
HAL Id: hal-03243257
https://hal.science/hal-03243257

Preprint submitted on 31 May 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Inversion of Integral Models: a Neural Network
Approach

Emilie Chouzenoux, Cecile Della Valle, Jean-Christophe Pesquet

To cite this version:
Emilie Chouzenoux, Cecile Della Valle, Jean-Christophe Pesquet. Inversion of Integral Models: a
Neural Network Approach. 2021. �hal-03243257�

https://hal.science/hal-03243257
https://hal.archives-ouvertes.fr

Inversion of Integral Models: a Neural Network Approach

E. Chouzenoux, C. Della Valle, and J.-C. Pesquet *

Abstract

We introduce a neural network architecture to solve inverse problems linked to a one-
dimensional integral operator. This architecture is built by unfolding a forward-backward
algorithm derived from the minimization of an objective function which consists of the sum
of a data-fidelity function and a Tikhonov-type regularization function. The robustness of
this inversion method with respect to a perturbation of the input is theoretically analyzed.
Ensuring robustness is consistent with inverse problem theory since it guarantees both the
continuity of the inversion method and its insensitivity to small noise. The latter is a critical
property as deep neural networks have been shown to be vulnerable to adversarial pertur-
bations. One of the main novelties of our work is to show that the proposed network is also
robust to perturbations of its bias. In our architecture, the bias accounts for the observed
data in the inverse problem. We apply our method to the inversion of Abel integral oper-
ators, which define a fractional integration involved in wide range of physical processes.
The neural network is numerically implemented and tested to illustrate the efficiency of the
method. Lipschitz constants after training are computed to measure the robustness of the
neural networks.

1 Introduction

Inverse problem In this article, we are interested in 1D operators of the form

T : X → Y

x → y(t) =

∫ 1

0
k(t, s)x(s) ds .

(1)

Hereabove, X and Y are functional Hilbert spaces, typically X = Y = L2(0, 1), k ∈
L2([0, 1]2) and T is a linear compact operator. A large variety of inverse problems consist
of inverting convolution operators such as signal/image restoration [1, 2], tomography [3], Fred-
holm equation of the first kind [4] or inverse Laplace transform [5]. In this work, we focus on
the inversion of the Abel integral, for which the kernel is of the form

k(t, s) = `(t, s)(t− s)a−1δs≤ t ,
*C. Della Valle (corresponding author) is with Université de Paris, Paris Sorbonne Université.

E. Chouzenoux and J.-C. Pesquet are with Université Paris-Saclay, Inria, CentraleSupélec, Center for Visual Com-
puting. The work by J.-C. Pesquet was supported by Institut Universitaire de France and the ANR Chair in Artificial
Intelligence BRIDGEABLE.

1

where a is a real positive number, ` is a continuous function, differentiable and decreasing on
its second variable, and δs≤ t is equal to one if s ≤ t and zero otherwise. The inverse problem
investigated in this article is the following: given y ∈ Y , we seek for x ∈X such that

y = Tx .

In addition, we consider the case when the data y are corrupted with measurement errors or
noise. We model an additive noise as follows: we call the upper bound for the noise level
δ > 0 measured in Y δ with Y ⊂ Y δ. Here, Y δ is the Hilbert space H−s(0, 1) defined
in [6]. Typically, s = 0 for a deterministic noise and s = 1/2 for a deterministic equivalent
of a Gaussian white noise [7]. Solving the inverse problem in the presence of noisy data then
amounts to finding xδ ∈ Y such that

yδ = Txδ , with ‖y − yδ‖Y δ ≤ δ . (2)

The above problem is often ill-posed i.e., a solution might not exist, might not be unique, or
might not depend continuously on the data.

Variational problem The well-posedness of the inverse problem defined by (2) is retrieved
by regularization. Here we consider Tikhonov type regularization. Let τ ∈]0,+∞[be the
regularization parameter. Solving the inverse problem (2) with such regularization, leads to the
resolution of the following optimization problem

minimize
x∈C

Jτ (x) , (3)

where

(∀x ∈X) Jτ (x) =
1

2
‖Tx− yδ‖2 +

τ

2
‖Drx‖2, (4)

C is a nonempty closed convex subset of X , and Dr acts as a derivative operator with order
r ≥ 0. Often, we have an a priori of smoothness on the solution, in Hq(0, 1) with q ≥ 0, which
justifies the use of such a derivative-based regularization. Problem (3) is an instance of the more
general problem stated above, encountered in many signal/image processing tasks:

minimize
x∈X

Jτ (x) + µ g(x) , (5)

where µ ∈ [0,+∞[is an additional regularization constant and g is a proper lower-semicontinuous
convex function from some Hilbert space X to] −∞,+∞]. Indeed, Problem (3) corresponds
to the case when g is the indicator function ιC of set C.

Neural network We focus our attention on seeking for a solution to the addressed inverse
problem through nonlinear approximation techniques making use of neural networks. Thus,
instead of considering the solution to the regularized problem (5), we define the solution to the
inverse problem (2) as the output of a neural network, whose structure is similar to a recurrent
network [8].

2

Namely, by setting an initial value x0, we are interested in the following m-layers neural
network where m ∈ N \ {0}:

Initialization:
b0 = T ∗yδ,

Layer n ∈ {1, . . . ,m}:
xn = Rn(Wnxn−1 + Vnb0) ,

(6)

where, for every n ∈ {1, . . . ,m},

Rn = proxλnµng (7)

Wn = 1l− λnT ∗T − λnτnD∗D (8)

Vn = λn1l. (9)

Hereabove, proxϕ states for the proximity operator of a lower-semicontinuous proper convex
function ϕ [9, Chapter 9], 1l denotes the identity operator, and for every n ∈ {1, . . . ,m}, λn,
µn, and τn are positive constants, which are learned during training. Throughout this paper, L∗

denotes the adjoint of a bounded linear operator L defined on Hilbert spaces.
Model (6) can be viewed as unrolling m iterations of an optimization algorithm, so leading

to Algorithm 1. Note that, when µn ≡ µ and τn ≡ τ , we recognize a forward-backward
algorithm [10, 11] applied to the variational problem (5).

Algorithm 1 Proximal forward-backward splitting method
1: Set x0 ,
2: for n = 1, 2, . . . ,m do
3: Set λn, τn, µn ,
4: xn = proxλnµng (xn−1 − λn∇Jτn(xn−1)) ,
5: end for
6: return xm

From a theoretical standpoint, there is no guarantee that such a model constitutes a regular-
izing family, and there is no equivalence between the regularized inverse problem (5) and the
output of Model (6), since the number of iterations m is fixed in advance. However, we can
quantify the robustness of Model (6) to perturbations on its initialization x0 and on its bias b0,
by an accurate estimation of its Lipschitz constant.

Related works and contributions There has been a plethora of techniques developed to invert
integrals of the form (1). Among these methods, Tikhonov-type methods are attractive from a
theoretical viewpoint, especially because they provide good convergence rate as the noise level
decreases, as shown in [12] or [13]. However, limitations of such methods may be encountered
in their implementation. Indeed, certain parameters such as gradient descent steps or the regu-
larization coefficient need to be set, as discussed in [14] or [15] for the Abel integral operator.
The latter parameter depends on the noise level, as shown in [16], which is not always easy to

3

estimate. In practical cases, methods such as the L-curve method, see [17], can be implemented
to set the regularization parameter, but they require a large number of resolutions and therefore a
significant computational cost. Moreover, incorporating constraints on the solution may be dif-
ficult in such approaches, and often reduces to projecting the resulting solution onto the desired
set. These points justify the use of a neural network structure to avoid laborious calibration of
the parameters and to easily incorporate constraints on the solution.

The use of neural networks for solving inverse problems has become increasingly popular,
especially in the image processing community. A rich panel of approaches have been proposed,
either adapted to the sparsity of the data [18, 19], or mimicking variational models [20, 21],
or iterating learned operators [22, 23, 24, 25, 26], or adpating Tikhonov method [27]. The
successful numerical results of the aforementioned works raise two theoretical questions: when
these methods are based on the iteration of a neural network, do they converge (in the sense of
the algorithm)? Are these inversion methods stable or robust?

In iterative approaches, a regularization operator is learned, either in the form of a prox-
imity (or denoiser) operator as [23, 22, 26], of a regularization term [27], of a pseudodiffential
operator [28], or of its gradient [29, 3]. Strong connections also exist with Plug and Play meth-
ods [30, 31, 24], where the regularization operator is a pre-trained neural network. Such objects
have in particular enable high-quality imaging restoration or tomography inversion [3]. Here,
the non-expensiveness of the neural network is a core property to establish convergence of the
algorithm [3, 24]. But our proposed neural network is not based on this idea.

Other recent works solve linear inverse problems by unrolling the optimization iterative
process in the form of a network architecture as in [32, 33]. Here the number of iterations is
fixed, instead of iterating until convergence, and the network is trained in an end-to-end fashion.
Since neural network frameworks offer powerful differential programming capabilities, such
architecture are also used for learning hyper-parameters in an unrolled optimization algorithm
as in [34, 35].

All of the above strategies have shown very good numerical results. However, few studies
have been conducted on their theoretical properties, especially their stability. The study of the
robustness of such a structure is often based on a series of numerical tests, as performed in [36].
In [27], they provide very large assumption under which the convergence and the regularization
property of their network is ensured. But their result is not subject to verification during the
numerical implementation. A fine characterization of the convergence conditions of recurrent
neural network and of their stability via the estimation of a Lipschitz constant is done in [37, 38].
In particular, the Lipschitz constant estimated in [38] is more accurate than in basic approaches
which often rely in computing the product of the norms of the linear weight operators of each
layer as in [39, 40]. Thanks to the aforementioned works, proofs of convergence and stability
have been demonstrated on specific neural networks applied to inverse problems as in [24, 25,
34]. The analysis carried out in this article is in the line of these references.

Our contributions in this paper are the following.

i) We propose an algorithm based on a neural network architecture to solve the inverse prob-
lem (2), where a constraint is imposed on the sought solution. One of the main advantages
is that the structure of the neural network is interpretable and that it contains few parame-
ters which are learnt.

4

ii) We study theoretically and numerically the stability of the so-built neural network. The
sensitivity analysis is performed with respect to the observed data yδ which corresponds
to a bias term in each of the layers of (6). This analysis is more general than the one
performed in [34], in which only the impact of the initialization was considered.

iii) We show how to implement the neural network in the case of Abel operators. Such op-
erators arise in various physical applications. The proposed neural network performs nu-
merically well compared to other classical inversion methods. Neural network techniques
have been widely applied to imaging inverse problems, but few are tested on experimental
1D signal inverse problems.

Outline The outline of the paper is as follows. In Section 2, we recall the theoretical back-
ground of our work. We specify our notation, which is based on [9]. In Section 3, we establish
the stability of the neural network defined by (6), based on the results in [37] and [38]. By stabil-
ity, we mean that the output of the neural network is controlled not only with respect to its initial
input x0, but also also with respect to the bias term T ∗yδ. The objective is to guarantee that a
small difference or error on these vectors is not amplified through the network. Our theoretical
study concerns a class of dynamical systems including a leakage factor, which is more general
than the neural network defined by (6). In Section 4, the numerical resolution of the problem (2)
is described. We define the Abel operator, its characteristics as well as its discretization. Then,
we detail the construction of the training data set. The architecture of the neural network is
explained, as well as the sub-network used to estimate the parameters. Finally, we compute the
Lipschitz constants of our trained networks. We also compare the obtained results with those
delivered by two other methods classically used to solve inverse problems involving an Abel
integral.

2 Notation

We introduce the theory of convex analysis we will be dealing with, namely monotone operator
in Hilbert spaces. We also cover the bits of operator theory that will be needed throughout.

Let us consider the Hilbert space X endowed with the norm ‖ · ‖ and the scalar product
〈·, ·〉. In the following, X shall always refer to spaces of functions defined on the interval]0, 1[.
The notation ‖ · ‖ will also refer to the operator norm of bounded operators from X onto X .
The identity operator over X will be referred to as 1l.

An operator S : X →X is nonexpansive if it is 1−Lipschitz, that is

(∀(x, y) ∈ X ×X) ‖Sx− Sy‖ ≤ ‖x− y‖ .

Moreover, S is said to be

i) firmly nonexpansive if

(∀(x, y) ∈ X ×X) ‖Sx− Sy‖2 + ‖(1l− S)x− (1l− S)y‖2 ≤ ‖x− y‖2 ;

5

ii) a Banach contraction if there exists κ ∈]0, 1[such that

(∀(x, y) ∈ X ×X) ‖Sx− Sy‖ ≤ κ‖x− y‖ . (10)

If S is a Banach contraction, then the iterates (Snx)n∈N converge linearly to a fixed point of
S according to Picard’s theorem. On the other hand, when S is nonexpansive, the convergence
is no longer guaranteed. A way of recovering the convergence of the iterates is to assume that
S is averaged, i.e., there exists α ∈]0, 1[and a nonexpansive operator R : X → X such that
S = (1− α)1l + αR. In particular, S is α−averaged if and only if

(∀(x, y) ∈ X ×X) ‖Sx− Sy‖2 +
1− α
α
‖(1l− S)x− (1l− S)y‖2 ≤ ‖x− y‖2 .

If S has a fixed point and it is averaged, then the iterates (Snx)n∈N converge weakly to a fixed
point. Note that S is firmly nonexpansive if and only if it is 1/2−averaged and that, if S satisfies
(10) with κ ∈]0, 1[, then it is (κ+ 1)/2-averaged.

Let Γ0(X) be the set of proper lower semicontinuous convex function from X to] −
∞,+∞]. Then we define the proximal operator as

Definition 2.1
Let f ∈ Γ0(X), x ∈X , and γ > 0. Then proxγf (x) is the unique point that satisfies

proxγf (x) = argmin
y∈X

(
f(y) +

1

2γ
‖x− y‖2

)
.

The function proxγf : X →X is the proximity operator of γf .

Finally, the proximity operator has the following property.

Proposition 2.2 (Proposition 12.28 of [9])
The operators proxγf and 1l− proxγf are firmly nonexpansive.

In the proposed neural network (6), the activation operator is a proximity operator. In prac-
tice, this is the case for most activation operators, as shown in [37]. The neural network (6) is
thus a cascade of firmly nonexpansive operators and linear operators. If the linear part is also
nonexpansive, bounds on the effect of a pertubation of the neural network or its iterates can be
established.

3 Stability and α-averagedness

In this section, we study the stability of the proposed neural network (6). This analysis is per-
formed by estimating the Lipschitz constant of the network, and by determining under which
conditions this network is α-averaged. To do so, we introduce a virtual network, which takes as
inputs the classical ones on top of a new one, which is the bias parameter.

6

3.1 Virtual neural network with leakage factor

To facilitate our theoretical analysis, we will introduce a virtual network making use of new
variables (zn)n∈N. For every n ∈ N \ {0}, we define the n-th layer of our virtual network as
follows

zn =

(
xn
bn

)
, zn = Qn(Unzn−1) , with



Qn =

(
Rn

1l

)
,

Un =

(
Wn λn1l

0 ηn1l

)
.

(11)

Note that, in order to gain more flexibility, we have included positive multiplicative factors
(ηn)n≥1 on the bias. Cascading m such layers yields

Initialization:
b0 = T ∗yδ,

Layer n ∈ {1, . . . ,m}:
xn = Rn(Wnxn−1 + Vnb0) ,

(12)

where

Rn = proxλnµng (13)

Wn = 1l− λnT ∗T − λnτnD∗D (14)

Vn = λnηn−1 · · · η11l (15)

and η0 = 1. We thus see that the network defined by Model (6) is equivalent to the virtual one
when all the factors ηn are equal to one. When n ≥ 1 and ηn < 1. The parameters (ηn)n≥1 can
be interpreted as a leakage factor.

Remark 3.1. In the original forward-backward algorithm, the introduction of (ηn)n≥1 amounts
to introducing an error en in the gradient step, at iteration n, which is equal to

en = λn(ηn−1 · · · η1 − 1)b0. (16)

From known properties concerning the forward-backward algorithm [11], the convergence of
the algorithm is still guaranteed provided that

+∞∑
n=2

λn|ηn−1 · · · η1 − 1| < +∞ . (17)

In our analysis, it will be useful to define the triangular linear operator

U = Um ◦ · · · ◦ U1 =

(
W1,m W̃1,m

0 η1,m1l

)
, (18)

7

where, for every n ∈ {1, . . . ,m} and i ∈ {1, . . . , n}

W̃i,n =
n∑
j=i

λjηi,j−1Wj+1,n (19)

and, for every i ∈ {1, . . . ,m+ 1} and j ∈ {0, . . . ,m},

Wi,j =

{
Wj ◦ · · · ◦Wi if j ≥ i
1l otherwise,

(20)

ηi,j =

{
ηj · · · ηi if j ≥ i
1 otherwise.

(21)

Since T defined by (1) is a compact operator, we can define its singular value expansion as
in [16]. Furthermore, we place ourselves in the case where D∗D and T ∗T commutes, for oper-
ators T defined by (1) and regularization operators D. Therefore those operators admit the same
eigensystem. In particular, they can be diagonalized in the same orthonormal set of eigenvec-
tors (vp)p. We define their respective eigenvalues (βT,p)p and (βD,p)p, as well as the following
quantities, for every eigenspaces p ∈ N, n ∈ {1, . . . ,m}, and i ∈ {1, . . . , n},

β(n)p = 1− λn(βT,p + τnβD,p) , (22)

βi,n,p =
n∏
j=i

β(j)p , (23)

β̃i,n,p =

n−1∑
j=i

β(n)p · · ·β(j+1)
p λjηi,j−1 + λnηn−1 · · · ηi (24)

with the convention
∑n−1

i=n · = 0. Note that (βi,n,p, vp)p∈N and (β̃i,n,p, vp)p∈N are the eigensys-
tems of Wi,n and W̃i,n, respectively.

3.2 Stability results for the virtual network

We first recall some recent results on the stability of neural networks [37, Proposition 3.6(iii)]
[38, Theorem 4.2].
Proposition 3.2

Letm > 1 be an integer, let (Hi) be nonzero real Hilbert spaces. For every n ∈ {1, . . . ,m},
let Un ∈ B(Hn−1,Hn) and let Qn : Hn → Hn be a firmly nonexpansive operator. Set

8

U = Um ◦ · · · ◦ U1 and

θm = ‖U‖

+
m−1∑
k=1

∑
1≤j1<...<jk≤m−1

‖Um◦· · ·◦Ujk+1‖ ‖Ujk ◦· · ·◦Ujk−1+1‖ · · · ‖Uj1 ◦· · ·◦U1‖.

(25)

Let S = Qm ◦ Um ◦ · · · ◦Q1 ◦ U1. Then the following hold

i) θm/2m−1 is a Lipschitz constant of S.

ii) Let α ∈ [1/2, 1]. IfHm = H0 and

‖U − 2m(1− α)1l‖ − ‖U‖+ 2θm ≤ 2mα , (26)

then S is α-averaged.

In light of these results, we will now analyze the properties of the virtual network (11) based on
the singular values of the operators T and D, and the parameters (λn)1≤n≤m and (τn)1≤n≤m.
One of the main difficulties with respect to the case already studied by [34] is that here the
involved operators (Un)1≤n≤m are no longer self-adjoint.

A preliminary result will be needed:

Lemma 3.3
Let m ∈ N \ {0} the total number of layers. For every layer n ∈ {1, . . . ,m} and layer
i ∈ {1, . . . , n}, the norm of Un ◦ · · · ◦ Ui is equal to√ai,n with

ai,n =
1

2
sup
p∈N

(
β2i,n,p + β̃2i,n,p + η2i,n +

√
(β2i,n,p + β̃2i,n,p + η2i,n)2 − 4β2i,n,pη

2
i,n

)
, (27)

where p covers the eigenspaces of T ∗T defined by (1).

Proof. Thanks to expressions (11), (19), (20), and (21), we can calculate the norm of ‖Un ◦
· · · ◦ Ui‖. For every z = (x, b), Un ◦ · · · ◦ Uiz = (Wi,nx+ W̃i,nb, ηi,nb) and

‖Un ◦ · · · ◦ Uiz‖2 = ‖Wi,nx+ W̃i,nb‖2 + η2i,n‖b‖2

= ‖Wi,nx‖2 + 2〈Wi,nx, W̃i,nb〉+ ‖W̃i,nb‖2 + η2i,n‖b‖2 .

Let (βi,n,p, vp)p∈N defined by (23) and (β̃i,n,p, vp)p∈N defined by (24) be the respective eigen-
systems of Wi,n and W̃i,n. Let us decompose (x, b) in the basis of eigenvectors (vp)p of T ∗T ,
as {

x =
∑

p ξp vp ,

b =
∑

p ζp vp .

9

We have then

‖Un ◦ · · · ◦ Uiz‖2 =
∑
p

β2i,n,pξ
2
p + 2

∑
p

βi,n,pβ̃i,n,pξpζp +
∑
p

(β̃2i,n,p + η2i,n)ζ2p .

By definition of the operator norm,

‖Un ◦ · · · ◦Ui‖2 = sup
‖x‖2+‖b‖2=1

(∑
p

β2i,n,p ξ
2
p + (η2i,n + β̃2i,n,p) ζ

2
p + 2βi,n,pβ̃i,n,p ξp ζp

)
.

Note that, for every integer p ∈ N and ωp = (ξp, ζp) ∈ R2,

β2i,n,p ξ
2
p + (η2i,n + β̃2i,n,p) ζ

2
p + 2βi,n,pβ̃i,n,p ξp ζp = 〈Ai,n,pωp, ωp〉 (28)

where 〈·, ·〉 denotes the Euclidean inner product and

Ai,n,p =

(
β2i,n,p βi,n,pβ̃m,p

β̃i,n,pβi,n,p η2i,n + β̃2i,n,p

)
.

Hence,

‖Un ◦ · · · ◦ Ui‖2 = sup
z=(ωp)p,‖z‖=1

∑
p

〈Ai,n,p ωp, ωp〉 .

Since Ai,n,p is a symmetric positive semidefinite matrix,

‖Un ◦ · · · ◦ Ui‖2 = sup
p,‖ωp‖=1

〈Ai,n,pωp, ωp〉 = sup
p
νi,n,p , (29)

where, for every p ∈ N, νi,n,p is the maximum eigenvalue of Ai,n,p. The two eigenvalues of this
matrix are the roots of the characteristic polynomial

(∀ν ∈ R) det(Ai,n,p − ν1l2) = (β2i,n,p − ν)(β̃2i,n,p + η2i,n − ν)− β2i,n,pβ̃2i,n,p
= ν2 − (β2i,n,p + β̃2i,n,p + η2i,n)ν + β2i,n,pη

2
i,n .

The discriminant of this second-order polynomial reads

∆i,n,p = (β2i,n,p + β̃2i,n,p + η2i,n)2 − 4β2i,n,pη
2
i,n

= (β2i,n,p − β̃2i,n,p − η2i,n)2 + 4β2i,n,pβ̃
2
i,n,p ≥ 0 .

Therefore, for every p ∈ N,

νi,n,p =
1

2

(
β2i,n,p + β̃2i,n,p + η2i,n +

√
(β2i,n,p + β̃2i,n,p + η2i,n)2 − 4β2i,n,pη

2
i,n

)
. (30)

By going back to (29), we obtain

‖Un ◦ · · · ◦ Ui‖2 = ai,n .

�

We will now quantify the Lipschitz regularity of the network.

10

Proposition 3.4
Let m ∈ N \ {0}. For every n ∈ {1, . . . ,m} and i ∈ {1, . . . , n}, let ai,n be given by (27).

Set θ0 = 1 and define (θn)1≤n≤m recursively by

(∀n ∈ {1, . . . ,m}) θn =
n∑
i=1

θi−1
√
ai,n .

Then θm/2m−1 is a Lipschitz constant of the virtual network (11).

Proof. According to Proposition 3.2i), if θm is given by (25), then θm/2m−1 is a Lipschitz
constant of the virtual network (11). On the other hand, it follows from [37, Lemma 3.3] that θm
can be calculated recursively as

(∀n ∈ {1, . . . ,m}) θn =
n∑
i=1

θi−1‖Un ◦ · · · ◦ Ui‖ ,

with θ0 = 1. Finally, Lemma (3.3) allows us to substitute (
√
ai,n)1≤i≤n for (‖Un ◦ · · · ◦

Ui‖)1≤i≤n in the above expression. �

We will next provide conditions ensuring that the virtual network is an averaged operator.

Proposition 3.5
Let m ∈ N \ {0}. Let a1,m be defined in Lemma 3.3 and θm be defined in Proposition 3.4.

Let α ∈ [1/2, 1]. Define

bα =
1

2
sup
p

(
(β1,m,p − γα)2 + (η1,m − γα)2 + β̃21,m,p

+

√ (
(β1,m,p − γα)2 + (η1,m − γα)2 + β̃21,m,p

)2
−4(β1,m,p − γα)2(η1,m − γα)2

)
, (31)

with γα = 2m(1− α). Then virtual network (11) is α-averaged if√
bα −

√
a1,m ≤ 2mα− 2θm . (32)

Proof. Let us calculate the operator norms of U and U − γα1l, where U is given by (18).

Norm of U . Applying Lemma 3.3 when i = 1 and n = m yields

‖U‖2 = a1,m .

Norm of U − γα1l. We follow the same reasoning as in the proof of Lemma 3.3. We have

‖U − γα1l‖2 = sup
z=(ωp)p,‖z‖=1

∑
p

〈Bpωp, ωp〉 ,

11

where Bp is the symmetric positive semidefinite matrix given by

Bp =

(
(β1,m,p − γα)2 (β1,m,p − γα)β̃1,m,p

(β1,m,p − γα)β̃1,m,p (η1,m − γα)2 + β̃21,m,p

)
.

By definition of the spectral norm,

‖U − 2m(1− α)1l‖2 = sup
p
νp , (33)

where, for every p ∈ N, νp is the maximum eigenvalue ofBp. The two eigenvalues of this matrix
are the roots of the polynomial

(∀ν ∈ R) det(Bp − ν1l2) = ν2 − ((β1,m,p − γα)2 + (η1,m − γα)2 + β̃21,m,p) ν

+ (β1,m,p − γα)2(η1,m − γα)2 . (34)

Solving the corresponding second-order equation leads to

sup
p

νp =
1

2

(
(β1,m,p − γα)2 + (η1,m − γα)2 + β̃21,m,p

+

√(
(β1,m,p − γα)2 + (η1,m − γα)2 + β̃21,m,p

)2 − 4(β1,m,p − γα)2(η1,m − γα)2
)
.

(35)

Then, it follows from (33) that ‖U − γα1l‖2 = bα.

Conclusion of the proof. Based on the previous calculations, Condition (32) is equivalent to
(26). In addition, let us note that for every n ∈ {1, . . . ,m}, Qn in (11) is firmly nonexpansive
since Rn and 1l are. By applying now Proposition 3.2ii), we deduce that, when Condition (32)
holds, virtual network (11) is α-averaged. �

Remark 3.6. Condition (32) just provides a sufficient condition for the averagedness of virtual
network (11).

3.3 Link with the original neural network – direct approach

In this subsection we go back to our initial model defined by (12). We consider two different
inputs z1 = (x1, b1) and z2 = (x2, b2) in X ×X . The distance between these points is

‖z2 − z1‖ =
√
‖x2 − x1‖2 + ‖b2 − b1‖2 .

Let zi,n = (xi,m, bi,m) be the output of the m-th layer of virtual network (11). Then,

‖z2,m − z1,m‖2 = ‖x2,m − x1,m‖2 + ‖b2,m − b1,m‖2

= ‖x2,m − x1,m‖2 + η21,m‖b2 − b1‖2 ,

12

and, thanks to Proposition 3.4,

‖z2,m − z1,m‖2 ≤
θ2m

22(m−1)
(
‖x2 − x1‖2 + ‖b2 − b1‖2

)
.

Then, the following inequality allows us to quantify the Lipschitz properties of the neural net-
work (6) with an error on bn:

‖x1,m − x2,m‖2 ≤
θ2m

22(m−1)
‖x2 − x1‖2 +

(
θ2m

22(m−1)
− η21,m

)
‖b2 − b1‖2 .

Two cases are of interest:

• If the network is initialized with a fixed signal, say x1,0 = x2,0 = 0, then

‖x1,m − x2,m‖2 ≤
(

θ2m
22(m−1)

− η21,m
)
‖b2 − b1‖2 .

So, a Lipschitz constant with respect to the input data T ∗yδ is

ϑm =

√
θ2m

22(m−1)
− η21,m. (36)

• On the other hand, if the initialization is dependent on the observed image, i.e. x1,0 = b1
and x2,0 = b2,

‖x1,m − x2,m‖2 ≤
(

θ2m
22m−3

− η21,m
)
‖b2 − b1‖2 .

So a higher Lipschitz constant value w.r.t. to the input data is obtained:

ϑm =

√
θ2m

22m−3
− η21,m. (37)

Remark 3.7. Let us go back to Model (6). We thus consider the virtual Model (11) without
leakage factor, i.e., for every n ∈ {1, . . . ,m}, ηn = 1 and η1,m = 1. Then, for every n ∈
{1, . . . ,m},

zn =

(
xn
bn

)
, zn = Qn(Unzn−1) , with



Qn =

(
Rn

1l

)
,

Un =

(
Wn Vn

0 1l

)
.

(38)

Assume that the virtual network in (38) is α-averaged. Then it is 1-Lipschitz. This is also
consistent with (26) which implies that

‖U − 2m(1− α)1l‖ − ‖U‖+ 2θm ≤ 2mα ⇒ θm
2m−1

≤ 1 . (39)

13

Then, according to (36), we would get ϑm = 0, which would mean that the network delivers an
output independent of the available data. If we except trivial cases for which Rn = 0 or Wn = 0
for some n ∈ {1, . . . ,m}, this behavior is impossible. So this means that virtual network (38)
cannot be α-averaged, hence Condition (32) is not met when, for every n ∈ {1, . . . ,m}, ηn = 1.

This can be concluded more directly. For every α ∈]0, 1[, virtual network (38) cannot be
α-averaged, since R = (1 − 1/α)1l + 1/αS cannot be nonexpansive. Indeed suppose that
‖R(x1, b1)−R(x2, b2)‖2 ≤ ‖x1−x2‖2+‖b1−b2‖2, for every (x1, b1) and (x2, b2) in X ×X .
Since

‖R(x1, b1)−R(x2, b2)‖2 =
∥∥∥(1− 1/α)

(
x1 − x2
b1 − b2

)
+ 1/α

(
x1,m − x2,m
b1 − b2

)∥∥∥2
= ‖(1− 1/α)(x1 − x2) + 1/α(x1,m − x2,m)‖2 + ‖b1 − b2‖2

≤ ‖x1 − x2‖2 + ‖b1 − b2‖2 ,

we deduce that

‖(1− 1/α)(x1 − x2) + 1/α(x1,m − x2,m)‖ ≤ ‖x1 − x2‖ ,

which cannot stand since, for b1 6= b2, x1,m − x2,m can be nonzero when x1 = x2.

3.4 Link with the original neural network – use of a semi-norm

Remark 3.7 suggests that we need a finer strategy to evaluate the nonexpansiveness properties
of Model (6). On the product space X ×X , we define the semi-norm which takes only into
account the first component of the vectors:

z = (x, b) 7→ |z| = ‖x‖. (40)

Let L : X ×X → X ×X be any bounded linear operator and, for every z ∈ X ×X , let
Lz = ((Lz)x, (Lz)b). We define the associated operator semi-norm

|L| = sup
‖z‖=1

‖(Lz)x‖ . (41)

Lemma 3.8
Letm ∈ N\{0}. For every n ∈ {1, . . . ,m} and i ∈ {1, . . . , n}, the seminorm |Un◦· · ·◦Ui|
is equal to

√
ai,n with

ai,n = sup
p

(
β2i,n,p + β̃2i,n,p

)
. (42)

Proof. The seminorm of Un ◦ · · · ◦ Ui is the same as the norm of Un ◦ · · · ◦ Ui where ηn has
been set to 0. The result thus follows from Lemma 3.3 where ηi,n = 0. �

14

Proposition 3.9
Let m ∈ N \ {0}. For every i ∈ {1, . . . , n} and n ∈ {1, . . . ,m− 1}, let ai,n be defined by

(27) and let ai,m be given by (42). Set θ0 = 1 and define

(∀n ∈ {1, . . . ,m− 1}) θn =

n∑
i=1

θi−1
√
ai,n , (43)

θm =
m∑
i=1

θi−1
√
ai,m . (44)

Then the network in (12) with input (x0, b0) and output xm is θm/2m−1-Lipschitz.

Proof. Network (12) can be expressed as Rm ◦ Um ◦Qm−1 ◦ Um−1 ◦ · · · ◦Q1 ◦ U1 where

Um = Dx ◦ Um (45)

and Dx is the decimation operator

Dx = [1l 0]. (46)

This network has the same Lipschitz properties as the network in (11) with ηm = 0. The result
can thus be deduced from Proposition 3.4 by setting η1,m = 0. �

To investigate averagedness properties, a first possibility is to consider a network from X ×X
to X ×X with input (x0, b0) and output (xm, 0).
Proposition 3.10

Let m ∈ N \ {0, 1}. Let a1,m be defined in Lemma 3.8 and θm be defined in Proposition
3.9. Let α ∈ [1/2, 1]. Define

bα =
1

2
sup
p

(
(β1,m,p − γα)2 + β̃21,m,p + γ2α+

+
√ (

(β1,m,p − γα)2 + β̃21,m,p + γ2α
)2 − 4(β1,m,p − γα)2γ2α

)
,

(47)

with γα = 2m(1− α). If√
bα −

√
a1,m ≤ 2mα− 2θm , (48)

then the network in (6) with input (x0, b0) and output (xm, 0) is α-averaged.

Proof. The network of interest is

Qm

[
Um ◦Qm−1 ◦ Um−1 ◦Q1 ◦ U1

0

]
.

This network can be viewed as a special case of the network in (11) where ηm = 0, which
implies that η1,m = 0. The result is thus a consequence of Proposition 3.5. �

15

Another possibility for investigating averagedness properties consists of defining a network
from X to X . We will focus on two specific networks of the form

Rm ◦ Um ◦Qm−1 ◦ Um−1 · · ·Q1 ◦ Û1, (49)

where Um is given by (45).

i) The first one assumes that x0 = 0 in (6). It is thus given by

Û1 = U1

[
0
1l

]
. (50)

ii) The second one assumes that x0 = b0 in (6). It is thus given by

Û1 = U1

[
1l
1l

]
. (51)

By proceeding similarly to the proof of Lemma 3.3 and Proposition 3.5, we obtain the fol-
lowing two results:
Lemma 3.11

Let m ∈ N \ {0, 1}. For every n ∈ {1, . . . ,m− 1}, the norm of Un ◦ · · · ◦U2 ◦ Û1 is equal
to
√
â1,n with

â1,n =

{
supp β̃

2
1,n,p + η21,n in case i)

supp

(
(β1,n,p + β̃1,n,p)

2
)

+ η21,n in case ii)
(52)

and the norm of Um ◦ · · · ◦ U2 ◦ Û1 is equal to
√
â1,m with

â1,m =

{
supp β̃

2
1,m,p in case i)

supp(β1,m,p + β̃1,m,p)
2 in case ii).

(53)

Proposition 3.12
Let m ∈ N \ {0, 1}. For every i ∈ {2, . . . , n} and n ∈ {1, . . . ,m− 1}, let ai,n be defined

by (27) and let ai,m be given by (42). For every n ∈ {1, . . . ,m}, let â1,n be defined by (52)
and (53). Define (θ̂n)1≤n≤m recursively by

(∀n ∈ {1, . . . ,m− 1}) θ̂n =
√
â1,n +

n∑
i=2

θ̂i−1
√
ai,n , (54)

θ̂m =
√
â1,m +

m∑
i=2

θ̂i−1
√
ai,m . (55)

Then network (49) is θ̂m/2m−1-Lipschitz.

The averagedness properties of network (49) in cases i) and ii) are consequences of these
results.

16

Proposition 3.13

Let m ∈ N \ {0, 1}. Let â1,m be defined in Lemma 3.11 and θm be defined in Proposition
3.12. Let α ∈ [1/2, 1]. Define

b̂α =

{
supp(β̃1,m,p − 2m(1− α))2 in case i)
supp(β1,m,p + β̃1,m,p − 2m(1− α))2 in case ii).

(56)

If √
b̂α −

√
â1,m ≤ 2mα− 2θ̂m , (57)

then network (49) is α-averaged.

Proof. Let us calculate the operator norms of Û = Um◦Um−1 · · ·◦U2◦Û1. and Û−2m(1−α)1l.
Applying Lemma 3.11 when n = m yields

‖Û‖2 = â1,m .

By following the same reasoning as in the proof of Proposition 3.5, we get

‖Û − 2m(1− α)1l‖2 = b̂α. (58)

By applying now Proposition 3.2ii), we deduce that, when Condition (57) holds, network (49)
is α-averaged. �

4 Numerical Examples

In this section, we present numerical tests carried out in the case of the class of Abel integral
operators. We present in more details the architecture chosen to build the neural network. Sev-
eral numerical examples are provided to illustrate the accuracy of the proposed method. The
stability of the neural network is evaluated by computing its Lipschitz constant by relying upon
the results of Section 3.

4.1 Problem formulation

To implement the neural network defined by (6), we focus on the Abel integral operator

T : L2(0, 1) → L2(0, 1)

x → y(t) =
1

Γ(a)

∫ t

0
(t− s)(a−1)x(s) ds ,

(59)

where a > 0 and Γ is the classical Gamma function, Γ(a) =
∫ +∞
0 ta−1e−t dt. The Abel

operator T is injective, linear, and compact. The inverse problem linked to the Abel transform
has been widely studied from a theoretical viewpoint, as in [41]. The range of T is a subset
of H−a(0, 1), the dual space of Ha(0, 1), and the problem is ill-posed of order a in the sense
of [16].

17

Recovering x from a noisy measurement yδ = Tx + vδ is an inverse problem linked to a
large variety of experimental contexts in physics. Indeed, the operator T allows to define deriva-
tives of fractional order for a < 1 and integrals of arbitrary order for a > 1. The most common
case is the semi-derivative, when a = 1/2. Typically, the inverse problem consists in searching
a distribution of a two-dimensional or three dimensional object from measurements of the pro-
jection of this quantity onto an axis, in which case the radial distribution is linked to the values
of these projections via the Abel transform (see plasmas and flames [14], tomography [42], or
astrophysics [43]). In a different context, fractional calculus appears to be very convenient to
describe properties of polymers [44] or surface-volume reaction problems [45]. Subsequently, a
large number of physical applications have been documented in [41].

According to the theory in [46], the derivative operator is given as a power of the Laplacian
denoted by B, defined on D(B):{

B = −∆
D(B) =

{
x ∈ H2(0, 1) | x(1) = 0 , x′(0) = 0

}
.

(60)

Then, the continuous derivative operator D in (5) is chosen as D = Br/2, with r > 0 char-
acterizing the order of derivation. This choice ensures that the continuous operators T ∗T and
D∗D commute, since for x ∈ L2(0, 1), we have BT ∗Tx = x and for x ∈ D(B), we have
T ∗TBx = x.

4.2 Discretization

We first describe the discretization choices to pass from our continuous framework to a numer-
ical setting. Network (6) is made up of continuous operators. To carry out our experiments, we
propose the following discretization. We suppose that the measured signal y = Tx is acquired
on a regular mesh of N points, (ti)0≤i≤N−1 in the interval [0, 1], with t0 = 0 and tN = 1.
The measured signal y = (yi)0≤i≤N−1 = (y(ti))0≤i≤N−1 belongs to the space endowed with
the finite element basis (ei)0≤i≤N−1 associated to (ti)0≤i≤N−1. However, instead of working
only in the finite element basis, we also consider projection of the signal onto the span of the
first K eigenvectors of the self-adjoint nonnegative operator T ∗T . This choice is justified for
two reasons. First, in such basis, the discretized forms of operators T ∗T and D∗D respectively
defined by (59) and (60) are diagonal and therefore commute. This is a prerequisite to apply
Propositions 3.12 and 3.13. Second, the eigenvectors of T ∗T denoted by (uk)k∈N are trigono-
metric polynomials and the retained discretization method is a spectral one, as defined in [47],
or [48]. This discretization method can fully account for the regularity of the initial condition
on x, under extra mild assumptions.

We denote by (uk, βT,k)k∈N the eigensystem of T ∗T . Note that since T is a compact oper-
ator, the eigenvectors (uk)k∈N is a set of orthonormal eigenvectors, and (βT,p)n∈N are strictly
positive eigenvalues. The signal y is then discretized in the basis formed by the K first eigen-
vectors (uk)0≤k≤K−1. Explicit values of (uk, βT,k) are given in [49]. As already stated, the
operators T ∗T and D∗D reduce to diagonal matrices, with the following eigenvalues on their

18

diagonal:

(∀k ∈ {0, . . . ,K−1}) βT,k =

(
4

π2(1 + 2k)2

)a
, βD,k =

(
π2(1 + 2k)2

4

)r
= β

−r/a
T,k .

(61)

Hereafter, we consider that r = 1, and D = B1/2, with B defined by (60). We compute the
change basis matrix denoted by P = (Pi,j)0≤i,j≤N−1 with, for every i ∈ {0, . . . , N − 1} and
j ∈ {0, . . . , N − 1},

Pi,j =
2
√

2

γj
cos
(

2i+ 1

2N
γj

)
sin
(

1

2N
γj

)
, γj =

√
βT,i =

(
2

π(1 + 2n)

)a
. (62)

The operator T does not intervene in the neural network (6), as only T ∗T and D∗D do. How-
ever, to generate synthetic data and the associated bias b0, we need also a discretization for the
operator T . Therefore, T is approximated by Telt as a computation of an integral using the
trapezoïdal rule, with stepsize h = 1/(N − 1), and, for a 6= 1, for 0 ≤ i < N , 0 ≤ j < N ,

(Telt)i,j =



1

Γ(a)

ha

2a
((i− j + 1)a − (i− j − 1)a) if j < i ,

1

Γ(a)

ha

2a
(ia − (i− 1)a) if j = 0, i 6= 0 ,

1

Γ(a)

ha

2a
j = i, if i 6= 0 ,

0 if i = j = 0, or j > i.

(63)

Then, the operators T and T ∗ in the eigen basis are respectively approximated by Teig = PTelt
and (T ∗)eig = PT>elt. Thus, on the one hand the synthetic data are calculated and stored in
the basis of the finite elements, and, on the other hand, the algorithm operates in the basis of
eigenvectors, except for the proximity operator, for which a change of basis is performed before
and after.

To carry out the numerical experiments, we set N = 2 × 103 and K = 50. Therefore, the
regular signals x are approximated by their projection onto the space generated by the first K
eigenvectors of T ∗T .

4.3 Neural network architectures and characteristics

Structure The architecture that we propose here reflects the proposed Model (6), that unfolds
the forward-backward algorithm for minimizing functional J defined by (5) over a finite number
of iterations m. The main difference with the classical forward-backward algorithm lies in the
fact that only a finite number of iterations m is performed instead of pursuing the iterations until
convergence. Then, m corresponds to the number of layers of the neural network. Similarly

19

to the work proposed in [34], each layer of the neural network consists of a block made up of
hidden layers which calculate the hyper-parameters and an iteration of the forward-backward
algorithm. Here, the bias b0 is taken as the discretization of T ∗yδ, namely PT>elty

δ. The hyper-
parameters are defined independently across the network in order to provide more flexibility.
The overall structure of the network is shown in Figure 1. The structure of its hidden layers is
detailed in Figure 2.

b0

x0
Block 1

x1

Block 2

x2 xm−1

Block m
xm

Figure 1: Global architecture of neural network (6)

The activation function, namely operator Rn in Figure 2, corresponds the proximal operator
associated with g appearing in (5). We remind that, for an indicator function of a nonempty
closed convex set, the proximity operator is a projection onto this set. However, such activation
functions, especially in the case where one wishes to guarantee the positivity of the solution, may
show bad properties during gradient back-propagation and training. These include vanishing
gradient problems as shown in [50], [51] for the Rectified Linear Unit (ReLU) function. Then,
we choose to consider instead a logarithmic barrier g to enable prior knowledge in the algorithm,
as proposed in [34]. The activation is no more constant and depends on the gradient step λn and
the barrier parameter µn > 0 as

Rn = proxλnµng .

Constraint and proximity operator More precisely, we experiment two possible choices for
the function g in expression (5). As mentioned above, the prior knowledge on the constraint set
C is thus embedded in the network through the logarithmic barrier function g. In both cases,

C = {x ∈ L2(0, 1) | ci(x) ≥ 0, 1 ≤ i ≤ p} ,

int C = {x ∈ L2(0, 1) | ci(x) > 0, 1 ≤ i ≤ p} ,

(∀x ∈ L2(0, 1)) g(x) =

{
−
∑p

i=1 ln (ci(x)) if x ∈ int C
+∞ otherwise ,

(64)

where (ci)1≤i≤p are suitable functions allowing us to describe the constraint set. First, we con-
sider that the signal x has a minimum value xmin and a maximum value xmax. Then C can be
rewritten as

C =
{
x ∈ L2(0, 1) | x ≥ xmin, −x ≥ −xmax

}
. (65)

20

xn

xb

Lnλ

Lnµ

Lnα

L(xn, b0) =
Rn(Wnxn + Vnb0) xn+1

Figure 2: Architecture of one iteration - Block n.

This kind of constraint can be useful for example when the signal the experimenter wishes to
recover corresponds to a positive and bounded physical quantity. Secondly, we consider an affine
constraint such as, for j > 0,

C =

{
x ∈ L2 | 0 ≤

∫ 1

0
tjx(t) dt ≤ 1

}
. (66)

This constraint reflects the fact that a physical quantity linked to the signal is bounded. For
j ∈ {1, 2, 3}, the moment of order j involved in (66) represents the total mass of elements in a
1D, 2D, or 3D system, respectively.

The computation of the proximity operator associated to logarithmic barrier functions [2],
after discretization, can be found in [34]. In our case, the barrier parameter in each layer n,
denoted by µn is estimated with a convolutional neural network, which takes as input the output
xn of the (n − 1)-th layer. The detailed architecture of Lnµ is depicted in Figure 3. Since
the barrier parameter is positive, we enforce this constraint by an approximation of the ReLU
activation function, namely Softplus [52], with β > 0,

Softplus(x, β) =
1

β
ln
(

1 + eβx
)
. (67)

Other parameters We introduce between each layer a hidden layer responsible for computing
the gradient step size λn, and the regularization parameter τn, respectively.

The gradient descent step (λn)1≤n≤m only depends on the structure of the network. This
parameter is then trained without any prior knowledge. Since its value is positive, we compute
it as:

λn = Softplus(cn), (68)

where cn is a scalar parameter of the network learned during training.

21

xn

size (1 × n)

AvgPool
+Softplus

(1 × 64)

AvgPool
+Softplus

(1 × 16)

Softplus

Fully
connected

Figure 3: Architecture of one hidden layer Lnµ computing the barrier parameter.

The regularization parameters (τn)1≤n≤m in neural network (6) should only depend on the
bias b0. Indeed, for a regularization of the generalized Tikhonov type, the regularization param-
eter theoretically depends on the regularity of the a priori and on the noise level. The theoretical
optimal value of this parameter can be explicitly computed, as shown in [53] or [46],

τ = c

(
δ

ρ

) 2(a+r)
a+q

, (69)

where ρ = ‖x‖Lq(0,1), and x ∈ Hq(0, 1) represents the ideal signal, δ is the noise level in L2

norm, a is the degree of ill-posedness of the inverse problem, r the level of regularization (or
the order of the differential term in the regularization), and c is a constant. Since we do not have
access to the noise level, we estimate it thanks to the Fourier transform of the signal. We assume
here that the noise corresponds to the high frequency components of the signal. This assumption
is only used to obtain an approximate value of the error. Subsequently, the algorithm makes
it possible to search the optimal value without any assumption on the Fourier spectrum of the
error. This is achieved by learning a constant dn such that

τn = Softplus(dn)

(
‖b0 − FFTfmax(b0)‖2
‖FFTfmax(b0)‖q

) 2(a+r)
a+q

, (70)

where the operator FFTfmax cuts the frequencies of the Fourier transform greater than fmax, r
is the order of derivation in the regularization term, and q is the order of regularity of the a
priori, i.e. x ∈ Hq(0, 1). This form of regularization is theorically the best choice as long as
r ≥ q/2−a, as shown in [53]. Moreover, this insures that the dependence of the τn parameter of
the network on the bias b0 is of second order and can be neglected while computing the Lipschitz
constant.

22

4.4 Dataset and experimental settings

Synthetic Data To ensure the universality of the approach, we train the network on a wide
variety of functions, without too strong a priori on their form or their properties. For example,
we do not want to restrict our training to Gaussian-like functions which would be likely to be
oversimplistic models. We are therefore looking for a sufficiently rich dictionary of functions
sampled over N points. To create a diverse dataset of positively distributed functions, we found
convenient to use histograms of color images from a standard image dataset. However, in order
to properly reflect the a priori of regularity, the following processing is then carried out to these
histograms. The functions are first smoothed using a Savitzky-Golay filter, with filter length 21
and polynomial order 5. Then, to ensure that such signals are in the range of T ∗T , the outputs
of the filter are padded at t = 0 by a constant value, and at t = 1 by zero. Finally, the signals
are projected into the eigenvector basis described in Section 4.2. This process ensures that the
obtained signal x in the training set belong to C∞, as the eigenvectors do. In particular, x
belongs to the space D(B) defined in (60), in which case the regularization is optimal in the
sense of [16] (see [49]).

In order to synthesize noisy signals yδ, the discrete transformation Telt defined by (63) is
applied to the set of signal x created as aforementioned. Then, a zero-mean white Gaussian
noise with a preset standard deviation δ is added.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

t

x
(t

)

1
2
3

Figure 4: Example of three signals of synthetic data for the constraint (65). These signals are
bimodal or almost bimodal, with variable peak widths. This dataset presents a great diversity of
functions and demonstrates the agnostic nature of the model in order to represent a large panel
of physical signals. The imposed constraints are the regularity of the signal (here C∞(0, 1)) and
the boundary conditions at t = 0 and t = 1.

Figure 4 represents an example of three signals simulated by our method. In Figures 5 and 6,
we display the image of those signals by the operator T defined by (1) with and without the
presence of additive noise, respectively for a = 1 and a = 1/2. For a = 1, we recover the 1D
integral operator. All our datasets and codes implemented in Pytorch are available online 1.

1https://github.com/ceciledellavalle/FBResNet

23

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

t

T
1x

(t
)

1
2
3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

t

y
δ
(t

)

1
2
3

Figure 5: For the three examples displayed in Figure 4, we plot on the left their image by T
defined by (1) for a = 1, and on the right the same signal after addition of noise with level
δ = ‖yδ − T1x‖L2 = 0.05‖T1x‖L2 .

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

t

T
1/

2
x

(t
)

1
2
3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

t

y
δ
(t

)

1
2
3

Figure 6: For the three examples displayed in Figure 4, we plot on the left their image by T
defined by (1) for a = 1/2, and on the right the same signal after addition of noise with level
δ = ‖yδ − T1x‖L2 = 0.05‖T1x‖L2 .

24

Training The network is classically trained in an end-to-end fashion. The gradient of the
proximity operator is explicitly coded and inserted into the back-propagation according to the
chain rule. We trained the network over 30 epochs with a learning rate of 10−3, by using a
training set of 400 signals. We use the Adam optimizer [54] to minimize the training loss, which
is taken as the mean square error. We compute the validation loss at every epoch by using a set of
200 signals. The batchsize is equal to one. The training takes approximately three to four hours
on an NVIDIA Titan Xp GPU, while the computational time required for testing one signal is
only about 50ms on a 2.9 GHz 6-Core Intel Core i9.

Using Proposition 3.12, the Lipschitz constant is estimated at each epoch of training. One
observes various behaviors, according to the initial values of the hyper-parameters. Either the
Lipschitz constant increases until stabilizing, or it decreases.

4.5 Results and discussion

Results We display in Figures 7 and 8 the output of the neural network for respectively Gaus-
sian signals and signals displayed in Figure 4, different values of a and two possible choices
for set C defined either by (65) or by (66). We notice that the method performs well, and that
under identical conditions, the obtained signal tends to be of lower quality when the order of the
inverse problem a increases. The reason may be numerical. If we compare this performance to
a classical gradient descent algorithm, when a increases the eigenvalues are greater, the gradient
norm increases and, in order to compensate, the gradient stepsize decreases. Since the number
of iteration is fixed, this could mean that the solution is away from the optimal solution of (3).
The reason can also be theoretical: the convergence rate of the error with respect to the noise
standard deviation decreases as a increases according to [53].

(1) (2) (3) (4)
a = 1 a = 1/2 a = 1 a = 1/2

0 ≤ xi ≤ 1 0 ≤ xi ≤ 1 0 ≤ h2
∑

i ixi ≤ 1 0 ≤ h2
∑

i ixi ≤ 1

(53) (i)) 4.92× 10−2 4.91× 10−2 4.83× 10−2 4.83× 10−2

(53) (ii)) 2.82× 10−3 7.00× 10−3 8.72× 10−3 3.37× 10−3

Table 1: Lipschitz constant of trained neural network (6) for various choices of order a and
constraints, computed for an input x0 = b0 = T ∗(Tx + vδ) = T ∗yδ. We recall that h is the
mesh stepsize equal to 1/N .

Figure 9 shows the values of the hyper-parameters of the network after training for the con-
straint (65) and the integral operator, namely a = 1. We notice that the gradient step is smaller
than 2/(τβD,K) = 2βT,K/τ = 8×10−4, which is theoretically the largest gradient step leading
to a convergent forward-backward algorithm.

Lipschitz constant estimation Table 1 shows the Lipschitz constant obtained for the trained
network under various conditions. A first remark is that, for all the studied problems, the Lip-
schitz constant does not vary much neither according to the choice of a nor of the constraint.

25

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

t

x
(t

)

a = 1, 0 ≤ xi ≤ 1

true

pred

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

t

x
(t

)

a = 1/2, 0 ≤ xi ≤ 1

true

pred

0 0.2 0.4 0.6 0.8 1

0

1

2

3

4

5

6

t

x
(t

)

a = 1, 0 ≤ ∑
ixi ≤ 1

true

pred

0 0.2 0.4 0.6 0.8 1

0

1

2

3

4

5

6

t

x
(t

)

a = 1/2, 0 ≤ ∑
ixi ≤ 1

true

pred

Figure 7: Output of the neural network for a Gaussian signal for various values of a and various
constraints. The input of the neural network convolved signal Tx with an additive white noise
of level δ = 0.05‖Tx‖. The regularization prior is based on the derivative, namely r = 1 in (5),
as a power of B defined in (60).

26

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

t

x
(t

)

0 ≤ xi ≤ 1

true

a = 0.5
a = 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

t

x
(t

)

0 ≤ xi ≤ 1

true

a = 0.5
a = 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

t

x
(t

)

0 ≤ xi ≤ 1

true

a = 0.5
a = 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

2

4

6

8

t

x
(t

)

0 ≤ ∑
ixi ≤ 1

true

a = 0.5
a = 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.5

1

1.5

2

2.5

3

3.5

t

x
(t

)

0 ≤ ∑
ixi ≤ 1

true

a = 0.5
a = 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.5

1

1.5

2

2.5

t

x
(t

)

0 ≤ ∑
ixi ≤ 1

true

a = 0.5
a = 1

Figure 8: Example of outputs for three functions in the dataset. The measured signal is presented
in Figures 5 and 6. The constraint 0 ≤

∑
i xi ≤ 1 seems to give better result. We can also

compare a = 1 and a = 1/2: when the order is smaller, the outputs look closer to the true
signal.

27

0 2 4 6 8 10 12 14 16 18 20

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

layer

barrier µ

0 2 4 6 8 10 12 14 16 18 20

6

6.5

7

7.5

8

·10−2

layer

regularization τ

0 2 4 6 8 10 12 14 16 18 20
1

1.5

2

2.5

3

·10−4

layer

gradient step λ

Figure 9: Hyper-parameters obtained after training for case (1) in Table 1.

A second remark is that the obtained Lipschitz constants are lower than 1. The algorithm tends
to constrict the solutions. For δ = 0, the norm ‖b0‖ is of the same order as ‖T ∗Tx‖. For
noiseless data, the neural network (6) would act as the inverse operator (T ∗T)−1. Numerically,
1/‖T ∗T‖ = 1/βT,0 = 2.47. This corresponds to the largest eigenvalue of T ∗T . However, Lip-
schitz constants are smaller. A possible explanation would be the following, regular function x
belong to a smaller vector space than noisy inputs b0. When the regular signals are projected in
the basis of eigenvectors of the compact operator T ∗T , the coefficients decay extremely rapidly.
Numerically, for a given function of the dataset, the coefficient corresponding to the tenth eigen-
values is in average lower than 10−3 times the first coefficient. However, the noisy input has
non-zero coefficients over the entire spectrum. We can therefore expect the neural network to
behave roughly as the following filter of high frequency on the spectrum:

K−1∑
k=0

b0,k
βT,k + τβD,k

,

where b0,k = 〈T ∗Tx, uk〉 = βT,kxk, and τ is a regularization parameter. Then, the Lipschitz
constant is bounded by

1

βT,0
max 0≤k≤K−1

βT,k
βT,k + τβD,k

.

As an example, for a Gaussian signal with mean value 0.5 and standard deviation σ = 0.1, and
for τ of the order of 0.05 (as in Figure 9), we obtain L ∼

∑
k xkπ

2/4(1+τ (2k+1)4) ∼ 0.035.
This is the reason why we can expect the neural network Lipschitz constants to be roughly of
the same order, namely around 10−2.

Comparison For any value of a, there are many techniques to reverse T defined by (1). For
a = 1/2, the Abel transform has been largely studied and three types of techniques are com-
monly used.

First we can mention interpolation techniques. Those consist in projecting the Abel operator
into a basis whose properties reflect the regularity of the solution. The interpolation can be
performed using Chebyshev polynomial as in [55] or [56] or a Gaussian function set as in [42].
They are fast, easy to implement and give good results for noiseless data. However, as exact-
inverse methods, they have an extreme sensitivity to noise, and a preprocessing may be needed.

28

Nevertheless, they have shown good properties for sparse data [57], or for not evenly distributed
measurements (see [55]).

Secondly, Fourier transform techniques, which consist in projecting the signal in the Fourier
basis are presented in [58], [59] or similar techniques for any a ≤ 1 in [60]. Those frequentist
thresholding methods consist in reducing the weight of estimates on coefficients corresponding
to smaller eigenvalues, for which the noise will overpower the signal. Those techniques show
computational efficiency and good noise rejection capabilities, but suffer from some drawbacks
as they are accurate only for certain types of input data that have a sparse representation in the
Fourier domain as shown in [61] or more generally in [62].

Thirdly, we can also mention Kalman techniques for optimum least-squares estimation ap-
plied to the inversion from noisy data. Such techniques have been successfully applied to the
Abel inverse transform in [63, 64].

Noise δ
Kalman Neural Network Fourier

a = 1 a = 1/2 a = 1 a = 1/2 a = 1 a = 1/2

0.1 0.436 0.383 0.280 0.126 0.237 0.148
0.05 0.293 0.260 0.177 0.089 0.186 0.142
0.01 0.126 0.125 0.095 0.075 0.177 0.140

Table 2: Averaged normalized error of the output ‖xδ − x‖/‖x‖ obtained for different noise
standard deviation values δ and different types of signals. The error for the Kalman Filter are
of the order of

√
δ according to theory, but in practice finding the parameters allowing to reach

such a precision is difficult. We compare the result with the neural network with the constraint
defined by (65).

Two methods have been implemented, Fourier and Kalman, and tested over the same dataset
of 50 signals x, different from the training set of the neural network. The averaged error on
the outputs over the dataset for each methods are displayed in Table 2. The neural network (6)
compares favorably with other techniques for a relative solution error in L2. The Fourier method
is more accurate as the noise level increases, since it works by filtering high frequencies. The
Kalman method returns less regular solutions, and calibration of the regularization parameter
raises an additional experimental difficulty.

5 Conclusion

In the continuity of the work of [34], the present paper proposes to unroll an algorithm obtained
from a variational formulation of 1D integral inverse problems. This approach is versatile, since
it allows to invert a broad family of integral or convolution operators, and it delivers a solution
taking into account physical constraints of the problem. Indeed, with some existing methods,
it may be difficult to enforce constraints, such as complying with some bounds or belonging to
a given subspace. In particular, in many practical scenarios, solutions that do not fulfill basic
constraints such as positivity may appear as irrelevant in terms of physical interpretation. The
numerical solutions obtained for the case of the Abel operator indicate that the approach is easy
to implement and computationally very attractive, since the training takes only a couple of hours

29

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

t

x
(t

)

Kalman

true

pred

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

t
x

(t
)

Neural Network

true

pred

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

t

x
(t

)

Fourier Filter

true

pred

Figure 10: Output of the neural network for a Gaussian signal when a = 1, the white noise
level is δ = 0.05‖Tx‖, using three differents techniques : Kalman, neural network with con-
straint (65) and Fourier filtering.

and testing or prediction takes a few seconds on a regular CPU.
We additionally performed a theoretical analysis of robustness with respect to the observed data,
which ensures the reliability of the proposed inverse method. In future work, more sophisticated
neural network structures could be considered or additional parameters (such as the leakage
factors we introduced in our analysis) could be learnt. Also, training sets which would better
suited to specific applications could be employed within our framework. We think also that the
α-averaged properties that we established pave the way for building recurrent networks in the
spirit of [37].

References

[1] Mario Bertero, Patrizia Boccacci, Gabriele Desiderà, and Giuseppe Vicidomini. Image
deblurring with Poisson data: from cells to galaxies. Inverse Problems, 25(12):123006,
November 2009.

[2] Emilie Chouzenoux, Saïd Moussaoui, and Jérôme Idier. Majorize–minimize line-
search for inversion methods involving barrier function optimization. Inverse Problems,
28(6):065011, May 2012.

[3] Zihui Wu, Yu Sun, Alex Matlock, Jiaming Liu, Lei Tian, and Ulugbek S. Kamilov. SIMBA:
Scalable inversion in optical tomography using deep denoising priors. IEEE Journal of
Selected Topics in Signal Processing, 14(6):1163–1175, October 2020.

[4] Louis-François Arsenault, Richard Neuberg, Lauren A. Hannah, and Andrew J. Millis.
Projected regression method for solving fredholm integral equations arising in the ana-
lytic continuation problem of quantum physics. Inverse Problems, 33(11):115007, October
2017.

[5] Afef Cherni, Emilie Chouzenoux, and Marc-André Delsuc. PALMA, an improved algo-
rithm for DOSY signal processing. The Analyst, 142(5):772–779, 2017.

30

[6] Eleonora Di Nezza, Giampiero Palatucci, and Enrico Valdinoci. Hitchhikers guide to the
fractional Sobolev spaces. Bulletin des Sciences Mathématiques, 136(5):521–573, 2012.

[7] Michael Nussbaum. Asymptotic equivalence of density estimation and gaussian white
noise. The Annals of Statistics, pages 2399–2430, 1996.

[8] Yong Yu, Xiaosheng Si, Changhua Hu, and Jianxun Zhang. A review of recurrent neural
networks: LSTM cells and network architectures. Neural computation, 31(7):1235–1270,
2019.

[9] Heinz H. Bauschke and Patrick L. Combettes. Convex Analysis and Monotone Operator
Theory in Hilbert Spaces, volume 408. Springer, New York, 2011.

[10] Patrick L. Combettes and Valérie R. Wajs. Signal recovery by proximal forward-backward
splitting. Multiscale Modeling & Simulation, 4(4):1168–1200, 2005.

[11] Patrick L. Combettes and Jean-Christophe Pesquet. Proximal splitting methods in signal
processing. In Fixed-point algorithms for inverse problems in science and engineering,
pages 185–212. Springer, 2011.

[12] Markus Hegland. Variable Hilbert scales and their interpolation inequalities with applica-
tions to Tikhonov regularization. Applicable Analysis, 59(1-4):207–223, 1995.

[13] Bernd Hofmann and Masahiro Yamamoto. Convergence rates for Tikhonov regularization
based on range inclusions. Inverse Problems, 21(3):805, 2005.

[14] Emil O. Åkesson and Kyle J. Daun. Parameter selection methods for axisymmetric flame
tomography through Tikhonov regularization. Applied optics, 47(3):407–416, 2008.

[15] Kyle J. Daun, Kevin A. Thomson, Fengshan Liu, and Greg J. Smallwood. Deconvo-
lution of axisymmetric flame properties using Tikhonov regularization. Applied optics,
45(19):4638–4646, 2006.

[16] Heinz W. Engl. Regularization of inverse problems. Kluwer Academic Publishers, Dor-
drecht Boston, 1996.

[17] Per Christian Hansen. The l-curve and its use in the numerical treatment of inverse prob-
lems. 1999.

[18] Stephan Antholzer, Markus Haltmeier, and Johannes Schwab. Deep learning for pho-
toacoustic tomography from sparse data. Inverse problems in science and engineering,
27(7):987–1005, 2019.

[19] Andreas Kofler, Markus Haltmeier, Christoph Kolbitsch, Marc Kachelrieß, and Marc
Dewey. A u-nets cascade for sparse view computed tomography. In International Workshop
on Machine Learning for Medical Image Reconstruction, pages 91–99. Springer, 2018.

31

[20] Kerstin Hammernik, Teresa Klatzer, Erich Kobler, Michael P. Recht, Daniel K. Sodickson,
Thomas Pock, and Florian Knoll. Learning a variational network for reconstruction of
accelerated mri data. Magnetic resonance in medicine, 79(6):3055–3071, 2018.

[21] Jonas Adler and Ozan Öktem. Solving ill-posed inverse problems using iterative deep
neural networks. Inverse Problems, 33(12):124007, 2017.

[22] Hemant K. Aggarwal, Merry P. Mani, and Mathews Jacob. Modl: Model-based deep learn-
ing architecture for inverse problems. IEEE transactions on medical imaging, 38(2):394–
405, 2018.

[23] Tim Meinhardt, Michael Moller, Caner Hazirbas, and Daniel Cremers. Learning proxi-
mal operators: Using denoising networks for regularizing inverse imaging problems. In
Proceedings of the IEEE International Conference on Computer Vision, pages 1781–1790,
2017.

[24] Jean-Christophe Pesquet, Audrey Repetti, Matthieu Terris, and Yves Wiaux. Learning
maximally monotone operators for image recovery. arXiv preprint arXiv:2012.13247,
2020.

[25] Marzieh Hasannasab, Johannes Hertrich, Sebastian Neumayer, Gerlind Plonka, Simon Set-
zer, and Gabriele Steidl. Parseval proximal neural networks. Journal of Fourier Analysis
and Applications, 26(4), Jul 2020.

[26] Mathilde Galinier, Mario Prato, Emilie Chouzenoux, and Jean-Christophe Pesquet. A
hybrid interior point - deep learning approach for Poisson image deblurring. In 2020 IEEE
30th International Workshop on Machine Learning for Signal Processing (MLSP), pages
1–6. IEEE, September 2020.

[27] Housen Li, Johannes Schwab, Stephan Antholzer, and Markus Haltmeier. NETT: Solving
inverse problems with deep neural networks. Inverse Problems, 36(6):065005, 2020.

[28] Tatiana A. Bubba, Mathilde Galinier, Matti Lassas, Marco Prato, Luca Ratti, and Samuli
Siltanen. Deep neural networks for inverse problems with pseudodifferential operators: an
application to limited-angle tomography. 2021.

[29] Davis Gilton, Greg Ongie, and Rebecca Willett. Neumann networks for linear inverse
problems in imaging. IEEE Transactions on Computational Imaging, 6:328–343, 2019.

[30] Ernest Ryu, Jialin Liu, Sicheng Wang, Xiaohan Chen, Zhangyang Wang, and Wotao Yin.
Plug-and-play methods provably converge with properly trained denoisers. In International
Conference on Machine Learning, pages 5546–5557. PMLR, 2019.

[31] Yu Sun, Brendt Wohlberg, and Ulugbek S. Kamilov. An online plug-and-play algo-
rithm for regularized image reconstruction. IEEE Transactions on Computational Imaging,
5(3):395–408, 2019.

32

[32] Mark Borgerding and Philip Schniter. Onsager-corrected deep learning for sparse linear
inverse problems. In 2016 IEEE Global Conference on Signal and Information Processing
(GlobalSIP), pages 227–231. IEEE, 2016.

[33] Kyong Hwan Jin, Michael T. McCann, Emmanuel Froustey, and Michael Unser. Deep con-
volutional neural network for inverse problems in imaging. IEEE Transactions on Image
Processing, 26(9):4509–4522, 2017.

[34] Carla Bertocchi, Emilie Chouzenoux, Marie-Caroline Corbineau, Jean-Christophe Pes-
quet, and Marco Prato. Deep unfolding of a proximal interior point method for image
restoration. Inverse Problems, 36(3):034005, 2020.

[35] Suresh Kondati Natarajan and Miguel A. Caro. Particle swarm based hyper-parameter
optimization for machine learned interatomic potentials. arXiv preprint arXiv:2101.00049,
2020.

[36] Martin Genzel, Jan Macdonald, and Maximilian März. Solving inverse problems with deep
neural networks–robustness included? arXiv preprint arXiv:2011.04268, 2020.

[37] Patrick L. Combettes and Jean-Christophe Pesquet. Deep neural network structures solving
variational inequalities. Set-Valued and Variational Analysis, pages 1–28, 2020.

[38] Patrick L. Combettes and Jean-Christophe Pesquet. Lipschitz certificates for layered net-
work structures driven by averaged activation operators. SIAM Journal on Mathematics of
Data Science, 2(2):529–557, 2020.

[39] Mathieu Serrurier, Franck Mamalet, Alberto González-Sanz, Thibaut Boissin, Jean-Michel
Loubes, and Eustasio del Barrio. Achieving robustness in classification using optimal
transport with hinge regularization. arXiv preprint arXiv:2006.06520, 2020.

[40] Moustapha Cisse, Piotr Bojanowski, Edouard Grave, Yann Dauphin, and Nicolas Usunier.
Parseval networks: Improving robustness to adversarial examples. In International
Conference on Machine Learning, pages 854–863. PMLR, 2017.

[41] Rudolf Gorenflo and Francesco Mainardi. Fractional calculus. In Fractals and fractional
calculus in continuum mechanics, pages 223–276. Springer, 1997.

[42] Vladimir Dribinski, Alexei Ossadtchi, Vladimir A. Mandelshtam, and Hanna Reisler. Re-
construction of Abel-transformable images: The Gaussian basis-set expansion Abel trans-
form method. Review of Scientific Instruments, 73(7):2634–2642, July 2002.

[43] Sunil Kumar, Amit Kumar, Devendra Kumar, Jagdev Singh, and Arvind Singh. Analytical
solution of Abel integral equation arising in astrophysics via laplace transform. Journal of
the Egyptian Mathematical Society, 23(1):102–107, 2015.

[44] Igor Podlubny. Fractional differential equations: an introduction to fractional derivatives,
fractional differential equations, to methods of their solution and some of their applications.
Elsevier, 1998.

33

[45] Ryan M. Evans, Udita N. Katugampola, and David A. Edwards. Applications of frac-
tional calculus in solving Abel-type integral equations: Surface–volume reaction problem.
Computers & mathematics with applications, 73(6):1346–1362, 2017.

[46] Rudolf Gorenflo and Sergio Vessella. Abel integral equations, volume 1461. Springer,
1991.

[47] David Gottlieb and Steven A. Orszag. Numerical analysis of spectral methods: theory and
applications. SIAM, 1977.

[48] John P. Boyd. Chebyshev and Fourier spectral methods. Courier Corporation, 2001.

[49] Rudolf Gorenflo and Masahiro Yamamoto. Operator theoretic treatment of linear Abel inte-
gral equations of first kind. Japan journal of industrial and applied mathematics, 16(1):137–
161, 1999.

[50] Diganta Misra. Mish: A self regularized non-monotonic activation function, 2020.

[51] Dabal Pedamonti. Comparison of non-linear activation functions for deep neural networks
on MNIST classification task. arXiv preprint arXiv:1804.02763, 2018.

[52] Charles Dugas, Yoshua Bengio, François Bélisle, Claude Nadeau, and René Garcia. Incor-
porating second-order functional knowledge for better option pricing. In T. Leen, T. Di-
etterich, and V. Tresp, editors, Advances in Neural Information Processing Systems, vol-
ume 13, pages 472–478. MIT Press, 2001.

[53] Frank Natterer. Error bounds for Tikhonov regularization in Hilbert scales. Applicable
Analysis, 18(1-2):29–37, 1984.

[54] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[55] Robert Piessens and Pierre Verbaeten. Numerical solution of the Abel integral equation.
BIT Numerical Mathematics, 13(4):451–457, 1973.

[56] Rajesh K. Pandey, Suraj Suman, Koushlendra K. Singh, and Om P. Singh. An approxi-
mate method for Abel inversion using Chebyshev polynomials. Applied Mathematics and
Computation, 237:120–132, 2014.

[57] Shuiliang Ma, Gming Hon Gao, Guangjun Zhang, and Lin Wu. A versatile analytical
expression for the inverse Abel transform applied to experimental data with noise. Applied
Spectroscopy, 62(6):701–707, June 2008.

[58] Shuiliang Ma, Hongming Gao, and Lin Wu. Modified fourier-hankel method based on
analysis of errors in Abel inversion using fourier transform techniques. Applied optics,
47(9):1350–1357, 2008.

[59] Milan Kalal and Keith Nugent. Abel inversion using fast Fourier transforms. Applied
optics, 27(10):1956–1959, 1988.

34

[60] Maarten V. de Hoop and Joonas Ilmavirta. Abel transforms with low regularity with ap-
plications to x-ray tomography on spherically symmetric manifolds. Inverse Problems,
33(12):124003, November 2017.

[61] Pankaj S. Kolhe and Ajay K. Agrawal. Abel inversion of deflectometric data: comparison
of accuracy and noise propagation of existing techniques. Applied Optics, 48(20):3894–
3902, Jul 2009.

[62] David L. Donoho. Nonlinear solution of linear inverse problems by wavelet–vaguelette
decomposition. Applied and Computational Harmonic Analysis, 2(2):101–126, 1995.

[63] Eric W. Hansen and Phaih-Lan Law. Recursive methods for computing the Abel transform
and its inverse. JOSA A, 2(4):510–520, 1985.

[64] Fernando Nunes, Jorge Santos, and Emilia M. Manso. Recursive algorithm for fast eval-
uation of the abel inversion integral in broadband reflectometry. Review of Scientific
Instruments, 70(1):1047–1050, January 1999.

35

	Introduction
	Notation
	Stability and -averagedness
	Virtual neural network with leakage factor
	Stability results for the virtual network
	Link with the original neural network – direct approach
	Link with the original neural network – use of a semi-norm

	Numerical Examples
	Problem formulation
	Discretization
	Neural network architectures and characteristics
	Dataset and experimental settings
	Results and discussion

	Conclusion

