces acting between
bodies (Kendall, 2007). However, adhesion is seldom observed at the
macroscopic scale due to surface roughness, which reduces the area
of actual contact. Nevertheless, when dealing with very soft matter
(Young’s modulus 𝐸 smaller than 0.5 MPa), strong adhesion may
be still detected even in presence of surface roughness. Specifically,
Tiwari et al. (2017) observed that for a PolyDiMethylSiloxane (PDMS)
elastomer with Young’s modulus 𝐸 ≈ 0.02 MPa, the work of adhesion
increases by nearly a factor of ∼2 when pull-off experiments are per-
formed on rough surfaces due to the complete contact that likely occurs
at the interface. Complete contact that is instead prevented when PDMS
samples with larger Young’s modulus (𝐸 ≈ 2 MPa) are considered.

Soft matter adhesion finds applications in several fields, e.g., de-
ign of pressure-sensitive-adhesives (PSA) (Deplace et al., 2009), soft
obots (Majidi, 2014), and new technologies inspired by biotribological
ystems (Gebeshuber, 2007).

∗ Corresponding author.
E-mail address: guido.violano@poliba.it (G. Violano).

greatly in excess of that predicted by Johnson, Kendall & Roberts (JKR)
theory (Johnson et al., 1971) and the detachment process is observed
to be dependent on the rate of separation (Greenwood and Johnson,
1981).

JKR theory applies for purely elastic spheres and under quasi-
static conditions. In experimental investigations, the pull-off process
unlikely obeys the quasi-static conditions because dynamic effects such
as contact instabilities often occur. As a result, during pull-off, the
effective work of adhesion 𝛥𝛾eff is affected by the velocity 𝑣c of the
contact line. Namely, 𝛥𝛾eff may be strongly increased with respect to
the quasi-static value 𝛥𝛾0 due to the viscous dissipation, where 𝛥𝛾0
follows the well-known Dupré’s equation 𝛥𝛾0 = 𝛾1 + 𝛾2 − 𝛾12, being
𝛾1, 𝛾2 the adhesive energies of the two contacting surfaces and 𝛾12 the
interaction term.

Gent and Schultz (GS) 1972 observed that viscous effects are exclu-
sively located close to the crack tip. Maugis and Barquins (MB) 1978
proposed a generalization of JKR theory, showing that the dependence
of 𝛥𝛾eff on 𝑣c can be expressed in terms of a dissipation function 𝑓 (𝑣c, 𝑇 )
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related to the viscoelastic properties of the material and depending on
the contact line velocity 𝑣c and the temperature 𝑇 . In particular, MB
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of the contact line. The above relation usually works for 𝑣c ranging from
10−5 cm/s to 1 cm/s (Andrews and Kinloch, 1973; Gent and Petrich,
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showed that, for a given elastomer, the effective work of adhesion 𝛥𝛾eff
is a universal function of 𝑣c. Moreover, performing experimental tests
n three different geometries (spheres, punches and tapes (peeling)),
B found that the dependence of 𝛥𝛾eff on 𝑣c is not affected by the

eometry and loading system. In MB’s solution, viscous effects are
ssumed not involving bulk deformations as ”gross displacements must
e elastic for 𝐺 to be valid in kinetic phenomena”, being 𝐺 the energy
elease rate, i.e., the amount of energy required to advance a fracture
lane by a unit area. Robbe-Valloire and Barquins (1998) extended MB
tudies performing adherence experiments between a rigid cylinder and
n elastomeric solid. They confirmed the existence of a master curve for
(𝑣c, 𝑇 ). Specifically, their results ‘‘prove once again that the master curve
rawn and its variation... is a characteristic of the propagation in mode I at
he interface of our rubber-like material, when viscoelastic losses are closely
imited to the crack tip, so that G can be calculated from the theory of linear
lasticity.’’

More recently, Muller (1999) showed that the process of detachment
f viscoelastic spheres can be described by a first-order differential
quation, whose solution is based on the assumption originally pro-
osed in Gent and Schultz (1972). Alternative approaches taking into
ccount bulk deformations were proposed by the group of Barthel
Barthel and Haiat, 2002; Haiat et al., 2003; Barthel and Frétigny,
009).

In this work, we present an experimental investigation of dissipative
ffects involved in the adhesion between a smooth spherical glass probe
nd a viscoelastic silicone substrate patterned with a prescribed height
istribution of micrometer sized spherical asperities. Taking advantage
rom the fact that the size of these micro-asperities (radius of 100 μm)
llows for an optical measurement of the space distribution of micro-
ontact areas, such patterned surfaces obtained from micro-milling
echniques were successfully used to probe the elastic interactions
etween micro-asperity contacts (Yashima et al., 2015) or to investigate
dhesive equilibrium of rough contact interfaces (Acito et al., 2019).
ere, we focus on the effects of viscoelastic dissipation on the rate-
ependence of micro-contact sizes during unloading at an imposed
elocity using JKR-type experiments. The investigation of adhesive
ehavior at the level of micro-contact spots is inspired by the Roberts’
tatement (Roberts, 1979): ‘‘The contact of a smooth centimeter-sized
ubber sphere may be regarded as that of a giant single asperity... The ability
o predict the adhesion forces on a large asperity is a step towards building
p a model of a real surface of micron-sized asperities, which approximate
o an array of minute hemispheres of different heights and radii’’.

Accordingly, pull-off experiments have first been conducted on
mooth PDMS surfaces to investigate the adhesion behavior at the
acroscopic scale. Specifically, under the assumption of viscous effects

ocated only near the detachment front, we propose a very simple
ethodology to calculate the time-dependent radius of the contacts by

xploiting the Muller’s approach (Muller, 1999) which was also used
o calculate the adhesion hysteresis occurring in loading–unloading
ests performed on smooth viscoelastic spheres (Violano and Afferrante,
019a). Then, this approach is successfully extended at the micro-scale
ith no need to incorporate a size-dependence in the relationship ruling

he dependence of the strain energy release rate on the velocity of the
ontact line.

. Detachment of viscoelastic spheres

In order to detach a soft body from a rigid substrate, the energy
elease rate 𝐺 must be larger than the effective work of adhesion. In
iscoelastic contacts, Gent and Schultz (1972) found

− 𝛥𝛾0 = 𝛥𝛾0𝑓 (𝑣c, 𝑇 ) (1)

here 𝛥𝛾0 is the adiabatic work of adhesion and 𝛥𝛾0𝑓 (𝑣c, 𝑇 ) is the drag
ue to viscoelastic losses at the crack tip, being 𝑣c = −𝑑𝑎∕𝑑𝑡 the velocity
969; Kendall, 1973; Roberts, 1979) and allows to predict the kinetics
f detachment (see Maugis and Barquins, 1978).

The function 𝑓 (𝑣c, 𝑇 ), which is found to be independent of the ge-
metry and loading system, can be described by the phenomenological
quation

(𝑣c, 𝑇 ) = 𝑘(𝑎T𝑣c)𝑛, (2)

here 𝑘 and 𝑛 are characteristic constants of the material and 𝑎T is the
illiam–Landel–Ferry (WLF) factor (Williams et al., 1955) accounting

or the dependence of 𝑓 (𝑣c, 𝑇 ) on the temperature 𝑇 . Notice 𝑘 has
imensions of (m∕s)−𝑛, while 𝑛 and 𝑎T are dimensionless factors.

Eq. (2) also accounts for the dependence of 𝐺 on the relaxed
lastic modulus 𝐸 (Ramond et al., 1985), whose frequency dependence
ppears only at the crack tip (Charmet et al., 1998).

Introducing Eq. (2) in (1), we obtain

= 𝛥𝛾0[1 + 𝑐𝑣c
𝑛], (3)

ith 𝑐 = 𝑘𝑎T𝑛.
For a given elastomer, the values of 𝑐 and 𝑛 can be obtained by

fitting the experimental data relating 𝐺 and 𝑣c. As observed in Lorenz
et al. (2013), the exponent 𝑛 ‘‘is not a universal number, but takes different
alues depending on viscoelastic modulus’’.

.1. Muller’s model

Muller (1999) proposed a two-parameter differential equation to de-
cribe the detachment of a viscoelastic sphere of radius 𝑅 and reduced

Young’s modulus 𝐸∗ from a rigid substrate

𝑑𝑎̄
𝑑𝛿

=
[

𝛥𝛾0
𝑅𝐸∗

]1∕3 1
𝛽

[

𝑎̄3
(

1 − 𝛿
3𝑎̄2

)2
− 4

9

]1∕𝑛

, (4)

where 𝑎̄ = 𝑎∕
[

3𝑅
(

𝜋𝛥𝛾0∕(6𝐸∗𝑅)
)1∕3

]

and 𝛿 = 𝛿∕
[

3𝑅
(

𝜋𝛥𝛾0∕(6𝐸∗𝑅)
)2∕3

]

are the dimensionless contact radius and penetration, respectively, and
the parameter 𝛽 is proportional to the driving velocity 𝑉

𝛽 =
( 6
𝜋

)1∕3 ( 4
9
𝑐
)1∕𝑛

𝑉 . (5)

Muller’s model is based on two assumptions: (i) viscous effects are
located exclusively near the crack tip; (ii) detachment occurs under
constant 𝑉 . The energy release rate 𝐺, which represents the effective
work of adhesion 𝛥𝛾eff required to break the contact, can be evaluated
as

𝐺 =

(

𝐹H − 𝐹
)2

6𝜋𝑅𝐹H
(6)

where 𝐹H = 4𝐸∗𝑎3∕ (3𝑅) is the Hertzian load and 𝐹 is the applied
load. Eq. (6) is only valid under the assumption of viscous effects
concentrated at the crack tip (see, for example, Baek et al., 2017).

2. Experimental set-up

JKR-like tests were carried out between an optical spherical glass
lens and rubber substrates. The glass indenter, which is assumed to
be smooth, has a radius of curvature of 103.7 mm. Rubber substrates
are made of commercially available PDMS silicones. Samples were
manufactured by cross-linking at 70 ◦C for 48 hours a mixture of Syl-
gard 184 and Sylgard 527 silicones (Dow Chemicals), with a 0.35:0.65
weight ratio. As detailed by Palchesko et al. (2012), mixing these two
silicone elastomers in different ratios allows to tune the elastic modulus
in between a few kPa and 3 MPa. As compared to raw Sylgard 184,
the Young’s modulus of the selected Sylgard 184:Sylgard 527 mixture
(𝐸 = 0.83 MPa, see below) was decreased by a factor of about 3.6, with
the aim of enhancing the adhesion properties. In addition, crosslinking
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Fig. 1. Experimental setup of JKR adhesion tests.
Fig. 2. Detachment of spherical micro-asperities under an imposed velocity 𝑉 = 0.2 μm∕s. Picture are collected at the beginning of unloading phase (left) and after 170 s (right).
The contact spots (blue disks) are detected after post-processing of the contact pictures. The length of the black rectangle is 1 mm.

simultaneously these two different silicone products was expected to objective (Leica APO Z16) and a high resolution CMOS camera (SVS
3

result in an increased concentration of network defects such as dangling Vistek Exo, 2048 × 2048 pixels2, 8 bits).

chains. As detailed in Palchesko et al. (2012), such imperfections are
known to enhance the viscoelastic dissipation of silicone networks.

Fig. 1 shows a sketch of the experimental set-up. The spherical
indenter is fixed to a motorized vertical translation stage by means of
a double cantilever beam of known stiffness (290 N m−1). The value of
the applied load is obtained from the deflection of the cantilever as it
is measured using a high resolution optical sensor (Philtec D64-L). Due
to the compliance of the double cantilever beam, the actual velocity
of the lens can slightly differ from the prescribed velocity. In order to
take account of this effect, a laser displacement sensor (Keyence LK-
H057) is used to monitor the actual position of the lens. The difference
between the prescribed and actual velocities of the indenter was found
to be significant only for the macroscopic single asperity contact close
to pull-off, when the greatest tensile normal forces are achieved.

The PDMS sample is fixed to two crossed motorized linear transla-
tion stages, which allow to change the relative position of the rubber
sample with respect to the indenter. A LED light spot is installed to
illuminate in transmission the contact area. Once illuminated, contact
pictures are recorded through the transparent PDMS using a zoom
2.0.1. Experiments on smooth samples
The contact radius vs. load data obtained by indentation experi-

ments on smooth PDMS samples were fitted according to JKR theory
(Johnson et al., 1971) in order to evaluate the reduced elastic modulus
(𝐸∗ = 0.83 MPa) and the adhesion energy (𝛥𝛾0 = 0.037 J∕m2). During
the loading process, contact tests have been performed under controlled
load conditions. Specifically, the applied load is increased step by
step and, once each load step is reached, contact is maintained for a
long time (800 s) to ensure that adhesive equilibrium is reached and
viscoelastic effects are totally relaxed (Acito et al., 2019).

Unloading tests are performed at imposed driving velocity of the
vertical stage, while continuously monitoring the lens position, the
applied force, and the contact radius. Experiments are performed at
three different values of the driving velocity 𝑉 = 0.2, 2, 20 μm/s. Three
contact realizations have been carried out for each velocity.

2.0.2. Experiments on rough samples
PDMS samples were textured with a statistical distribution of spher-

ical micro-asperities with the same radius of curvature. The patterned
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Fig. 3. Contact radius 𝑎 as a function of the applied load 𝐹 . Results are shown for
different unloading velocities of the indenter 𝑉 = 0.2, 2, 20 μm/s. For each velocity,
hree tests have been performed and the average values are reported in the plot.

urface was obtained by molding PDMS in PolyMethylMethAcrylate
PMMA) forms milled using ball-end mills with a radius of 100 μm.

In order to enhance adhesive effects, a smoothening of the spherical
cavities of the PMMA molds has been achieved by exposing them to a
saturated CHCl3 vapor for 30 minutes. As detailed in Acito et al. (2019),
uch treatment leads to an increase in the radius of the spherical bumps
p to a 10%.

The patterned surface has been generated with a squared nominal
rea of 10 mm2, where asperities are randomly distributed with a
ensity of 2 × 107 m−2. The spherical caps present heights distributed
ccording to a Gaussian law with standard deviations 𝜎 = 5 μm.

Asperities are collocated with a non-overlapping constraint. For
he considered surface density, each contacting asperity behaves as
n isolated spherical punch and lateral interactions can be neglected
Yashima et al., 2015; Acito et al., 2019). We stress that such assump-
ion is no longer valid when roughness on several length scales is
onsidered like in the case of self-affine fractal geometries (Afferrante
t al., 2018; Violano and Afferrante, 2019b,c).

Fig. 2 shows images of contact micro-spots (blue disks) captured
uring the unloading phase. Pulling tests have been performed at the
ame values of driving velocity 𝑉 used in the tests conducted on smooth
amples (𝑉 = 0.2, 2, 20 μm/s). Accurate measurements of the contact
pots radii are achieved by standard thresholding techniques applied to
he contact images after background removal. Namely, the measured
adius 𝑎𝑖 of each micro-asperity contact is calculated as the square root
f the 𝐴𝑖∕𝜋 ratio, where 𝐴𝑖 is the measured micro-contact area. It was
erified that the value of the threshold does not significantly affect the
easured values of 𝑎𝑖.

. Results

.1. Smooth contact: macroscopic scale

Fig. 3 shows the variation of the contact radius 𝑎 with the applied
oad 𝐹 occurring during pulling tests. Results are obtained for different
alues of the driving velocity 𝑉 . Three contact tests were performed for
ach 𝑉 and the average values are reported in the plot.

The detachment process is clearly rate-dependent as pull-off force
nhancement is observed by increasing 𝑉 .

Fig. 4A shows, in a semilogarithmic representation, the reduction
f the contact radius 𝑎 with the time 𝑡. Experimental data are fitted
ccording to the following relation

(𝑡) = 𝑝1

√

1 −
(

𝑡
𝑡po + 1

)𝑝2
(7)

where 𝑡po is the instant at which detachment occurs and 𝑝1, 𝑝2 are fitting
parameters.
Fig. 4. (A) Contact radius 𝑎 as a function of the time 𝑡. Results show the average of
three contact tests. Blue, green and red markers are referred to the unloading velocities
of the indenter 𝑉 = 0.2, 2, 20 μm/s, respectively. Solid lines are the fit of experimental
data made with Eq. (7) (𝑝1 = 0.0021 and 𝑝2 = 5.93, 7.15, 7.89 for 𝑉 = 0.2, 2, 20 μm/s,
respectively). (B) Contact radius 𝑎 as a function of the crack tip velocity 𝑣c. Solid lines
are obtained by taking derivation of fitted equations in Fig. A. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version
of this article.)

During detachment, the contact line velocity can be easily obtained
as 𝑣c = −𝑑𝑎∕𝑑𝑡. Fig. 4B shows the curves 𝑎 vs. 𝑣c obtained in the
xperiments at different velocities. The maximum value of 𝑣c is reached

when abrupt pull-off occurs. Notice that when increasing 𝑉 of one order
of magnitude the same enhancement in 𝑣c is also observed.

The effective work of adhesion 𝐺 is calculated as a function of
the measured contact line velocity by Eq. (6) using the experimental
values of the normal load 𝐹 . Deng and Kesari (2019) showed that
he machine compliance can influence the adhesive behavior and the
ontact instability at pull-off. However, in a previous work, Barquins
1983) showed that Eq. (1) applies whatever the compliance of the
esting machine and the instantaneous deformation imposed on the
ystem. As a result, the 𝐺(𝑣c) relationship, which is the main input
or the description of contact, is unaffected by the machine stiffness.
oreover, we have taken into account the actual stiffness of the system

ecause the load 𝐹 is read from the deflection of the double cantilever
eam. The same procedure has been recently used in Baek et al. (2017)
n experiments of detachment of glass spherical lens from PDMS blocks.

Fig. 5 shows the quantity (𝐺 − 𝛥𝛾0)∕𝛥𝛾0 as a function of 𝑣c in a
double logarithmic chart. Markers denote experimental data, while the
dotted black line is the fit obtained with Eq. (3) using 𝑛 = 0.25 and
𝑐 = 31 m/s−0.25. Maugis and Barquins (1978) found 𝑛 = 0.6 for a
iscoelastic polyurethane rubber. More recently, Lorenz et al. (2013)
ound 𝑛 = 0.19 for polyurethane and 𝑛 = 0.12 for Sylgard 184 PDMS
ubber. As discussed by Barthel and Frétigny (2009), the dependence
f 𝐺 on the contact line velocity can be related to the viscoelastic creep
unction of the solids. Accordingly, the fact that we found for the used
ylgard 184:Sylgard 527 mixture an exponent 𝑛 greater than for raw
ylgard 184 probably reflects the enhanced viscoelastic dissipation of
he PDMS mixture.

The values of 𝑐 and 𝑛 can be used in Eq. (5) to calculate the values
f 𝛽 and then Eq. (4) can be numerically integrated to obtain 𝑎(𝛿).
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Fig. 5. Relative increase
(

𝐺 − 𝛥𝛾0
)

∕𝛥𝛾0 as a function of the crack tip velocity 𝑣c.
Results are shown for three contact realizations. Blue, green and red markers are
referred to the unloading velocities of the indenter 𝑉 = 0.2, 2, 20 μm/s. The dotted
line is the fit obtained with Eq. (3). (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Variation with time of the vertical position 𝑧 of the glass lens during unloading.
Results are given for smooth case and imposed driving velocity 𝑉 = 0.2 μm∕s.

Assuming that 𝑉 is constant during the unloading phase, the instant 𝑡po
at which pull-off occurs can be estimated by 𝑡po = (𝛿0 − 𝛿po)∕𝑉 , where
𝛿0 is the initial penetration and 𝛿po the jump-off distance. However,
in our experiments we found that the actual unloading velocity 𝑉act (𝑡)
s not constant as the spherical indenter is held to the stage using a
ompliant double cantilever beam. Due to the deflection of the beam,
he velocity 𝑉act of the lens can be different from the imposed velocity
. This is especially true for the experiments on smooth PDMS, where
igh forces can be achieved. However, this effect is quantified by the
aser displacement sensor, which monitors the actual position 𝑧(𝑡) of the
ens. In this regard, Fig. 6 shows the variation of the vertical position 𝑧
f the glass lens with the time during the unloading phase for imposed
elocity 𝑉 = 0.2 μm/s. The actual velocity 𝑉act is given by the slope of
he curve and can be derived as 𝑉act (𝑡) = 𝛥𝑧∕𝛥𝑡.

In the original Muller’s model, the unloading velocity 𝑉 = −𝑑𝛿∕𝑑𝑡 is
ssumed to be constant. However, we can modify Eq. (5) by introducing
he actual velocity 𝑉act(𝛿) in the parameter 𝛽

=
( 6
𝜋

)1∕3 ( 4
9
𝑐
)1∕𝑛

𝑉act (𝛿). (8)

where 𝑉act (𝛿) is obtained by interpolating experimental data.
The time required to move from 𝛿0 to a generic 𝛿 is then calculated

as

𝑡 = ∫

𝛿

𝛿0

𝑑𝛿′

𝑉act (𝛿
′ )
. (9)

Results are shown in Fig. 7A–C, where the contact radius 𝑎(𝑡),
ormalized with respect to its initial value, is plotted against the time
ormalized with respect to the period required for pull-off to occur.
esults are given for different unloading velocities and show a good
greement between experimental data and numerical predictions.
In the experiments performed on rough samples the number of
micro-asperities detected in contact at the end of the loading phase is
around 160. However, for the sake of clarity, Fig. 8A and B show the
ariation of the contact radius 𝑎 of 8 micro-asperities in terms of the
ime and the contact line velocity 𝑣c, respectively. Results are shown for
= 0.2 μm/s. In general, asperities with a larger value of the initial

ontact radius 𝑎 require a longer time to complete their detachment
rocess.

Results on smooth and rough samples suggest the existence of scale
ffects on both contact radius 𝑎 and detachment front velocity 𝑣c. For
his reason, we rescale the above results introducing the factors 𝑠a =
0macro∕𝑎0𝑖, 𝑠t = 𝑡po−macro∕𝑡po−𝑖 and 𝑠v = 𝑠a∕𝑠t . The quantity 𝑎0macro is
he initial value of the contact radius measured at the macroscale on
mooth PDMS samples at the end of the loading phase (when unloading
tarts); 𝑎0𝑖 is instead the initial value of the contact radius detected for
he 𝑖th micro-asperity. Similarly, 𝑡po−macro is the time at which pull-off
ccurs at the macroscale (that is measured in the tests performed on
mooth PDMS samples), while 𝑡po−𝑖 is the time required (and measured
n the tests on rough PDMS samples) to detach the 𝑖th micro-asperity.

Therefore, contact radius 𝑎, contact line velocity 𝑣c and time are
escaled with the above factors. The new curves are given in Fig. 9 for
hree different driving velocities 𝑉 and in a semi-log plot. Solid lines
enote the curves obtained at the macroscopic scale in the experiments
onducted on smooth substrate. Dashed lines identify the curves mea-
ured for each micro-asperity during the detachment tests performed
n the rough PDMS samples. With the proposed scaling, the curves
btained on the contact microspots become comparable with the curves
easured at the macroscale (smooth samples). Such result suggests

hat the distributions of the actual contact line velocities 𝑣c, which are
chieved locally at micro-contact, scale during contact unloading. This,
n turn, suggests that the parameters of Muller’s model identified at the
acroscale can be reasonably applied to the microcontacts.

Such an assumption finds also its motivation in recent results by
orenz et al. (2013), who performed adhesion experiments on smooth
pheres of different radii (ranging from 𝑅 ≈ 3 mm to 𝑅 = 46.5 mm ) and
ifferent materials. They deduced 𝛥𝛾eff as a function of the contact line
elocity 𝑣c using JKR theory and observed that the experimental data
xhibited the same velocity dependence as calculated by Eq. (1) for
c < 10−4 m/s (which corresponds to the range of velocities measured
n our experiments on micro-spots).

The same plots given in Fig. 7 are reported in Fig. 10 for each of
he micro-contacts detected during the unloading phase. A satisfactory
ood agreement is found between experimental data and numerical
redictions, which are obtained with the ‘‘macroscale’’ values of 𝑐 and
. Once again, we have introduced in the Muller’s model the actual
alue of the unloading velocity, which is however constant and slightly
ower than the imposed one (𝑉act = 0.8𝑉 ). In fact, as shown in Fig. 11,
he measured values of the vertical position 𝑧 of the glass lens during
he unloading phase are well fitted by a linear law whose slope gives
act .

In the 𝑎 − 𝑡 curves, we can identify an initial period where the
ontact line velocity is zero and the contact radius constant. Our data
uggest this ‘‘stick time’’ 𝑡stick is slightly affected by the initial value
0, as shown in Fig. 12, where 𝑡stick is plotted against 𝑎0 in a semi-log
hart. Notice we conventionally calculated the stick time at the point
here the initial contact radius 𝑎0 is reduced by 0.1%. Although scatter

n results does not allow to come up with a definitive conclusion on
his point, we observe that our outcomes agree with results given in
aek et al. (2017), where the contact radius is found to be constant
t the beginning of the unloading phase when increasing the contact
enetration. Similar results are also found in Deruelle et al. (1998)
rom JKR experiments and in Haiat et al. (2003), where numerical
alculations on the adhesive contact of linear viscoelastic spheres are
erformed.
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Fig. 7. Time dependence of the normalized contact radius 𝑎(𝑡). Results are shown for unloading velocity of the indenter 𝑉 = 0.2, 2, 20 μm/s (Figs. A,B, and C respectively). Dashed
lines denote Muller’s model predictions, while markers experimental data, which are averaged on three contact realizations.
6

Fig. 8. (A) Contact radius 𝑎 of micro-asperities as a function of time 𝑡. Markers denote
experimental data for a selection of eight different micro-contacts. Unloading tests are
performed at 𝑉 = 0.2 μm/s. (B) Contact radius 𝑎 as a function of the crack tip velocity
𝑣c.

For the above reason, when increasing 𝑎0, the 𝑎 − 𝑡 curve does not
scale homothetically and a master curve cannot be found. This explains
the scatter in Fig. 10. However, an increasing trend of the pull-off time
with 𝑎0 can be observed in our experimental data, as shown in Fig. 13A–
C, where results are presented for different unloading velocities. As
the pull-off time is due to two contributions, the ‘‘stick time’’ and the
‘‘pulling-off time’’, the increasing trend of 𝑡po with 𝑎0 is basically due to
the variation of 𝑡pulling−off as 𝑡stick is only a little affected by 𝑎0. Anyway,
Fig. 9. (A) Contact radius 𝑎×𝑠𝑎 as a function of time 𝑡×𝑠𝑡 (semilog scale). Solid lines
denote the smooth macro-spot detachment curve. Dashed lines denote the detachment
curves of 160 micro-asperities. Red, green and blue curves refer to 𝑉 = 0.2, 2.0, 20,
μm∕s. (B) Contact radius 𝑎 × 𝑠𝑎 as a function of the contact line velocities 𝑣c × 𝑠𝑎∕𝑠𝑡
(semilog scale). Legend symbols are the same of Fig. A. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

since data are strongly scattered because of the dynamic nature of the
pull-off process, a clear trend cannot be easily identified.

Conclusions

In this paper, we have investigated the pull-off behavior of a rough
contact interface between a smooth glass lens and a nominally flat
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Fig. 10. Time dependence of the normalized contact radius 𝑎(𝑡) for micro-contacts. Results are shown for unloading velocities of the indenter 𝑉 = 0.2, 2, 20 μm/s (Figs. A,B, and
respectively). Black dotted lines denote experimental data, while colored dashed lines, the Muller’s model predictions.

initial (equilibrium) adhesive contact radius. From a comparison with
7

macroscale pull-off experiments, it also offers the possibility to investi-
g
a

r

Fig. 11. Variation with time of the vertical position 𝑧 of the glass lens during
nloading. Results are given for rough case and imposed driving velocity 𝑉 = 0.2

μm∕s.

Fig. 12. Stick time 𝑡stick as a function of the initial contact radius 𝑎0. Results are shown
or rough PDMS and unloading velocities of the indenter 𝑉 = 0.2, 2, 20 μ m/s.

iscoelastic substrate patterned with a height distribution of spherical
icro-asperities. In the absence of any elastic coupling between micro-

ontacts, this system allows to measure simultaneously the pull-off
ehavior of a collection of micro-asperities contacts differing in their
ate the occurrence of scale effects in dissipative processes involved in
dhesion.

Results show the contact radius almost scales according to the
atio 𝑠a = 𝑎0macro∕𝑎0micro, being 𝑎0 the initial radius measured at the

beginning of the unloading process. Similarly, the contact line velocity
𝑣c is found scaling with a factor 𝑠v depending on the ratio 𝑠a∕𝑠t , where
𝑠t = 𝑡po−macro∕𝑡po−micro and 𝑡po is the time required for the pull-off to
take place. Such results suggest that the nature of the dissipative pro-
cesses involved in the pull-off of the adhesive contacts is almost scale
independent of the millimeter size down to a few tens of micrometers.
In other words, the assumption that viscoelastic losses are localized
near the contact line, in a small region with respect to the contact
size, remains valid at the micro-scale. Moving from this consideration, a
simple theoretical procedure can be derived to evaluate the evolution
of the contact radius 𝑎 of micro-asperities contacts in the unloading
phase.
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Fig. 13. Pull-off time 𝑡po as a function of the initial contact radius 𝑎0. Results are shown for rough PDMS and unloading velocities of the indenter 𝑉 = 0.2, 2, 20 μ m/s (Figs. A,B,
C respectively). Markers denote experimental data, while colored lines the corresponding linear fit; the 𝑅2 values are 0.73, 0.77 and 0.78 (Figs. A,B, and C respectively).
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