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Introduction

In the field af fine chemicals or pharmaceuticals, the main appa ratus for the implementation of chemical syntheses still remains the batch reactor. An alternative to using this type of reactor is to transpose the reactions in plug flow continuous reactors with intensification of the chemical synthesis [START_REF] Anxionnaz | Transposition of an exothermic reaction from a batch reactor to an intensified continuous one[END_REF]. The interest cornes from better contrai of heat exchange and the possibility of contacting the reactants in an optimal way to achieve better performance and greater selectivity. This transition of the chemical industry to process intensification [START_REF] Stankiewicz | Process intensification[END_REF] will lead to implement the reactions in a different way from that currently practiced favouring concentrated media, high temperature and the use of catalysts. Under these conditions, simple kinetic laws of Arrhenius type are no longer sufficient to properly model the evolution of the medium. This trend towards https://doi.org/10.1 016/j.ces2021.116522 process intensification will require the contribution of numerical simulation tools and thus the development of specific methodolo gies to rapidly establish kinetic models used for simulation, opti mization or contrai. Indeed, for safety, economic efficiency and environmental protection, understanding and predicting the beha viour of a chemical reaction are of great importance in industry.

In literature, modelling approaches by models of representation have been proposed. The basic assumption is that the reaction rate usually follows an Arrhenius type law, that is to say exponentially activated by temperature and influenced by the concentrations of the reactants according to orders to be determined. While this approach has yielded interesting results in the case of reactions carried out in diluted solvent medium [START_REF] Cabassud | A global approach for the optimization of batch chemical reactors: Application to the lactic acid synthesis by the alkaline degradation of fructose[END_REF], it is noticeable that when the mode of production is changed and moved to an intensified one with increased concentrations of reagents and introduction of a catalyst, such an approach is no longer sufficient to properly model the evolution of the medium [START_REF] Balland | Kinetic parameter estimation of solvent-free reactions: application to esterification of acetic anhydride by methanol[END_REF].

The rapid development of on line analytical techniques (FTIR, NIR, Raman Spectroscopy . . .) suggests the possibility to dispose of a big number of data allowing characterizing the evolution of the concentrations of the different species during the implementa tion of a chemical reaction. Indeed, traditionally, the reaction kinetics are determined from the measurements obtained by external analysis (e.g. by chromatography) carried out on samples taken at different reaction times. This methodology faces numer ous problems (sampling and sample storage, sample representa tiveness . . .). Therefore, in recent years in situ spectroscopic measurements have been developed that provide many benefits. Measurements by UV/VIS wavelengths are the most common tech niques used but other spectroscopic techniques such as near infra red (NIR), infrared (IR), Raman and multi wavelength ultraviolet/ visible (UV/VIS) have also been used for kinetic studies [START_REF] Bayada | ATR-IR spectroscopy for the investigation of solution reaction kinetics: hydrolysis of trimethyl phosphate[END_REF][START_REF] Bijlsma | Rapid estimation of rate constants using SW-NJR[END_REF][START_REF] Dyson | Modern tools for reaction monitoring: hard and soft modelling of non-ideal online acquired spectra[END_REF]Furusjo et al., 1998, 2000a, 2000b[START_REF] Furusjö | Estimation of kinetic parameters from non-isothermal batch experiments monitored by in situ vibrational spectroscopy[END_REF][START_REF] Molloy | Hard modelling of spectroscopic measurements[END_REF][START_REF] Mozharov | Improved method for kinetic studies in microreactors using flow manipulation and noninvasive Raman spectrometry[END_REF][START_REF] Puxty | Modeling of batch reactions with in situ spectroscopic measurements and calorimetry[END_REF][START_REF] Puxty | Multivariate kinetic hard-modelling of spectroscopic data: a comparison of the esterification of butanol by acetic anhydride on different scales and with different instruments[END_REF][START_REF] Rizkin | Artificial Neural Network control of thermoelectrically-cooled microfluidics using computer vision based on IR thermography[END_REF].

These methods have proven their efficiency for both qualitative and quantitative analysis in different fields. They are fast and mainly non destructive compared to the medium to analyse. The recent development of instrumentation, especially optical fibers, which can deport the measurement, has increased the interest in these methods.

There, it is the field of ''Chemometrics" in full development, which implements mathematical methods and statistical treat ment methods (modelling, classification, principal component analysis . . .) to select optimal experimental procedures and pro cessing of chemical analysis. Thus, after treatment, these on line analysis methods allow to obtain the evolution of concentrations of all chemical species present in the reaction medium with acqui sition times close together, mainly limited by the data processing time.

In this paper, an unconventional modelling is proposed by using a technique that does not require explicit knowledge of physical laws (as it will be extracted from the data) but requires data in number. Neural networks, used successfully in the modelling of reactors and chemical reactions [START_REF] Hosen | Prediction intervalbased neural network modelling of polystyrene polymerization reactor -a new perspective of data-based modelling[END_REF][START_REF] Molga | Neural network approach to support modelling of chemical reactors: problems, resolution, criteria of application[END_REF][START_REF] Mujtaba | Neural network based modelling and control in batch reactor[END_REF][START_REF] Sunphorka | Artificial neural network model for the prediction of kinetic parameters of biomass pyrolysis from its constituents[END_REF], offer the advantage of being a nonlinear multivariable tool, configurable by learning on experimental representative data. Moreover, the development of a hybrid model gives the possibility to include all or part of the available physical knowledge.

In order to generalize the developed methodology to a large number of chemical syntheses and without a priori knowledge of the reaction scheme and therefore the number of reactions to be implemented, it has been decided to work on the direct prediction of concentrations of all species, rather than on rates or extents of the reactions. Thus, the objective of the global model that will be developed is to predict time evolution of concentrations of all spe cies present in the reaction medium. For this, recurrent neural net works are implemented, whose delay is equivalent to a sampling period.

If only one network is considered for the determination of all the concentrations, it faces a problem of convergence. Therefore, the development of a much more complex model which associates as many networks as there are species has been preferred. Each neural network is elaborated to estimate a particular species as a function of operating parameters and concentrations of other species.

To validate the approach, the esterification reaction of methanol by acetic acid has been chosen as application. Then, it is shown that with such a model based on neural networks it is possible to cor rectly represent the kinetic evolution of the chemical species dur ing experiments conducted in batch mode whatever the operating conditions. Finally, the most interesting results are obtained after wards with the integration of the neural model in a hybrid model that permits to represent the operation of a semi batch chemical reactor which has not been considered during the learning phase of the different neural networks.

Characterization of the esterification reaction

Chemical reaction

To illustrate the approach proposed in this paper, the Fisher esterification reaction between a carboxylic acid and an alcohol to form an ester and water has been chosen. This reaction is rever sible and equilibrated. It is performed in homogeneous phase and catalysed by sulfuric acid and leads to the formation of methyl acetate (MA) and water (W) from acetic acid (AA) and methanol (M) according to the following equation: Experiments have been performed in a batch glass reactor of an effective capacity of 1.5 l (see Fig. 1 ). The reactor is equipped with a jacket that allows temperature contrai. During the experiments, methanol is fed into a mixture of dilute aoetic acid and sulfuric acid (catalyst). Water, a product of the reaction, is also present in the initial mixture.

Kin etic mode/ and parameters

Kinetic modelling of the esterification of aoetic acid in the pres ence of methanol has been the subject of numerous studies. A sim pie model based on an Arrhenius formulation from the works of [START_REF] Smith | Kinetics of catalyzed esterification of normal aliphatic acids in methyl alcohol[END_REF] and [START_REF] Agreda | High-purity methyl acetate via reactive distillation[END_REF] has been proposed. The expression of the reaction rate associated with this model is given by the following equation: r kO,Qa,texp( �i)cAAcM k0h'2catexp( ��)cMACw

(2) With: k0 e : Pre exponential factor of the esterification reaction (m 3 mol 1 s 1 mI.:.l) k0h: Pre expo nential factor of the hydrolysis reaction (m 3 mol 1 s 1 mI.:.l) Oc.,: Amount of catalyst (ml) Ea,: Activation energy of the esterification reaction (J mol 1 ) Ea h : Activation energy of the hydrolysis reaction U mol 1 ) T: Temperature (K) R: perfect gas constant (=8.314J K 1 mol) C M : Acetic Acid concentration (mol. m 3 ) C M : Methanol concentration (mol. m 3 ) CMA: Methyl Aoetate concentration (mol. m 3 ) Cw: Water concentration (mol. m 3 ) For the present work, values of kinetic parameters (k01, k02, Ea1, Ea 2) estimated in a previous work from tests carried out in batch reactor [START_REF] Elgue | Intensification of ester production in a continuous reactor[END_REF] have been considered.

Batch reactor mode/

To simulate the evolution of the different components in batch mode, a model has been developed from the resolution of mass balances within the reactor. The equations are given by : °C and an amount of catalyst from 5 to 10 ml [START_REF] Elgue | Intensification of ester production in a continuous reactor[END_REF].

In the following part of this article, this model is used to gener ate the data needed for the constitution of the databases for leam ing, testing and validation In this way, it is possible to simulate the experimental data that would be obtained with an on line measur ing system like FTIR, NIR or Raman spectroscopy which provides a very large number of data with a given sampling period. In this paper, the sampling period of the generated data is fixed to 2 s.

Artificial neural networks (ANN)

As far as a large number of data can be obtained from pilot plants, statistical models appear as promising tools for developing simulation models. Among such tools, the model chosen in this work lies on a combination of artificial neural networks (ANNs).

ANNs, as any models can be used to model relationships between input and output variables. Their main interest is that ANNs are statistical and nonlinear tools. They are interesting tools to model complex phenomena and processes for which data are numerous and noisy. Their structure is obtained by leaming from a set of experimental data which constitute a learning database. They can also be associated to available laws based on knowledge of the process.

In process engineering, artificial neural networks have so far mainly been used in process modelling, process contrai, fault diag nosis , error detection, data reconciliation and process analysis [START_REF] Funashi | On the approximative realization of continuous mappings by neural networks[END_REF][START_REF] Bulsari | Neural Networks for Chemical Engineers[END_REF][START_REF] Dirion | Design of a neural controller by inverse modelling[END_REF][START_REF] Fakhr-Eddine | Use of neural network for LPCVD reactors modelling[END_REF][START_REF] Delgrange-Vincent | Neural networks for long-term prediction of fouling and backwash efliciency in ultrafiltration for drinking water production[END_REF]Chouai et al., 2000a,b i One important aspect in an ANN development procedure is the leaming process. Representative examples are presented to the network so that it can integrate the corresponding knowledge within its structure. The learning prooess consists in determining the values of the model parameters called weights (w j. ;.J that pro duce the best fit between the actual and the predicted outputs over the entire training region.

The topology of the neural network determines the accuracy and the degree of representation of the model. A number of papers have shown that a feedforward network has the potential to approximate any non linear function. In this paper, only one hid den layer has been considered. The number of neurons in this hid den layer has been chosen by trial and error tests. Many different network architectures are used; the most popular of these is the multilayer network with sigmoid activation functions for the leaming phase. Theoretical and numerical results proved that quasi Newton algorithms are superior to steepest algorithms. [START_REF] Watrous | Proc. of IEEE First Int. Neural Networks[END_REF] employed and compared DFP and BFGS methods with the backpropagation algorithm: this comparison showed that DFP and BFGS need fewer iterations. For this reason, a quasi Newton [START_REF] Dennis | Numerical Methods for Unconstrained Optimisation and Nonlinear Equations[END_REF] leaming algorithm has been used to train the different neural networks.

Modelling of the esterification reaction by neural networks

4.1. Structure of the mode/ ln the case of chemical transformations, the literature proposes different types of approach using the concentrations of reagents and products or reaction extent [START_REF] Molga | Neural network approach to support modelling of chemical reactors: problems, resolution, criteria of application[END_REF]. ln the case where it is assumed that stoichiometry is not known, it seemed more appropriate to consider only the concentrations of chemical spe cies. (See Table1 ).

The structure developed (Fig. 2) to estimate the evolution of species during the esterification of methanol by acetic aàd from the initial operating conditions includes 6 inputs: Temperature (T), amount of catalyst (Oc.,) and respective concentrations of acetic acid (C AA ), methanol (C M ), methyl acetate (C MA ) and water (Cw). This structure (Fig. 2) must make it possible to determine the four outputs that are the concentrations of acetic acid, metha nol, methyl acetate and water obtained after a time equivalent to the sampling period.

The adopted structure consists in breaking down the four calcu lations and to construct four different neural networks (see Table 2): each one is devoted to calculate the concentration of a single component (reactant or product). Different network struc tures, with different number of neurons in the hidden layer, have been tested. For each network R1, R2, R3 and R4, the one leading to the lowest error on the test database is retained.

For each network, leaming is carried out separately. Four differ ent sets of weights corresponding to the four networks (R1, R2, R3, R4) are then obtained by this way. The four networks are then interconnected as shown in the black diagram on Fig. 3. The result ing mode), called 4ANN, works recursively. lt is then tested on its ability to reproduce a complete dynamic experiment.

Elaboration of databases

The mode) (4ANN) described above must be capable of simulat ing the esterification reaction according to several operating candi tians and for different initial concentrations. The temperature varies between 50 and 80 ° C and the amount of catalyst from 5 to 10 ml for a volume of 1 L Depending on the chosen operating conditions, the ranges of variation given in Table 3 have been considered:

Simulations performed using the kinetic mode) presented in 112 have allowed to generate databases. These databases are then used for training and testing the different neural networks that are developed.

To caver the operating range while limiting the number of runs considered during learning, experimental design has been used to plan the number and the operating conditions of these runs [START_REF] Mathieu | NEMROD: New Efficient Methodology for Research using Optimal Design[END_REF]. 
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• Fig. 2. Global objective of the developed neural networks structure.

Matrix of experiments

Experimental design allowed to define the operating conditions. The amount of methyl acetate is initially equal to zero, and conse quently it is not a factor for the experimental design. So this latter can be reduced to four main factors: Temperature ( 0 C), amount of catalyst (ml), amount of aàd (in mol) and amount of water (in mol). The amount of methanol (mol) to be added is calculated to maintain an initial constant volume of one litre.

With four factors and a spherical domain, the matrix of experi ments then includes 16 runs.

I.eaming data base

For the leaming database, factors X1, X2, X3 and X4 correspond respectively to the amount of acetic acid (� in mol), water (Q.w in mol), sulfuric acid catalyst (Oc., in ml) and temperature (T in °C). Using variations of four factors presented in the Table 3 and calcu lating the amount of methanol (� in mol) to adjust a reaction vol urne equal to one litre, the following matrix is obtained (Table 4):

Test database

For the test database, the same factors as for the learning data base are considered and the same calculations are applied to obtain the initial composition in methanol. The retained operating candi tians are summarized in Table 5:

The fi eld of application is restricted by the minimum and the maximum of every variable, and corresponds to the domain of validity of the neural model. For every parameter, an inteival has been defi ned according to the obseived values. These min and max values given in Table 6 are used to normalize the raw values between 0.1 and 0.9.

Sampling data and number of data

The sampling period was chosen equal to 2 s for data acquisition.

Yet, the number of points considered for each learning curve has a great influence on the development of the network and the optimization of its result. For effiàent learning, this number must be suffiàent to allow the network to detect all the variation of the cuive. However, as the esterification reaction is balanced, if one considers too long reaction times, there is a risk of "over leaming" of the part corresponding to the equilibrium at the expense of the purely reaction phase. Learning from reaction time of 2000 s, led to networks that allowed the data to be represented in the most accurate way.

Moreover, during the learning phase, the acquisition time was kept to ôt = 2 s but only one point out of 5 was considered to lighten the calculation. Then, 200 points were used to caver an esterification reaction that lasts for 2000 s. linear function [START_REF] Rivals | Modélisation et commande de processus par réseaux de neurones ; application au pilotage d'un véhicule autonome[END_REF]. Therefore, the networks used in this work consist of three layers.

A study has been conducted to determine the number of neu rons in the hidden layer representing the best compromise between data representation and generalization ability of the resulting model.

Different initializations of biases and weights were tested with random initial values. All biases and weights leading to the small est value of the error calculated on the test database was retained. Table 7 presents the errors obtained with the final weights used for the simulations.

The error is computed as follow:

Error

1 2N X k X j d C k;j C k;j h i 2 ð6Þ 
where k refers to the run considered in the data base and j to the sample point of this run (as said before j varies between 1 and 200). b C k;j is the predicted ANN model output and C k,j is the reference output value.

It can be observed that, in most cases, errors are improved from 6 hidden neurons to 8, both on the learning data base and on the test one. However, the improvement is not very important and the levels reached are very satisfactory, which led to consider this number of eight hidden neurons for the rest of the study.

Once the four networks formed, they have been combined in a model built according to the architecture proposed on Fig. 3. The model works in a recurrent way from the initial conditions and cal culates the concentrations of the different species every 2 s (time corresponding to the sampling period). This model (4ANN) altowed the simulation of ait the runs con stituting the learning and testing data bases. On the set of curves, a very good agreement between the initial curves and those obtained using the model 4 ANN was observed, which confions the efficiency of the elaborated model. These data are not pre sented in this paper, it has been preferred to focus on data not seen in the leaming and test databases, as shown in the next section.

Run Q AA [mol] Q M [mol] Q W [mol] Q Cat [

Validation of the (4ANN) mode/

Afterward and to validate the 4ANN model's ability to general ize, results obtained in conditions not seen during learning (con centrations, temperature and amount of catalyst) are presented (see Table 8). lt is to be noticed that these curves do not belong either to the learning database or to the test database.

For the shake of clarity, the figures are presented in the foltow ing form: data obtained by the 4ANN model correspond to the solid lines white data obtained experimentalty (Figs. 7 and8 8.

Validation on experiments

To confirm the 4ANN model quality, its validation has also been conducted on a data base experimentally established in the labora tory according to the protocol given Section 2.1. Two experiments are shown on Figs. 7 and 8 which correspond to the foltowing oper ating conditions (Table 9): ------------------- For these operating conditions, the results demonstrate the effi ciency of the 4ANN developed model. A good fitting of the evolu tion of the concentrations of the compounds obtained experimentalty is ensured by the 4ANN model.

Globalty, the different studies which have been carried out so far, give interesting and promising results. After leaming, the model developed makes it possible to correctly represent the evo lution of the esterification reaction of methanol by acetic acid under different operating conditions, in particular those which have not been used during the different phases of leaming. --------------------- At this stage, the 4ANN developed mode), which couples four recurrent neural networks, and the architecture of which is pre sented on Fig. 4, answers very well the objective which is to pro pose a methodology for the rapid development of a stoechio kinetic model of a chemical transformation.

Application of the 4ANN model to a fed-batch reactor

In this section, the integration of the 4ANN model in a hybrid structure is discussed. The goal is to show how it is possible to use the 4ANN mode) to transpose the operating mode of the reac tion from a batch to a fed batch operation with reactant feeding.

Fed batch reactor

The semi batch or fed batch mode is highly used in the indus try, espeàally in the fine chemicals operations. Sorne components are added to the Joad during the reaction. This type of operating mode is mainly used when the reactions are fast and highly exothermic. Using a semi continuous operation mode allows to contrai the rate of heat release, thereby maintaining the thermal regime within the limits.

To validate the results of simulations obtained by integrating the 4ANN neural network mode) in a more general hybrid struc ture, a referenoe data base is needed. This latter has been generated with a conventional mode) of semi continuous reactor using the Arrhenius type kinetic mode) presented in paragraph 11.2 (Table1).

Modelling of esterification reaction in a fed batch reactor

Initially the Joad is composed of the first reagent (aoetic acid), water and the catalyst (sulfuric acid). The operation mode follows two main stages: firstly, the addition of the second reagent (Methanol) at a fixed tlow rate and secondly, a time period after the end of feeding to reach equilibrium. It is assumed that the reac tor is perfectly controlled from a thermal point of view and there fore the temperature remains constant.

The modelled system is a dynamic semi continuous prooess. The mathematical model considers the differential terrns charac teristics of the dynamic behaviour of the prooess, which is the set of ordinary differential equations (ODE). Then, the program which salves the ODE system allows to predict the dynamic beha viour of the system and to deterrnine changes in the concentra tions and volume over time.

The first calculation step corresponds to the addition of metha nol to the reactor, and the system of differential equations is as follows:

dNAA(t) V(t)r(t) (8) _d_ t_ dN M (t) FM(t) V(t)r(t) (9) 
� dNMA(t) V(t)r(t)

(10) _d_ t_ dNw(t) V(t)r(t) (11) 
----ar In the second calculation step, the addition of Methanol is stopped and therefore the molar tlow rate of methanol and the volumetric tlow rate are equal to zero.

dV(t) Q(t) (12) dt Q(t) F M (t)M M ( 
This simulation program allows generating the data that are used later for checking the ability of the 4ANN mode) to be inte grated in a hybrid structure in the case of a fed batch reactor.

Fig. 9 exemplifies the difference of time evolution of the differ ent components' concentrations for the implementation of the esterification reaction in batch and fed batch mode. The feeding time is set to 200 s while the total amount of reactants is identical in both cases. Therefore, if the concentration profiles are different at the beginning of the operation, they finally meet at equilibrium and overlap.

Hybrid modelling including the 4ANN mode/

In paragraph IV, a mode) based on neural networks ( called 4ANN) has been developed for modelling the esterification reaction of acetic acid by methanol in the presence of sulfuric acid as cata lyst. In the following, it will be shown how this mode) ( 4ANN) can be integrated into a hybrid structure for the simulation of a fed batch reactor. This model must be able to consider the two stages of calculations: fi rstly, the addition of methanol to the reactor and secondly, af ter the end of addition, the evolution of the concentra tions of the various components (reagents and productsi The equations expressing the material balance for a reagent during feeding are written as follows:

(14) withN i (t) C i (t)V(t)
(15) Using a first order approximation, Eq. ( 12) can be discretized as follows:

N i (t + 1) N i (t) 8t cxN(t)r(t) + Fi(t) N i (t + 1) (j(t)V(t) + cxN(t)r(t)ôt + Fi (t)ôt N i (t + 1) (C i (t) + cx i r(t)ôt)V(t) + F i (t)M (16) (17) (18) 
The term (C;(t) + CX; r(t) ôt) is in fact computed by the 4ANN mode) and is called C; 0 (t + 1) in the following.

To integrate the mode) based neural networks developed (4ANN) which takes into account the kinetic contribution, the fol lowing procedure has been established:

Step 1: Knowing concentrations C;(t) at time t, concentrations C;o(t + 1) are computed at time t + ôt using the 4ANN mode to esti mate the contribution due to the reaction.

Step 2: Add the feeding term (moles): N i (t + 1) C io (t + 1 )V(t) + F i (t)ôt

Step 3: Correction of the volume:

V(t + 1) V(t) + Q(t)M
Step 4: Computation of concentrations Ci(t + 1) C i (t+ 1) N i (t+ 1)/V(t+ 1) tion 2.2 (Kinetic and model parameters ). A good agreement between the two types of results is obseived leading to a near perfect overlap bet ween the two curves.

The result remains almost near perfect for operating conditions at the limit (run FB2, Fig. 12) of the learning domain set in Sec tion 4. This shows the interest of this hybrid modelling integrating a model based on neural networks that allows the generation of cuives from different initial operating conditions.

The operating conditions of the FB3 run (Fig. 13), except the feeding time, were reused by increasing this feeding time to 600 s (run FB4, Fig. 14). The total number of moles of Methanol fed is constant for these two runs. Under these conditions, the results show that the ch ange in feeding time does not affect the behavior of the hyb rid model and the results perfectly reflect the time evolution of the concentrations of the different species (reagents and products).

Conclusion

This article has demonstrated the interest of neural networks as a tool for modelling time evolution of the different compounds during a chemical synthesis. The aim was to propose a methodol
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 1 Fig. 1. Scheme of the experimental reactor.

  t): Number of moles of component (i) at time t (mol) C;(t): concentration of component (i) at time t (mol m 3 ) V: Volume of the reaction mixture (m 3 ) ex ; = 1 for methyl aoetate and water ex ; = 1 for acetic acid and methanol t: time (s) ): reaction rate at time t, function of temperature, catalyst amount and components concentration (mols 1 m 3 ) This model allows simulating the esterification reaction under different operating conditions and for different initial concentra tions of acetic acid, methanol and water. The model was validated on experimental data in a temperature range between 50 and 70

  Fig. 3. Glob al architecture of the developed mode( ( 4ANN) built from four specific neural networks.

  ) or by the conventional kinetic model (Figs. 4 6) presented in part 11.2 are symbolized by the points. ln a fi rst time, the perfoonance of the 4ANN model can be eval uated in teons of mean square error (MSE) criterion, which is defined by the foltowing equation: the chemical species (Acetic Acid, Methanol, Methyl Acetate and Water) j refers to the sample (as said in part IV.3, the sampling time has been chosen equal to 2 s, so N is equal to 1000 for experiments that last 2000 s) ê l j is the predicted 4ANN model output and C 1 j is the reference output value. Low values of MSE are obtained in ait cases which confions the ability of the model to accurately describe changes in concentra tions during the different runs. To confion this, three runs (Val2, Val3 and Val4) are presented in detail. Figs. 4 6 show that the model ( 4ANN) integrating the four neural networks reproduces perfectly the evolution of the different components (reactants and products) during the progress of the reaction for very different operating conditions given in Table

Fig. 4 .

 4 Fig. 4. Comparison of the time evolution of the dilferent components predicted by the 4ANN mode! {solid line) and the conventional kinetic mode! {points) -Esterification at 70 °C with 6 ml of catalyst (Val 2}

Fig. 6 .

 6 Fig. 6. Comparison of the time evolution of the dilferent components predicted by the 4ANN mode! {solid line) and the conventional kinetic mode! {points) -Esterification at 50 °C with 5 ml of catalyst (Val 4}

Fig. 7 .

 7 Fig. 7. Comparison of the time evolution of the dilferent components predicted by the 4ANN mode! {solid line) and experimental data {points)-Esterification at 48 °C with 10 ml of catalyst {Exp 1}

Fig. 8 .

 8 Fig. 8. Comparison of the time evolution of the dilferent components predicted by the 4ANN mode! {solid line)and experimental data {points)-Esterification at 57 °C with 10 ml of catalyst {Exp 2}
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  M (t): Moles number of Acetic Acid at time t (mol) N M (t): Moles number of Methanol at time t (mol) N MA (t): Moles number of Methyl Acetate at time t (mol) Nw(t): Moles number of Water at time t (mol) V(t): Volume at time t (m 3 ) FM(t): Molar tlow rate ofMethanol at time t (mol s 1 ) Q(t): Total volumetric tlow rate at time t (m 3 s 1 ) r (t): reaction rate at time t (mol m 3 s 1 ) MM: molecular weight of Methanol (kg mol 1 ) PM : density of Methanol (kg m 3 )

  Fig. 9. Comparison of the components evolution during the esterification reaction according to the operating mode [ batch mode (points) and semi-batch mode (solid line)J (Ldbl ).

Fig. 11 .

 11 Fig_ 10. Global architecture of the hybrid mode! for fed-batch representation
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Fig. 12 .

 12 Fig. 12. Comparison of the time evolution of the different components predicted by the hybrid mode! (solid line) and the conventional kinetic mode! (points) -Fed batch esterification at 80 °C with 7.5 mlde catalyst (FB2).

Table 1 Kinetic parameters of the esterification reaction. kO, Ea, m 3 -mol 1 -s 1 -m�], Jmol 1 4.21 0.322 53,804 52,584

 1 

Table 2 Inputs and outputs of the four neural networks. Rl Inputs

 2 

T(t), Q,..(t), CAA(t} CM(t), CMA(t), Cw(t) Output CAA(t + 1} R2 T(t} Q,..(t), CM(t), CM(t), CMA(t), Cw(t) CM(t+ 1}

Table 7

 7 Error on the learning data base and the test data base based on the number of hidden neurons for the four different neural networks.

	mL]	T [°C]

Table 4

 4 Initial conditions of the runs used for the training set.

Table 8 Initial conditions of runs used for validation.

 8 

ogy for rapidly developing a global mode! of the chemical transfor mation. For this, the idea was to develop a mode! from neural net works according to two axes: on the one hand the global architecture of the mode! is defi ned according to the constituents involved and to the influenàng operating conditions (temperature, catalyst, initial concentrations ... ) and on the other hand the values of the mode! parameters are identifi ed from a set of available data. The objective is not to explain the physical phenomena involved but to develop a mode! allowing the simulation of the reaction to determine the type of reactor to be used and to optimize the oper ating conditions in relation to the technological constraints of the selected apparatus.

From the point of view of the mode!, an original architecture has been developed for modelling the esterification reaction of methanol by acetic acid from data obtained in isothermal batch mode. The approach was to develop an artifiàal neural network for the prediction of the evolution of each chemical species, then to associate these four networks in a recurrent mode! ( called 4ANN) to obtain global predictions. The inputs of the mode! are the operating conditions (temperature and catalyst) as well as the concentrations of the different species at the beginning of the sampling period.

The prediction of the curves is done point by point in a recur rent mode and the only information provided to the 4ANN mode! are the temperature T (isothermal mode), the amount of Catalyst (sulfuric acid, Qcat) and the initial concentrations (Ci) of the four species (acetic acid, methanol, methyl acetate and water). Overall, the various studies conducted give interesting and promising results. The mode! (4ANN) developed makes it possible to properly estimate the evolution of the esterification reaction of methanol by acetic acid in batch mode for different operating conditions. Vali dation on experimental points confirm the validity of the 4ANN mode!.

The feasibility of modelling reaction kinetics by neural mode! has been demonstrated. The 4ANN mode! was developed only from data obtained in isothermal batch runs. Subsequently, from the analysis of the equations translating the material balances of a semi continuous reactor, the 4ANN mode! has been integrated into a hybrid simulation framework and it can be concluded that this latter is able to transpose the esterification reaction from a batch reactor to a semi batch reactor.

Once this hybrid mode! has been validated, it can be integrated into the process optimization of the operating conditions while considering the constraints of the apparatus and limiting the fi eld of research to the leaming domain used to develop the neural models. 
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