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Abstract 
This review searched for published evidence that could explain how different physicochemical 

properties impact on the allergenicity of food proteins and if their effects would follow specific 

patterns among distinct protein families. Owing to the amount and complexity of the collected 

information, this literature overview was divided in two articles, the current one dedicated to 

protein families of plant allergens and a second one focused on animal allergens. 

Our extensive analysis of the available literature revealed that physicochemical characteristics 

had consistent effects on protein allergenicity for allergens belonging to the same protein 

family. For example, protein aggregation contributes to increased allergenicity of 2S albumins, 

while for legumins and cereal prolamins, the same phenomenon leads to a reduction. Molecular 

stability, related to structural resistance to heat and proteolysis, was identified as the most 

common feature promoting plant protein allergenicity, although it fails to explain the potency 

of some unstable allergens (e.g. pollen-related food allergens). Furthermore, data on 

physicochemical characteristics translating into clinical effects are limited, mainly because 

most studies are focused on in vitro IgE-binding. 

Clinical data assessing how these parameters affect the development and clinical manifestation 

of allergies is minimal, with only few reports evaluating the sensitising capacity of modified 

proteins (addressing different physicochemical properties) in murine allergy models. In vivo 

testing of modified pure proteins by SPT or DBPCFC is scarce. At this stage, a systematic 

approach to link the physicochemical properties with clinical plant allergenicity in real life 

scenarios is still missing. 

Keywords: plant allergens, protein families, allergenicity, food processing, matrix effect 
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Abbreviations 
ATI - α-amylase trypsin inhibitors, 

BAT - basophil activation test, 

DBPCFC - double-blind placebo-controlled food challenge, 

EAST - enzyme allergosorbent test, 

ELISA - enzyme-linked immunosorbent assay, 

GMP - good manufacture practices, 

HMW - high molecular weight, 

HPP - high pressure processing, 

HHP - high hydrostatic pressure, 

Immunoglobulin E - IgE 

LMW - low molecular weight, 

MAT - mast cell activation test, 

nsLTP - non-specific lipid transfer proteins, 

OAS - oral allergy syndrome, 

OFC - open food challenge, 

PEF - pulsed electric fields, 

PR-10 - pathogenesis-related 10 proteins, 

PTM - Post-translational modifications, 

PUV - pulsed ultraviolet, 

RAST - radioallergosorbent test, 

RBL - rat basophilic leukaemia, 

S-poor - sulphur-poor, 

SPT - skin prick tests, 

S-rich - sulphur-rich, 

WDEIA - wheat-dependent exercise-induced anaphylaxis, 

WHO/IUIS - World Health Organization/International Union of Immunological Societies
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Introduction 
What turns a food protein into an allergen? 

Why do some proteins act as allergens, while 

others do not [1]? What are the differences 

among proteins that increase their intrinsic 

allergenic potential? Which factors drive 

sustained tolerance to foods and food proteins? 

Which immunological events intervene in 

tolerance breakdown, leading to sensitisation, 

and most likely subsequent food allergy [2]? 

The knowledge around the identity of food 

allergens and how they cluster into protein 

families has contributed to a better 

understanding of triggers and cross-reactivity 

in immunoglobulin E (IgE)‐mediated food 

allergies [3]. However, despite these advances 

there are still some pivotal questions that 

remain unanswered [2,4]. 

In theory, any protein has the potential to elicit 

an allergic response, but this is not commonly 

the case [5]. Most allergens belong to a small 

set of protein families and there are common 

patterns of biomolecular properties among 

them. This idea supports that allergens should 

possess special features and not every protein 

can become allergenic [6]. Still, not all proteins 

within a specific family are classified as 

allergens and there are numerous allergenic 

proteins that do not present the typical 

properties associated with their allergenicity 

[4]. In the case of plants, there are several 

important groups of allergenic proteins, such as 

the Prolamin and the Cupin superfamilies. 

The effects on physicochemical properties of 

allergens, such as thermal stability or resistance 

to proteolysis, have been addressed in order to 

correlate those characteristics with their impact 

on the allergenicity (as the ability to induce IgE 

production that may mediate clinical reactions) 

of certain proteins [3,7,8]. Post-translational 

modifications (PTM), such as glycosylation, 

hydroxylation or phosphorylation, alter the 

physicochemical properties of allergens. 

Protein post-translational glycosylation and 

process-related glycation seem to play a pivotal 

role in the allergenic potential of proteins [7-9]. 

Additionally, other characteristics (e.g. the 

ability of some proteins to disrupt and cross the 

intestinal epithelial barrier) have been 

emphasized as affecting the allergenicity of 

different proteins, since they are known to 

facilitate the presentation of food allergens to 

the immune system [4,10].  

Several studies reported on the effect of 

different physicochemical properties on protein 

allergenicity, but the overarching picture is still 

missing. This review is the first of two articles 

in a thematic compilation (plant and animal 

allergens) and it is focused on the allergenicity 

of plant food protein families as affected by 

different physicochemical parameters. 

 

Plant Allergen Families 
According to the AllFam (Database of Allergen 

Families) statistics in 2017, there are about 

1042 proteins identified as allergens, with 

88.4% (921 proteins) of them being included in 

the WHO/IUIS (World Health 

Organization/International Union of 

Immunological Societies) list of registered 

allergens [6,11,12]. From the total number of 

allergenic proteins, 959 allergens of all sources 

(animals, plants, fungi and bacteria) have been 

assigned to specific families (totalising 151 

families of proteins), while 83 molecules have 

no family classification. 

In the specific case of plants, there are about 

467 allergens (95.7% included in the 

WHO/IUIS list of allergens, n=447) and 436 of 

them being allocated to specific families of 

proteins [6,11,12]. Despite plant allergenic 

proteins being scattered over 65 families of 

proteins, more than 44% (that include most of 

the relevant plant allergens) belong to eight 

families: 2S albumins, non-specific lipid 

transfer proteins (nsLTP), cereal α-amylase 

trypsin inhibitors (ATI) and cereal prolamins 

(of the Prolamin superfamily), legumins and 

vicilins (of the Cupin superfamily), profilins 

and pathogenesis-related (PR)-10 proteins 

[6,11]. In this review, besides considering the 

number and importance of the allergens, the 

criteria for the selection of plant protein 

families also included some cultural and 

geographic determinants. For example, it is 

well known that PR-10 proteins are very 

relevant and common allergens in regions such 

as Northern of Europe and Alpine regions, 

while nsLTP are very important allergens 
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among the Mediterranean population (e.g. 

Spain, Italy) [13,14]. 

 

Prolamin Superfamily 
According to recent statistical data, the 

Prolamin superfamily ranks the first position in 

terms of total number of allergenic proteins (91 

identified allergens) [6,11]. It is composed by a 

diverse group of relevant seed storage protein 

families, like the 2S albumins and the cereal 

prolamins (gliadins and glutenins), as well as, 

the nsLTP and the ATI [15,16]. The members 

of this superfamily have a large amount of 

proline and glutamine residues, which is typical 

for prolamins. Additionally, they share a highly 

conserved pattern of eight cysteine residues 

that stabilises their three-dimensional (3D) 

structure of four α-helices that form a right-

handed super-helix. Apart from the cysteine 

skeleton and the α-helical structures, these 

protein families share little sequence homology 

[8,16,17]. The cereal prolamins (gliadins and 

glutenins) are an exception in the prolamin 

superfamily concerning their 3D structure. 

Except for ω-gliadins, they contain α-helices 

and β-sheets and they are stabilised by 

disulphide bonds, but due to their low 

complexity sequence that mainly contain rich 

interspersed repeats, their final structures are 

considered to be disordered structures [18,19]. 

 

2S Albumins 

2S Albumins are one of the major groups of 

seed storage proteins of the Prolamin 

superfamily, comprising several allergens 

identified in peanut, tree nuts, legumes and 

cereals [12]. They are monomeric proteins 

between 10 and 18 kDa (Table 1), usually based 

on two polypeptide chains connected by 

disulphide bonds [20]. During their synthesis, 

they undergo proteolytic processing due to the 

presence of some cleavage points in their 

sequence (N-terminal signal sequence and 

connection peptide), leading to a final structure 

of two subunits, a large subunit of 8-10 kDa, 

and a small one of 3-4 kDa [21]. Contrarily to 

most allergenic 2S albumins, peanut Ara h 2 

occurs as a single polypeptide chain stabilised 

by disulphide bonds and without a subunit 

structure [22]. 2S Albumins are encoded by a 

multigene family, leading to the presence of 

multiple isoforms. In addition, minor clipping 

at the N- and C-terminal of both subunits 

provides extra variants (e.g. Cor a 14, hazelnut) 

[23,24]. 

Allergenic 2S albumins show a relatively low 

sequence identity among plant species, being 

more conserved among proteins from the same 

phylogenetic family [25]. Few exceptions of 

cross-reactivity have been reported, which is 

the case of Sin a 1 (mustard) with Pin p 1 (pine 

nut) [26], and Act d 13 (kiwi seed) with 2S 

albumins from walnut, peanut and almond [27]. 

2S Albumins can present potent allergens, 

being responsible for triggering severe and 

systemic adverse immunological responses, as 

in the case of peanut Ara h 2/Ara h 6 [3].  

 

Nonspecific Lipid Transfer Proteins - nsLTP 

The nsLTP are a large family of proteins that 

are profuse in all plants, representing as much 

as 4% of the total soluble protein fraction. The 

majority of its members are extracellular 

proteins associated with cell walls, being 

mainly accumulated/located at epidermal 

tissues surrounding the aerial organs (leaves, 

fruits, stems) [28-30]. The tissue-location of 

nsLTP has major clinical implications, a fact 

that is supported by the higher allergenic 

potency of the peels compared with the pulps of 

Rosaceae fruits [31]. nsLTP are a frequent 

cause of food allergy among the adult 

population, having a high sensitisation 

prevalence in the Mediterranean area [32,33]. 

The reasons behind this geographical 

distribution of food allergy to nsLTP are still 

unknown, although it might result from primary 

sensitisation through the airways of 

homologous pollen allergens in LTP‐endemic 

areas (e.g. olive tree Ole e 7 or oriental plane 

tree Pla or 3) [14]. Currently, nsLTP-sensitised 

allergies seems to be increasing in regions 

outside the Mediterranean area, with recent 

studies pointing out the importance of nsLTP as 

primary sensitizers in other European 

countries, namely in The Netherlands, Austria 

and the United Kingdom [34-37]. 

Besides belonging to the Prolamin superfamily, 

nsLTP are also classified as PR-14 family and 

their functions are related to in situ modulation 



7 

of lipid composition, signal transduction, 

vesicular trafficking and lipid transfer [38,39]. 

The nsLTP are small proteins (9.5-10.5 kDa) 

with very compact and stable 3D structures 

(Table 1). The folding of the helices results in a 

tunnel-like hydrophobic cavity along the axis 

of the molecule, which makes them suitable for 

binding a wide variety of lipids [40,41]. 

Differences in lipid-binding affinities of nsLTP 

might reflect in various immunomodulatory 

activities [42,43], both by modifying their 

molecular structure and physicochemical 

properties, and/or by acting directly on the 

immune system [44]. 

nsLTP-induced allergic responses are most 

often described as severe and systemic 

(anaphylaxis), although mild symptoms can 

occur. Peach Pru p 3 is one of the most relevant 

nsLTP allergens and probably the best studied 

[3,36,45]. More than 42 allergenic nsLTP have 

been identified in several plant foods, including 

fruits, vegetables, nuts and cereals, as well as in 

latex [12]. Owing to their widespread 

distribution across the plant kingdom, 

allergenic nsLTP are commonly classified as 

panallergens, i.e. ubiquitous proteins 

accountable for the IgE cross-reactivity to a 

multiplicity of related and unrelated allergenic 

sources [46].  

 

Cereal α-amylase trypsin inhibitors (ATI) 

The ATI are proteins present in the endosperm 

of cereals (wheat, barley, rye, corn and rice 

seeds), with biological functions of plant 

defence against parasites, insects, mites and 

mammalians. Their inclusion in the Prolamin 

superfamily is due to their high content in 

glutamine, asparagine and proline residues, as 

well as, their sequence homology (ranging from 

30 to 95%) with 2S albumins and cereal 

prolamins [47,48]. They are composed by 

polypeptides of 12-16 kDa with 4-5 disulphide 

bonds that are essential for their inhibitory 

activity. Presenting one or more subunits with 

120-160 amino acid residues, ATI exist as 

monomers, dimers or tetramers (Table 1) 

[17,48]. 

In wheat, the monomeric α-amylase inhibitor 

0.28 is named Tri a 15 (12 kDa), while the 

homodimers (24 kDa) are often referred as α-

amylase inhibitors 0.19 and 0.53 (Tri a 28). The 

tetrameric proteins (60 kDa) are termed CM 

proteins due to their solubility in 

chloroform/methanol solvent, encompassing 

Tri a 29 (subunits CM1/CM2), Tri a 30 (CM3), 

Tri a 40 (subunits CM16/CM17) [12,49]. In 

wheat, the most abundant ATI are the Tri a 28, 

followed by Tri a 15 and the Tri a 30 [50]. ATI 

can sensitise individuals by inhalation or 

ingestion resulting in occupational allergies 

like bakers’ asthma (wheat, barley and rye) or 

children atopic dermatitis [51], with clinical 

symptoms associated with gastrointestinal or 

cutaneous sensitisation (IgE-mediated food 

allergy) [52-54]. Tri a 30 (CM3) and Tri a 40 

(subunit CM16) have also been reported to be 

involved in wheat-dependent exercise-induced 

anaphylaxis (WDEIA) [55]. 

 

Cereal prolamins 

The cereal prolamins are the major storage 

proteins found in the endosperm of cereal 

grains, being classified as glutenins and 

gliadins in wheat, secalins in rye and hordeins 

in barley [17]. They are usually divided in two 

groups according to their solubility in alcohol-

water solutions: gliadins (soluble proteins) and 

glutenins (insoluble proteins) [56]. None of 

them was reported to be post-translationally 

modified. The glutenins are divided in high and 

low molecular weight (HMW and LMW) 

subunits, while the gliadin fraction consists of 

three types of proteins, namely α/β-, γ- and ω-

gliadins. These cereal prolamins differ in their 

methionine-cysteine contents and, accordingly, 

they are categorised in sulphur-poor (S-poor) or 

sulphur-rich (S-rich) groups [57]. Cereal 

prolamins from wheat are the best studied, 

being some of them registered as allergens, 

namely the gliadins Tri a 19, Tri a 20, and Tri a 

21, and the glutenins Tri a 26 and Tri a 36 [12].  

Glutenins have polymeric structures, while the 

gliadins are monomeric proteins, with α/β-type 

gliadins showing a compact globular 3D-

structure and γ-/ω-gliadins presenting extended 

rod-like structures (fibrous proteins) (Table 1) 

[58]. The S-rich prolamins encompass two 

types of gliadins (α- and γ-types) and LMW 

subunits of glutenins, which share similar 

structures with high α-helical and low β-sheet 
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contents [59]. These proteins are organised in 

multi-domains with at least one repetitive 

proline-rich domain, consisting of blocks of 

residues. The S-poor prolamins are mostly 

constituted of ω-gliadins with a repetitive 

domain (poly-L-proline II and β-reverse-turn 

structures) close to the N-terminus of the 

sequence. When present, the non-repetitive 

domains are rich in α-helices stabilised by 

disulphide bridges [19,60,61]. In wheat-allergic 

patients, cereal prolamins are able to trigger 

clinical symptoms that include (among others) 

urticaria, angioedema, erythema, vomiting, 

persistent cough, respiratory distress, and in 

most severe case, anaphylaxis [3]. The ω-

gliadins, and notably ω-5 (Tri a 19), are mainly 

associated with WDEIA (severe food allergy 

after ingestion plus cofactors such as exercise) 

in adults [62].  

 

Profilins 
The profilin family occupies the second 

position in terms of total number of allergenic 

proteins, with at least 50 plant profilins being 

identified as important allergens [6,11,12]. 

Profilins (12-15 kDa cytosolic proteins) are 

ubiquitous in all eukaryotic cells as highly 

conserved molecules, sharing sequence 

identities of 75-85% among members of 

distantly related organisms (Table 1) 

[46,63,64]. These proteins participate in the 

reorganisation of the cytoskeleton, acting as a 

critical control point in signal transduction 

from the outer to the inner cell membrane, 

regulating the intracellular calcium levels and 

the activity in the microfilament system [65]. 

Their structures comprise three α-helices, seven 

β-strands and ten turns that form two 

hydrophobic cores separated by a central six-

stranded β-sheet [66]. 

Profilins can bind a variety of physiological 

ligands: (i) cytoskeletal components, like actin; 

(ii) polyphosphoinositides, like 

phosphatidylinositol-4,5-bisphosphate; (iii) 

proline-rich peptides, like formin-related 

proteins and vasodilator-stimulated 

phosphoprotein [67]. Plant profilins may be 

phosphorylated by MAP kinases for regulation 

proposes [68]. Profilins are also classified as 

important panallergens, although the extent of 

their allergenicity is still a matter of discussion, 

considering the extreme variability of their 

clinical expression, which is also dependent on 

the type of food [14]. Symptoms are, in most 

cases, mild and limited to oral allergy 

syndrome (OAS), but there are also reports of 

severe allergic responses to profilins [3]. 

 

Cupin Superfamily 
The cupin superfamily is composed by a wide 

set of highly diverse protein families across all 

groups of organisms (including plants and 

animals), probably sharing a common 

prokaryotic ancestor [16]. It is the third most 

important superfamily of plant allergens, with 

37 allergenic proteins identified so far [6,11]. 

Members of this superfamily are named as 

cupins based on their common structural 

features, namely the presence of a β-barrel core 

domain (cupin core) and two short conserved 

consensus sequence motifs [17]. With two β-

barrel core domains, the bicupins comprise the 

globulins, which are the major components of 

the protein fraction of most seeds, legumes and 

tree nuts. Based on their sedimentation 

coefficient, globulins are classified as 7/8S and 

11/12S, also known as vicilins and legumins, 

respectively [17]. 

Globulins have a high clinical relevance, since 

they are responsible for inducing severe and 

life-threatening allergic reactions in individuals 

allergic to legumes (e.g. peanut, lupine, 

soybean) or to tree nuts (e.g. walnut, hazelnut, 

almond) [3]. 

 

Legumins 

Legumins (11S globulins) represent a major 

portion of the seed storage proteins (50-70% of 

total protein fraction) in most plants, which 

aligned with other relevant characteristics 

contribute to their high importance as class I 

food allergens [69]. They are multimeric 

proteins with quaternary structures (360 kDa), 

occurring as hexamers or as a mix of trimers 

and hexamers, linked by noncovalent 

interactions (Table 1) [70,71]. In their tertiary 

structures, legumins present regions of rigid 

conformation, as well as sections of mobile 

assemblies, most likely corresponding to 

extended loops or unresolved regions [70]. 
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Different genes express each monomer as a 

single primary chain of approximately 60 kDa, 

which is post-translationally cleaved into one 

acidic and one basic polypeptide with 

molecular weights of 30-40 kDa and 20 kDa, 

respectively (Table 1), that are held together by 

disulphide bonds [9,69]. So far, several 

legumins have been registered as allergens in 

legumes (peanut Ara h 3, soybean Gly m 6), in 

tree nuts, such as cashew nut (Ana o 2), walnut 

(Jug r 4), hazelnut (Cor a 9) and almond (Pru 

du 6) [12] and more recently also identified in 

Goji berries [72].  

 

Vicilins 

Like legumins, the vicilins (7S globulins) are 

seed storage proteins particularly abundant in 

legumes and tree nuts (representing about 20% 

of their protein content depending on the 

species) (Table 1). They are typically trimeric 

proteins, though reversible aggregation into 

hexamers can occur, depending on their ionic 

strength [70]. Vicilins are large proteins (150-

190 kDa), having two subunits in the range of 

40-80 kDa and with a typical subunit of ~50 

kDa (Table 1). These subunits are frequently 

glycosylated at one or two N-linked 

glycosylation sites, positioned at the C-terminal 

domain [69]. Vicilins present two β-barrel core 

domains, but contrarily to legumins, they lack 

disulphide bonds, being stabilised by 

noncovalent hydrophobic interactions, 

hydrogen bonds and van der Waals 

interactions. Several vicilins have been 

registered as allergens in legumes, such as 

peanut (Ara h 1), lupine (Lup an 1) and pea (Pis 

s 1), in tree nuts (e.g. hazelnut, Cor a 11; 

walnut, Jug r 2; pistachio, Pis v 3) [12] and 

more recently also identified in Goji berries 

[72].  

 

PR-10 proteins 
The pathogenesis related (PR)-10 proteins are 

an important group of allergens in fruits and 

vegetables, related to the birch pollen-

associated (class II) food allergy. Presently, 29 

proteins have been classified as allergenic 

molecules, 25 of those being registered in the 

WHO/IUIS list of allergens [6,11,12]. PR-10 

proteins have a molecular weight of 15-17 kDa 

(Table 1), are slightly acidic, resistant to 

proteases and structurally not related to other 

PR proteins [73-75]. The crystal structure 

characterisation of a few PR-10 proteins, 

showed that these proteins have a conserved, 

highly curved, seven‐stranded antiparallel β‐

sheet surrounding a long 25-amino acid α-helix 

(α3) at the C‐terminus [76]. Two additional N-

terminal short α-helices (α1 and α2), located 

between the β1 and β2 strands, complete the 

scaffold creating a hydrophobic core, which 

works as a ligand-binding site [76,77]. 

Like others, the PR-10 proteins participate in 

the defence mechanism of plants, namely in the 

response to biotic/abiotic stress and in the 

transport of amphiphilic compounds (fatty 

acids, cytokines, flavonoids and sterols) 

through the cellular barrier [77,78]. However, 

some of these proteins are constitutively 

expressed, indicating a key biological role in 

plant development. The clinical relevance of 

these proteins encompass a multitude of 

different symptoms (ranging from mild to 

potentially life threatening) with a quick onset 

(up to few minutes) after the consumption of 

raw plant foods [3]. In the recent years, a 

variety of PR-10 proteins and their food 

homologues causing allergy in humans have 

been isolated and characterised [79-82]. Bet v 1 

is the most representative member of PR-10 

proteins, which exists in at least 18 different 

isoallergens and isoforms [83]. 

 

Physicochemical Properties 
Affecting Allergenicity 
In the attempt to address the question “what 

turns a food protein into an allergen?” great 

attention has been devoted to the 

physicochemical characterisation of food 

allergens. By now, it is already well established 

that some physicochemical properties seem to 

play a major role in the allergenic potential of a 

protein. 

In this review, the selected parameters 

concerned post-translational modifications, 

such as glycosylation, phosphorylation and 

hydroxylation, as well as protein structure and 

organisational level. Considering that, the 

majority of foods are commonly consumed 

after some kind of processing, it was also 
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important to understand the protein 

characteristics which are influenced by 

processing, such as stability to heat, 

light/radiation and pressure, as well as, to 

mechanical and chemical activities. 

Accordingly, the parameter of heat stability 

reflects the influence of different types of food 

processing with the application of thermal 

treatments, namely autoclaving, frying, boiling, 

dry or wet roasting, blanching and baking. 

Similarly, the effect of glycation and 

aggregation, which are associated with the use 

of thermal treatments during food processing 

were also considered. For the parameter of 

pressure stability, the effects of high pressure 

processing (HPP) and high pressure (HP) 

microfluidisation treatments were analysed, 

while for light/radiation stability, the 

information was retrieved from food processes 

involving gamma-radiation, high voltage 

impulses, pulsed electric fields (PEF), pulsed 

ultraviolet (PUV) light and microwave 

treatments. For mechanical or chemical 

stabilities, data were collected from the 

application of sonication and ultrasound 

treatments or fermentation, 

alkylation/reduction and enzymatic hydrolysis, 

respectively. The influence of ligand binding 

on the allergenic potential of a protein, as well 

as its potential lipid interactions and the 

resistance to digestion complete the set of 

physicochemical parameters that were analysed 

in this review. 

For each plant protein family, literature review 

on their allergenic members was extensively 

performed and further described, which can be 

consulted in detail in the excel file of the 

supplementary material section (see 

supplementary material). 

 

Measuring the effect on allergenicity 
Food allergy comprises several immunological 

mechanisms, although its most common form 

regards an immediate-type hypersensitivity in 

which specific IgE is bound by high-affinity 

Fcε-receptor on the mast cells and basophils of 

the allergic individuals. Cross-linking of 

allergen-specific IgE by the allergen starts a 

cascade of events, including the release of 

physiologically active mediators (e.g. 

histamine) that rapidly lead to biological 

responses in a number of target tissues [84]. 

The capacity to bind and cross-link specific IgE 

is an intrinsic immunological property of the 

allergenic proteins, which can be monitored by 

several in vivo and in vitro assays (Table 2). 

The presence of IgE in the sera of food-

sensitised individuals is not always 

accompanied by clinical symptoms, therefore 

assays screening for specific serum IgE are 

commonly used as complementary tools for 

food allergy diagnosis, after proper recording 

of anamnesis. The immunoblotting is normally 

used to assess the overall IgE-binding profile of 

allergens at a qualitative level, while ELISA 

enable their quantification [85]. Similarly, the 

radioallergosorbent test (RAST)/enzyme 

allergosorbent test (EAST)/ImmunoCap allow 

the quantification of allergen specific IgE 

levels within human serum/plasma. IgE-

binding and functional cross‐linking can be 

tested by ex vivo or in vitro cellular assays, such 

as human basophil activation test (BAT), mast 

cell activation test (MAT) and rat basophilic 

leukaemia (RBL) mediator release assay. In 

these tests, effector cells are stimulated with 

allergens (native/recombinant) or extracts and 

their activation is measured either by mediator 

release (e.g. histamine, cytokines) or 

upregulation of cellular surface molecules (e.g. 

CD63, CD203c) [85,86]. 

The skin prick tests (SPT) and the food 

challenges are used for in vivo testing. The first 

induces specific skin mast cell degranulation 

after cross-linking of allergen-specific IgE, 

although its correlation to clinical symptoms is 

usually restricted to a good negative predictive 

value [87]. Food challenges, in open (OFC), in 

closed or in double-blind placebo controlled 

(DBPCFC) formats, are the best way to confirm 

allergy. However, these food challenges are 

burdensome for patients, time consuming, 

expensive and they can only be performed in 

specialised medical facilities due to the high 

risk of severe and systemic allergic reactions 

during the trial. Moreover, if single allergen 

components (e.g. peanut Ara h 2) are used for 

in vivo challenges, those need to be prepared 

under good manufacture practices (GMP). 
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Alternatively, animal models have been 

proposed to assess the allergenicity 

(sensitisation and elicitation capacities) of 

different proteins/foods, namely murine IgE-

response and anaphylaxis.  

Most of these assays have been used as 

excellent tools to evaluate the effect of different 

physicochemical properties on the IgE-binding 

capacity of plant food allergens (Table 2). 

Based on their simplicity and relative low cost, 

immunoblotting, ELISA and 

RAST/EAST/immunoCAP, using the 

serum/plasma from sensitised/allergic subjects, 

are the first-line assays, being applied to 

allergens from almost all plant families [88-99]. 

They are followed by the cellular ex vivo or in 

vitro cellular assays, which have also been 

widely employed to study the influence of 

physicochemical characteristics on protein 

allergenicity in most plant families [45,91,100-

125]. Although used at less extent, the SPT and 

food challenges have been carried out to 

characterise the allergenicity of proteins as 

affected by different properties (e.g. 

denaturation, digestion) 

[90,104,107,108,110,111,117,120,121,123,12

4,126-132]. The in vivo food challenges, SPT, 

and even more important, oral food challenges 

(OFC, DBPCFC) are of high value because of 

the true human clinical read-out. However, 

these procedures are difficult to perform, and 

the availability of test subjects and ethical 

considerations limit their general application 

[107,120,121,124,126-130]. Other 

“functional” tests (BAT, RBL) are considered 

instead, which seem to have quiet good 

correlation to the clinical phenotype. 

Finally, specific IgE testing is simpler but 

limited to the conclusion of “sensitisation” IgE-

binding in most cases. Nonetheless, there are 

some examples, such as the IgE-binding 

sensitisation to Ara h 2/6 in peanut allergy or to 

ω5-gliadin in WDEIA, that seem to have a good 

predictive value for clinical reactivity [133]. In 

most cases, in vitro IgE-binding properties are 

investigated for the ease of testing, although 

they usually do not allow for extrapolation to 

clinical reactivity. Likewise, the in vivo assays 

using animal models are also less applied to 

evaluate the allergenic potential of proteins 

[109,115,123,134-138]. 

Owing to the complexity of this topic and the 

heterogeneity of the data collected, it was also 

important to provide some general definitions 

and terminology to avoid unnecessary 

misunderstandings. Herein, some terms were 

employed following the concepts defined by 

Verhoeckx et al. [2]. Thus, 

allergenicity/allergenic potential was used with 

the meaning of “the potential of a material to 

cause sensitisation and allergic reactions, 

frequently associated with IgE”, while 

immunoreactivity refers to “the ability of a 

material to elicit an immune response” and IgE-

binding capacity is “an altered ability of IgE 

(also allergenic integrity) to bind to epitopes” 

[2]. 

In practice, the terminology of IgE-binding 

capacity was used for information retrieved 

from immunoblotting, ELISA and 

RAST/EAST/immunoCAP assays with the sera 

of food allergic/sensitised patients, while 

immunoreactivity was predominantly used to 

classify data from immunoassays with animal 

IgG. The terms allergenicity/allergenic 

potential were mostly used to classified data 

from assays where an elicitation of an allergic 

response is induced, namely in mediator release 

assays (RBL, BAT), in vivo assays (SPT, OFC 

and DBPCFC) and animal allergy models 

(mice physiological responses, mice 

anaphylaxis). 

 

Abundance  
It has been very difficult to establish a 

correlation between the abundance of an 

individual allergen in the plant with the risk of 

sensitisation, mostly due to the scarcity of data 

on quantitative thresholds for sensitised 

individuals [139]. Additionally, the few 

available data in literature can be conflicting. In 

fact, a recent report stated that no clear 

correlation could be found between legume 

protein consumption/allergen concentration 

and the prevalence of legume sensitisation, as 

demonstrated for the case study of peanut and 

soybean allergens [140]. Controversially, it has 

also been shown that by altering the expression 

of some allergenic proteins (supressed by RNA 
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interference), their IgE-binding capacity is 

greatly reduced, as described for three major 

allergens in rice [141,142]. Likewise, the 

mRNA silencing of Mal d 1 gene lead to a great 

decrease in the expression of Mal d 1 in the 

genetically modified apple lines, which enable 

a drastic reduction, and even complete 

elimination, of the clinical symptoms in apple 

allergic patients, as demonstrated by a blind-

sensory privation oral food challenge [143]. 

Both perspectives suggest that the amount of 

allergenic proteins may determine the overall 

IgE-binding capacity of a food, whereas it 

seems to be no link between the extent of 

sensitisation in relation to the amount of 

allergenic proteins in the diet. 

When considering primary sensitisation via 

ingestion, it is expected that allergens 

expression at higher levels in a certain food 

(e.g. cereals) increases the potential for 

eliciting an allergic reaction in food allergic 

individuals. This is the case for 2S albumins 

(20-60% of total protein fraction), legumins 

(50-70% of total protein fraction) and vicilins 

(~20% of total protein fraction) (Table 1). As 

they are major storage proteins in most nuts and 

other seeds, they make a significant 

contribution to the human diet, being widely 

correlated with their high incidence in terms of 

allergenic molecules capable of inducing 

adverse immunological responses [69,144]. In 

cereals, prolamins (gliadins and glutenins) are 

the major fraction of storage proteins, 

consequently their high content in cereals (e.g 

wheat) increases the risk of an allergic reaction. 

The contribution of allergenic cross-reactivity 

to pollen allergens (e.g. Bet v 1) (primary 

sensitisation by inhalation) with proteins 

expressed at moderate or low quantities (e.g. 

soybean Gly m 4, hazelnut Cor a 1 or celery Api 

g 1) should not be neglected, because it also 

increases the risk for inducing allergic 

responses. Profilins are very relevant allergens, 

not only due to their high abundance, but also 

because of their great potential for multiple 

sensitisation across different plants [145]. The 

nsLTP are tissue specific proteins [31] and their 

allergenic potential is well correlated with their 

abundance, since the removal of nsLTP-

containing tissues significantly decreases the 

allergenic potential of this family. Additionally, 

Mal d 3 expression is highly variable among 

apple cultivars, enabling different allergic 

responses. Cultivars with low amount of Mal d 

3 are less allergenic (as assessed by SPT and 

DBPCFC) than the ones expressing higher 

amounts of this allergen [120]. The expression 

of ATI, nsLTP and the PR-10 protein families 

is highly dependent on plant cultivar and on 

environmental conditions [146].  

Concluding remarks: 

 The high content of 2S albumins, 

legumins, vicilins and cereal prolamins 

(gliadins and glutenins) in relation to total 

protein is correlated to increased allergic 

elicitation risk. 

 The abundance of nsLTP is related to 

increased allergic elicitation risk. 

 The abundance (low/high) of the profilins, 

ATI and PR-10 cannot be correlated to an 

increased allergenic risk. 

 

Protein structure 
Conformational and/or linear IgE epitopes of 

proteins play a crucial role in the elicitation of 

an allergic response [147]. In general, most 

monomeric allergens are relatively small, 

stable and with very well organised structures, 

but some allergenic proteins may form large 

high-ordered structures (Table 1). There are 

also some exceptions of unstructured proteins, 

such as caseins, that act as allergens [148]. 

Regarding plant food allergens, most molecules 

have complex structures with a high level of 

organisation, namely presenting tertiary and 

quaternary conformations. This is the case of 

ATI, legumins, vicilins and PR-10 proteins, 

which present quaternary structures (Table 1) 

[48,70,76]. The loss of high-ordered structure 

contributes to a decrease in the overall 

allergenicity of most allergens (Table 3). In 

contrast, most members from legumins 

preserve immunogenic subunits (monomers) 

with IgE-binding capacity (e.g. peanut Ara h 3 

and soybean Gly m 6) [71]. 

2S Albumins, nsLTP, gliadins and profilins are 

proteins with compact globular structures 

[41,58,66,149]. The loss of protein 3D 

structures of 2S albumin and nsLTP families 

does not affect their allergenicity [23,126,150], 
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while for gliadins and profilins, their allergenic 

potential is reduced [122,149]. As expected, 

when the conformational changes occur at the 

secondary structure level, allergens from 

legumins, ATI and gliadins exhibit a decrease 

in their IgE-binding capacity [136,151]. 

Likewise, the alkylation/reduction of 2S 

albumins and gliadins is another factor that 

reduces their allergenic potential 

[23,122,152,153], which emphasises the 

importance of an intact structure that defines a 

major portion of allergenicity, although in some 

cases linear epitopes may also impact on 

allergenicity. 

Concluding remarks: 

 Destruction of conformation usually 

leads to: 

- Complete loss of allergenicity in food 

allergens related to inhalant pollen 

allergen sensitisation (e.g. apple Mal d 

1, hazelnut Cor a 1, cherry Pru av 1). 

- Partial loss of allergenicity in 2S 

albumins and LTP as primary 

sensitizers. 

- Partial or minor loss of allergenicity in 

vicilins and legumins (because of 

partially intact secondary structured 

domains and linear epitopes) as primary 

sensitizers. 

 Reduction/alkylation reduces the 

allergenic capacity of 2S albumins and 

gliadins caused by the destruction of 

disulphide bonds that are strong 

stabilisers of protein structure. 

 Stability of the protein structure is an 

important physical chemical 

characteristic of some allergenic proteins, 

but it is not a generic allergen 

characteristic. 

 

Post-translational modifications (PTM) 
PTM occur after translation in the cell and may 

affect the allergenic potential of proteins (Table 

3). Among PTM, protein glycosylation is one 

of the most relevant and complex processes, 

consisting of a covalent interaction between a 

sugar and the side chains of serine and 

threonine (O-glycosylation) or asparagine (N-

glycosylation) [154]. Glycosylated proteins are 

considered important mediators in different 

biological processes, such as protein folding, 

cell signalling, fertilisation and embryogenesis, 

but they are also involved in immune activation 

processes [155]. Hydroxylation and 

phosphorylation are also PTM of high 

importance for cellular processes. The first 

consists of a covalent process involving the 

addition of a hydroxyl group to the non-

nucleophilic functional group of proline, lysine 

and asparagine, while the second implicates the 

covalent addition of a phosphate group to the 

side chain of an arginine, lysine, histidine, 

tyrosine, serine or threonine residue [154,156].  

Regarding these PTM (Table 3), glycosylation 

is commonly referred to as one of the most 

important physicochemical properties of 

several allergens. However, besides the 

glycosylated allergens belonging to the vicilin 

family [69], only few other glycosylated 

allergens could be found within plant protein 

families, namely in legumins (lupine Lup a 

alpha-conglutin), in 2S albumins (stone pine 

Pin p 1) and in ATI (wheat Tri a 40). In general, 

the glycosylation of vicilins and wheat Tri a 40 

(subunit CM16), has been considered to 

increase the allergenic potential of these 

proteins. 

The presence of N-glycans in glycoproteins has 

been positively correlated with increasing 

human IgE-responses, although their clinical 

relevance is still a matter of debate. Shreffler et 

al. [157] demonstrated that peanut Ara h 1, but 

not its deglycosylated form, activated 

monocyte-derived dendritic cells as a measure 

of sensitisation, and by their ability to drive T-

cell proliferation. Contrarily, Lauer et al. [158] 

reported that the presence of N-glycans in 

hazelnut Cor a 11 did not affect its IgE-binding 

capacity at the site of elicitation. By now, in the 

case of vicilins, there is no conclusive evidence 

that the presence of N-glycans may be 

associated with increased allergenic 

responsiveness. 

Hydroxylation has been described to increase 

the elicitation potential of peanut Ara h 2 (2S 

albumin family) [113]. Phosphorylation can 

occur in members of the profilin family [68], 

but no correlation with their allergenic potency 

has been described so far. 

Concluding remarks: 
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 Glycosylation can increase the efficiency 

in the sensitisation capacity of vicilins. 

No effects for other allergens were found. 

 Hydroxylation increased the IgE-binding 

capacity of peanut Ara h 2 at the site of 

elicitation. No information was found for 

other allergens. 

 There is no hard evidence for the relation 

between a PTM (especially 

glycosylation) and the allergenic 

potential of a protein. At least for the 

plant allergens, glycosylation is not a 

prerequisite for a protein to have a high 

probability of being an allergen. 

 

Glycation and Aggregation 
Glycation, also referred as Maillard reaction, is 

a common effect of processing that allow 

modifying proteins to improve the 

technological properties of foods, such as 

solubility, gelling capacity, heat stability, water 

retention capacity, texture and flavour. The 

glycation process is a complex form of a non-

enzymatic reaction between an available amino 

group (from proteins) and a carbonyl-

containing moiety (usually from a reducing 

sugar), which normally occurs under mild and 

safe processing conditions [159]. Besides 

altering the functional/technological properties 

of proteins, glycation is also known to affect 

some biological parameters of food proteins, 

such as their bioavailability, digestibility and 

allergenicity. The conformational and 

biochemical alterations of proteins as a result of 

glycation may contribute not only to mask 

existing epitopes, but also to create neo-

epitopes which are able to activate an IgE-

response [160]. A very typical consequence of 

conformational changes of proteins, during 

glycation, is related to the formation of 

aggregates (complex macrostructures). 

For plant families (Table 3), glycation can 

differently affect proteins at the site of 

elicitation, although glycated products may 

also decrease the threshold for allergen 

sensitisation, comparing to their native 

counterparts [161]. For example, it has been 

described to have contradictory effect on the 

IgE-binding capacity of 2S albumins. In the 

case of peanut Ara h 2, there are reports stating 

the increased IgE-binding capacity of Ara h 2 

glycated products [162], while others describe 

that the formation of dimers and tetramers of 

Ara h 2 (aggregated structures) leads to a 

decrease in its degranulation capacity of mast 

cells/basophils [100,103,116]. Additionally, 

heat‐processing of peanut seems to be needed 

for the sensitisation of mice to native Ara h 6, 

suggesting that complex structures of high 

molecular weight (between Ara h 6 and Ara h 

1) formed during peanut roasting induced the 

production of IgE specific to native Ara h 6 

[163]. 

In the case of vicilins and nsLTP, Maillard 

reactions do not seem to affect their elicitation 

capacity. For vicilins, this fact is also well 

correlated with the presence of large insoluble 

aggregates that contribute to maintain their 

allergenicity. This is the case of hazelnut Cor a 

11 and peanut Ara h 1, whose glycation 

contributed to slightly decrease their IgE/IgG-

binding properties, but not the degranulation 

capacity of basophils. In fact, glycated Cor a 11 

and Ara h 1 products increased basophil 

degranulation capacity [116,164]. 

Glycation of nsLTP seems to protect the IgE-

binding capacity of these proteins by stabilising 

their conformational structures, as reported for 

Mal d 3 [119], whose glycation led to the 

addition of up to four glucose residues attached 

to Mal d 3 and to a minor reduction (2- to 10-

fold) in Mal d 3 potency to induce basophil 

histamine release compared to its native 

counterpart. A similar outcome was reported 

for cereal prolamins, whose Maillard products 

tend to form large aggregates, contributing to a 

maintain their IgE-binding capacity [89]. 

Legumins form insoluble aggregates due to 

glycation, which decreases their IgE-binding 

capacity, as it was demonstrated for soybean 

Gly m 6, almond Pru du 6 and tartarian 

buckwheat Fag t 3 [151,165-167]. The IgE-

binding capacity of the majority of the proteins 

from the PR-10 family decreases in glycated 

products (cherry Pru av 1) [168]. However, 

when PR-10 members (peanut Ara h 8) tend to 

form aggregates due to glycation, their IgE-

binding capacity is maintained or even slightly 

enhanced [169]. 
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Some members of the ATI family are naturally 

aggregated (e.g. wheat Tri a 28), fact that might 

be strongly correlated with their high IgE-

binding frequency among wheat allergic 

patients [170,171] and high sensitising capacity 

in murine food allergy model [172]. Regarding 

profilins, no data describing the effect of 

glycation and/or formation of aggregates could 

be found in literature. 

Concluding remarks: 

 Glycation and aggregation have, in most 

protein families, similar effects on 

protein allergenicity. 

 Glycation and aggregation decrease the 

IgE-binding capacity of gliadins, 

legumins and PR-10 proteins (except for 

Ara h 8). 

 Glycation and aggregation do not affect 

the IgE-binding capacity of nsLTP and 

vicilins. 

 Glycation has contradictory effects on the 

IgE-binding of 2S albumins, while the 

formation of aggregates increases their 

IgE-binding capacity. 

 

Heat stability 
The high stability of allergens towards food 

processing has been proposed as one of their 

most pertinent physicochemical characteristics 

[8]. Heat stability is a parameter of major 

importance and to evaluate its influence, all 

conventional thermal treatments (autoclaving, 

frying, boiling, dry or wet roasting, blanching 

and baking) applied to allergens of all plant 

protein families were extensively reviewed. 

Overall, the heat stability of allergens is well 

correlated with their allergenicity (Table 3). 

Members from 2S albumins, nsLTP, cereal 

prolamins, legumins and vicilins are classified 

as heat stable allergens. This fact is in good 

agreement with their high tendency to return to 

their native state, after being submitted to heat 

variations, as well as with their high content in 

conformational epitopes [23,71,89,95]. 

However, if pH is changed during heat 

treatments, proteins might not revert to their 

native state, such is the case of nsLTP which 

returns to native state under acidic conditions, 

but not under neutral ones [150].  

In contrast, proteins from PR-10 family are 

defined as heat-labile, since they are not likely 

to return to their original folding, highlighting 

the importance of the conformational epitopes 

in these allergens. This is the case of celery Api 

g 1, carrot Dau c 1, apple Mal d 1 and hazelnut 

Cor a 1, whose allergenicity is significantly 

reduced or even abolished upon submitted to 

different heat treatments [107,124,173,174]. 

Profilins have been considered heat labile, 

since their presence is commonly associated 

with raw or minimal processed foods (fruit, 

vegetables). However, there are also reports of 

profilins that preserve some IgE-binding 

capacity after being thermally processed, which 

is the case of celery Api g 4, tomato Sola l 1 and 

mustard Sin a 4 [129,149,175]. ATI proteins 

seem to be heat-labile [88,176], although they 

have also shown evidences of thermal stability 

[108]. 

Different heat treatments have distinct effects 

on the allergenicity of each plant protein 

family. Boiling/steaming are processes 

commonly contributing to maintain or reduce 

the IgE-binding capacity of most allergens (2S 

albumins, nsLTP, ATI and vicilins) 

[100,114,176,177], while roasting has 

contradictory effects depending on the allergen 

or allergen family (vicilins and 2S albumins). 

In the specific case of peanut 2S albumins (Ara 

h 2/Ara h 6), roasting has been reported to 

increase, maintain or even slightly reduce their 

IgE-binding capacity and ability to elicit 

histamine release [103,116,134,178]. 

Additionally, most of the severe thermal 

treatments (e.g. autoclaving) are able to reduce 

the IgE-binding capacity of several heat-stable 

allergens, such as nsLTP, legumins and 

vicilins, as are the examples of apple Mal d 3, 

cashew nut Ana o 2 and peanut Ara h 3, and 

peanut Ara h 1, respectively 

[117,119,179,180]. 

Concluding remarks: 

 2S Albumins, nsLTP, cereal prolamins, 

legumins and vicilins are heat stable 

(high tendency to return to native 

conformation, depending on the pH 

environment). 
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 Profilins and PR-10 proteins are heat 

labile (tendency to suffer irreversible 

unfolding). ATI have dual behaviour. 

 IgE-binding capacity of allergens of most 

protein families decreased at high 

temperatures (100ºC) in the presence of 

water (boiling/steaming), except for 

nsLTP (no effect). 

 IgE-binding capacity of 2S albumins, 

legumins, vicilins and PR-10 proteins 

increased/decreased (dual behaviour) at 

very high temperatures (e.g. above 180ªC 

without the presence of water – roasting). 

 IgE-binding capacity decreased for 

nsLTP, legumins and vicilins upon 

extreme thermal conditions (e.g. 

autoclave). 

 

Pressure stability 
Non-thermal treatments, such as those 

involving the use of high hydrostatic pressure 

(HHP) or HPP, are faced as innovative food 

preservation techniques, alternative to 

conventional thermal treatments [181]. Initially 

used to inactivate the growth of 

microorganisms in foods, thereby increasing 

product shelf life without affecting their quality 

and flavour, the application of high-pressure 

(HP) treatments has different effects depending 

on the food components. In proteins, HP 

techniques are known to disrupt non-covalent 

interactions (hydrogen, ionic and hydrophobic 

bonds), thus affecting their secondary and 

tertiary structures [182,183]. In the recent 

years, the application of high-pressure 

technology has gained special attention with 

respect to the potential effect on the 

allergenicity of food proteins. 

In general, allergens from plant families are 

typically pressure stable, since the application 

of HP treatments has no (or very limited) effect 

on the allergenic potential of nsLTP, profilins, 

vicilins and PR-10 proteins (Table 3). The 

application of HP treatments is known to alter 

the conformation of proteins (secondary and 

tertiary structures), although there are no 

evidences of significant modifications on the 

native state of referred proteins 

[91,127,184,185]. 

2S Albumins and legumins are also classified 

as pressure stable proteins, although some 

contradictory effects have been reported for 

both families (Table 3). Within 2S albumins, 

the immunoreactivity of peanut Ara h 2 is 

decreased by HP microfluidisation [186], while 

the immunoreactivity of Ara h 2 and Ara h 6 is 

not affected by HPP [184]. Likewise, the 

immunoreactivity of legumins, namely Ses i 6 

and Ses i 7 (sesame) is decreased by the 

application of HP treatments [187], while the 

IgE-binding capacity of walnut Jug r 4 is not 

affected by HPP [104]. However, the 

combination of pressure with other type of 

treatment (e.g. HPP coupled with heat) has 

been reported to decrease the allergenic 

potential of nsLTP, legumins and vicilins, as 

described for apple Mal d 3, walnut Jug r 4 and 

peanut Ara h 1, respectively [104,117,188]. 

Additionally, the combination of autoclave 

(pressure + heat) with enzymatic hydrolysis 

also contribute to decrease the IgE-binding 

capacity of legumins, as reported by cashew nut 

Ana o 2 and pistachio Pis v 2 and Pis v 5 [96]. 

Regarding ATI and cereal prolamins, no effect 

on the application of HP treatments has been 

reported so far. 

Concluding remarks: 

 Most plant allergens are pressure-stable 

(minor changes to protein conformational 

structure) since pressure processing 

methods (e.g. HPP) normally contribute 

to maintain the protein in its native-like 

state when compared to temperature 

processing. No data available for 

members of ATI and cereal prolamin 

families. 

 The IgE-binding capacity of nsLTP, 

profilins, vicilins and PR-10 is not 

affected by the application of high 

pressures, while for 2S albumins and 

legumins, it can be slightly reduced. 

 Combination of pressure-heat and 

pressure-heat-enzymatic hydrolysis 

treatments are more efficient in reducing 

the IgE-binding capacity of nsLTP, 

legumins and vicilins, because pressure 

change protein at conformational level 

(3D and 4D structures) making it more 



17 

susceptible to enzyme activity and 

temperature. 
 

Light/radiation Stability 
Besides HP treatments, other novel non-

thermal technologies have been used by the 

food industry to increase the safety and quality 

of foods, which include the application of 

gamma-radiation (γ-radiation), PEF and PUV 

light [182,189]. Treatments, like gamma-

radiation and UV radiation, are frequently used 

to increase the storage duration by destroying 

the surface pathogens present in foods, either 

by the application of an ionizing radiation (2-7 

kGy, medium dosage level) or UV rays 

(ranging 100-400 nm), respectively [182]. 

The PEF technology uses short pulses of 

electricity to inactivate microorganisms, 

preserving the organoleptic features of foods 

[190]. The application of microwave radiation 

(electromagnetic wave) has been widely used 

for food processing (e.g. thawing of frozen 

foods, pasteurisation, drying, and pre-cooking). 

Although being normally classified as a 

thermal processing technique, microwave 

radiation has also a non-thermal effect on food 

proteins [182]. 

Like in the previous cases, protein stability 

towards light or radiation treatments also 

constitutes an important physicochemical 

parameter of allergens, although the knowledge 

about their effects is still very limited (Table 3). 

The application of pulsed UV-light 

significantly reduces the IgE-binding capacity 

of 2S albumins (peanut Ara h 2), legumins (Ara 

h 3 and soybean Gly m 6) and vicilins (Ara h 1) 

[191-193]. The effect of gamma-radiation was 

exploited for legumins, vicilins and profilins, 

but in all cases, this technology did not induce 

any alteration in the IgE-binding capacity of 

sesame Ses i 6 and Ses i 7, cashew nut Ana o 1 

or celery Api g 4, respectively [91,179,194]. 

The allergenic potential of profilins and PR-10 

proteins is significantly reduced or even 

abolished by microwave (100ºC, 30 min), as 

assessed by SPT, mediator release assays 

and/or EAST, namely in the case of celery Api 

g 4 and Api g 1, respectively [90,91]. For cereal 

prolamins (gliadins), their immunoreactivity 

varies according to the energy applied, 

increasing to a maximum around 40 kJ and then 

gradually returning to its initial level [195]. 

Microwave heating has no effect on the IgG-

binding capacity of 2S albumins (cashew nut 

Ana o 3), legumins (almond Pru du 6 and 

cashew nut Ana o 2) and vicilins (Ana o 1) 

[167,179,196]. Likewise, microwave heating in 

combination with ultrasound does not affect the 

IgE-binding capacity of nsLTP (e.g. peach Pru 

p 3) [188]. Data on the effect of light/radiation 

on the allergenicity of ATI is not yet available 

in the literature. 

Concluding remarks: 

 The IgE-binding capacity of most plant 

families is not affected by treatments with 

radiation (only minor exceptions). 

 Exceptions: the IgE-binding capacity is 

increased in cereal prolamins and 

decreased in profilins and PR-10 towards 

microwave radiation. 

 2S Albumins, legumins and vicilins are 

less stable towards light treatments, since 

their IgE-binding capacity is decreased 

(by conformational alterations in protein 

native structure). 

 

Mechanical/chemical stability 
Another non-thermal process commonly used 

by the food industry is the ultrasound or 

sonication treatment. This type of food 

processing applies mechanical waves (20-100 

kHz) to promote the formation/collapse of 

bubbles, due to compression and rarefaction 

phenomena. When the bubbles reach a critical 

size, they collapse generating local regions of 

high temperatures and pressures, which 

subsequently induce protein conformational 

changes [182]. 

In general, most allergens present stability 

towards mechanical processes (e.g. sonication), 

thus maintaining their allergenicity after being 

treated with the mechanical processes (Table 

3). Considering the referred food processing 

methods, the ultrasound treatment can be 

applied in combination with other processes 

(Table 3). However, the information on the 

effect of ultrasound on the allergenicity of plant 

protein families is very limited, contributing to 

maintain or to slightly decrease the IgE-binding 

capacity of nsLTP (when combined with 



18 

microwave heating) [188] or legumins (when 

combined with enzymatic hydrolysis and heat), 

respectively [96]. 

The application of chemical and enzymatic 

processes often reduces the allergenicity of 

several proteins [197]. Among those, the 

fermentation and enzymatic hydrolysis using 

different enzymes are considered traditional 

methods to process foods. The first is a 

microbial process based on the production of 

enzymes by the microorganisms, which alters 

the organoleptic characteristics of the food, 

contributing to increase its stability and 

duration [198]. The second uses specific 

enzymes to disrupt protein structure, thus 

increasing the added value of food proteins by 

altering the sensory quality of proteins 

(modification of food texture and flavour). 

Additionally, this process is also known to 

improve the digestibility and nutrient 

bioavailability of food proteins [199]. 

The enzymatic hydrolysis can be considered as 

one of the most effective methods of modifying 

the allergenicity of food proteins (depending on 

the type of enzymes used) because it is able to 

induce the collapse of conformational epitopes 

and the cleavage of linear ones [182]. 

Deamidation is one of this processes, which 

enables the conversion of glutamine and 

asparagine into glutamic acid and aspartic acid 

residues, respectively, to increase the solubility 

of gliadins, by means of chemical processes or 

enzymatic ones (e.g. transglutaminases) [200]. 

In general, the enzymatic hydrolysis of proteins 

from ATI and PR-10 families reduce their IgE-

binding capacity (Table 3), as described for 

brown rice Ory s aA_TI and cherry Pru av 1 

[168,201]. For 2S albumins, enzymatic 

hydrolysis has been described to maintain or 

decrease their allergenicity [98,102]. In the 

case of cereal prolamins, their enzymatic 

hydrolysis with transglutaminase has been 

reported to increase the IgE-binding capacity of 

gliadins [132]. 

The deamidation of gliadins has been reported 

to present contradictory effects on their 

allergenicity. On one side, deamidation 

decreases the IgE-binding capacity of gliadins 

towards the sera of wheat allergic patients 

[136], but on the other side, it contributes to an 

increased severity of the clinical symptoms in 

patients allergic to deamidated gluten 

[121,202,203]. When allied to other processes 

(heat, sonication), the enzymatic hydrolysis 

contributes to the reduction or maintenance of 

IgE-binding capacity of legumins or profilins, 

respectively [96,175]. 

The process of microbial fermentation has only 

been tested for legumins and vicilins, in the 

specific case of soybean, which is often 

consumed in the form of tempeh, miso and 

yogurt. Microbial fermentation enabled a 

drastic reduction in the IgE-binding capacity of 

both Gly m 6 (legumin) and Gly m 5 (vicilin), 

as well as other allergenic proteins from 

soybean [204]. Acid fermentation has been 

tested for profilins and PR-10 proteins, namely 

for Api g 4 and Api g 1, respectively, 

contributing to a reduce the IgE-binding 

capacity of both celery allergens [91]. 

The use of reducing agents (e.g. sodium 

sulphite) for food processing is also commonly 

applied. The treatment of legumins (cashew nut 

Ana o 2) and 2S albumins (peanut Ara h 2, 

cashew nut Ana o 3) with reducing agents 

seems to contribute to a significant decrease in 

their IgE-binding capacity, which might be 

related to the destruction of allergen 

conformational epitopes [97,153]. 

Concluding remarks: 

 The stability of proteins is affected by 

different processing techniques, whereof 

hydrolysis influences the intactness 

(integrity) of the proteins and mechanical, 

heat and pressure change the protein 

structure (e.g. unfolding). 

 Changes in protein structure is seen for 

nsLTP and legumins (when ultrasound and 

heat are applied), maintaining or lowering 

their IgE-binding capacity. 

 Changes in protein size (resulting in 

protein fragmentation, as consequence of 

fermentation, enzymatic hydrolysis or 

treatments with reducing agents) normally 

contributes to maintain or decrease the 

IgE-binding capacity of 2S albumins, ATI, 

legumins, vicilins, profilins and PR-10. 

 Changes in protein size by formation of 

large aggregates or cross-linked proteins 

(oxidases), maintains or enhances the IgE-
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binding capacity of cereal prolamins and 

2S albumins, respectively.  

 Deamidation can result in decreased 

allergenicity of gliadins in wheat allergic 

patients but increased allergenic potential 

in deaminated-gluten allergic patients 

(increased severity of clinical symptoms).  

 

Digestibility and epithelial transport 
Resistance to gastrointestinal digestion may not 

be a conclusive factor for a protein to be an 

allergen, since it does not predict whether a 

protein is likely to be or to become an allergen 

[205,206]. Additionally, in vitro digestion may 

not be representative of physiological 

conditions (in vivo digestion), when 

considering enzyme-to-protein ratios (e.g. 

pepsin), optimal pH, absence of pancreatin 

digestion or the presence of co-factors (such as 

surfactants) and other food components (matrix 

effect) [205,206]. In order to comprehend the 

allergic response, it is essential to evaluate the 

influence of digestion on allergens, with special 

concern to their structural integrity and 

subsequent capacity to prompt T‐cell 

differentiation and IgE‐mediated activation of 

effector cells upon gastrointestinal uptake [85].  

Regarding plant food allergens (Table 3), most 

of the studies evaluate the effect of digestion on 

allergens using pure proteins or extracts, 

whereas only very few include or use the whole 

food [109,207-209]. The profilins and PR-10 

proteins are critically affected by the 

gastrointestinal digestion, being totally 

degraded during the process, which can lead to 

a severe reduction, or even to the elimination of 

their IgE-binding capacity. This is the case of 

profilins, such as mustard Sin a 4, apple Mal d 

4, melon Cuc m 2 and cherry Pru av 4 

[118,149,210-212]. Likewise, the simulated 

gastrointestinal degradation of PR-10 proteins, 

such as apple Mal d 1, celery Api g 1 and 

hazelnut Cor a 1, revealed that these proteins 

were completely fragmented after a few 

minutes of exposure to pepsin [106,213,214]. 

This is well correlated to the fact that both 

families of proteins are classified as class 2 

food allergens [215], which are normally 

responsible for triggering mild clinical 

symptoms, often limited to the OAS.  

Members of the 2S albumins (Brazil nut Ber e 

1, peanut Ara h 2, mustard Sin a 1 and hazelnut 

Cor a 14), ATI and cereal prolamins are highly 

resistant to proteolysis, allowing only partial 

degradation, thus contributing to the 

preservation of their IgE-binding capacity 

[23,89,93,109,112,149,152,216]. Proteins of 

the nsLTP family are also able to preserve their 

allergenicity since they are only partially 

digested, although their resistance to 

proteolysis is highly influenced by the type of 

lipid-ligand associated with each allergen 

[42,110]. 

2S Albumins, nsLTP, cereal prolamins and 

vicilins partially maintain some structural 

integrity after digestion, thus facilitating their 

involvement in transcellular mechanisms that 

allow them to cross the epithelium barrier in 

their native state, which greatly contribute to 

increase their allergenic potential 

[10,45,102,112,217-219]. This is well related 

to the fact that these protein families are 

classified as potent class 1 food allergens, being 

capable of primary sensitisation and induction 

of moderate to severe clinical symptoms in 

allergic individuals. 

When compared to vicilins, legumins are 

slightly less resistant to proteolysis, suffering 

partial degradation after the gastrointestinal 

digestion. Legumins are more degraded by 

pepsin activity than by trypsin, leading to a 

small decrease in their IgE-binding capacity 

[71,105,180,220,221]. However, legumins are 

highly organised structures, presenting 

immunogenic subunits even after digestion, 

thus contributing to partially retain their 

allergenic potential.  

Concluding remarks: 

 Profilins and PR-10 proteins are rapidly 

degraded by pepsin during gastric 

digestion, drastically reducing or even 

eliminating their IgE-binding capacity. 

 2S Albumins, nsLTP, ATI, cereal 

prolamins, legumins and vicilins are 

strongly resistant to proteolysis, with 

only partial degradation after complete 

gastrointestinal digestion. All these 

proteins tend to preserve their 

allergenicity after passing the digestion 

process. 
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 2S Albumins, nsLTP, cereal prolamins 

and vicilins basically preserve their 

structural integrity after digestion, 

allowing them to cross the epithelium 

barrier (by transcellular mechanisms) in a 

native state and increasing their 

allergenic potential. 

 

Ligand/Lipid binding and interactions 
Among their physicochemical properties, 

several food allergens are also capable of 

binding ligands, such as metal ions and lipids, 

which is known to enhance their thermal and 

proteolytic stability [9]. Some plant food 

allergens occur naturally as lipid-protein 

complexes, such as the nsLTP that are 

structurally prepared to transport lipids in their 

hydrophobic cavity. Owing to this 

characteristic, nsLTP are more resistant to 

thermal processing and to proteolytic activity, 

thus contributing to preserve their allergenicity 

(Table 3) [110]. 

Besides nsLTP, there are two proteins from the 

2S albumin and PR-10 families, namely the 

Brazil nut Ber e 1 and peanut Ara h 8, 

respectively, which present hydrophobic 

regions capable of binding lipids [135,169]. 

Like for the nsLTP, lipid-binding allows these 

two allergens to maintain some IgE-binding 

capacity upon processing and digestion. 

Additionally, the interaction between Ber e 1 

and its lipid-ligand increases the sensitisation 

capacity of this allergen [135]. 

Along with lipid-binding capacity of some 

allergens, the interactions between lipids and 

proteins have also been highlighted as very 

relevant factors in the elicitation of an allergic 

response. Lipid-protein interactions can modify 

the digestion of the allergen within the 

gastrointestinal tract, aiding their passage 

through the intestinal epithelial barrier, thus 

influencing the allergenic potential of a protein 

[43]. 

The interaction of legumins and vicilins with 

lipids protect these proteins from enzymatic 

degradation, enabling to preserve their 

structural integrity and subsequently 

contributing to maintain their allergenicity 

(Table 3), which has been described for Sin a 2 

(mustard legumin) and Ara h 1 (peanut vicilin) 

[105]. Similarly, in the case of 2S albumins 

(mustard Sin a 1) and PR-10 proteins (apple 

Mal d 1 and birch pollen Bet v 1), the presence 

of lipids seems to preserve the integrity of the 

molecules upon digestion, thus conserving or 

even slightly increasing their allergenicity 

[149,222]. These data are well correlated with 

some recent studies reporting that lipids can act 

as adjuvants, stimulating the innate immunity 

followed by improved allergen-specific 

immune responses when used in combination 

with a specific allergen [43]. 

Concluding remarks: 

 Lipid binding propensities of nsLTP and 

two proteins: Brazil nut Ber e 1 (2S 

albumin) and peanut Ara h 8 (PR-10). 

 Allergens (nsLTP, Ber e 1 and Ara h 8) 

that interact with their lipid-ligands show 

molecular stability against food 

processing and (duodenal) digestion. 

 Increased stability towards food-

technological processing and digestion 

leads to preservation of the IgE binding 

capacity of nsLTP, Ber e 1 (2S albumin) 

and Ara h 8 (PR-10). 

 The presence of lipids during protein 

digestion has a protecting effect on the 

proteolysis of proteins, contributing to 

maintain or even increase the IgE-

binding capacity of 2S albumins, 

legumins, vicilins and PR-10 proteins. 

 

Can Physicochemical Properties 
Shape Allergenicity? 
Food allergens were previously defined as 

small in size (10-70 kDa), with globular 

conformation, often glycosylated and resistant 

to heat, low pH and enzymatic activity 

[223,224]. However, despite the commonly 

accepted concept that allergens conserve a 

certain pattern of specific physicochemical 

properties, this might not always be true. In 

fact, with the increasing number of proteins that 

has been identified and classified as food 

allergens, there are several important allergens 

that do not fit into this general classification 

(Tables 2-4). So, at this stage, is it possible to 

establish straightforward correlations between 

specific physicochemical properties and their 
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impact on protein allergenicity? Or should this 

concept be carefully revised? 

According to the tendencies observed in our 

analysis, the impact that each physicochemical 

property has on protein allergenicity is 

summarised in Table 4. In most cases, 

independent effects of distinct physicochemical 

proteins often result in a common pattern, 

which relates to the preservation of protein 

structural integrity. 

In the universe of food allergenic proteins, 

some are glycosylated, but this PTM is not 

always synonym of increased allergenicity. 

Among the most relevant families of plant 

proteins, glycosylation is not a common feature 

of allergenicity, since only vicilins and three 

other proteins (stone pine Pin p 1, lupine Lup a 

alpha-conglutin and wheat Tri a 40) are 

glycosylated. Nonetheless, in those cases, 

glycosylation contributes to enhance their IgE-

binding capacity. 

Small proteins with globular structure are more 

stable to external interactions, but there are 

plenty examples of potent allergens that present 

high molecular weight (>70 kDa) and high 

level of structural organisation (quaternary 

structure), such as vicilins and legumins. Still, 

the loss of secondary structures and the 

destruction of disulphide bonds normally 

contribute to reduce the allergenicity of most 

proteins, which means that protein structure is 

an important physicochemical parameter. 

Protein stability towards heat could be 

considered a physicochemical parameter that 

potentially shape the allergenicity of plant 

allergens, since most potent food allergens are 

heat-stable (e.g. 2S albumins, vicilins). 

However, this property fails to explain why 

many heat-labile proteins are highly relevant 

food allergens (e.g. profilins, PR-10 proteins). 

In this context it is also important to emphasise 

that profilins and PR-10 allergens in fruits and 

vegetables are usually allergenic because they 

are ingested as raw or weakly processed foods, 

which means that proteins are still in their 

native shape. This type of allergy is usually 

restricted to the oral cavity (OAS), although 

reports of symptoms with increased severity 

have also been described [94,225]. 

Protein resistance towards proteolytic activity 

(enzymatic hydrolysis, chemical hydrolysis or 

fermentation) could be positively correlated 

with allergenic potential, although with 

different expected outcomes. The breakdown 

of protein in small size peptides (strategy 

followed for the production of hypoallergenic 

foods) normally contributes to mitigate peptide 

allergenicity, while enzymatic cross-linking of 

proteins can contribute for the opposite effect 

(e.g. cereal prolamins) (Table 4) [132,137]. 

Protein resistance to digestion process, 

especially pepsin resistance, cannot be 

considered as good predictor for allergenicity, 

once it fails to explain the existence of potent 

pepsin-labile allergens, such as peanut Ara h 3 

(legumin,) and soybean Gly m 6 (legumin) 

[71]. The way allergenic proteins interact with 

lipids during the digestion process might 

contribute to conserve their allergenic 

potential, since lipids may stabilise proteins and 

thus preserve structure related allergenicity. 

It is also important to stress that it is very 

difficult to determine how protein changes 

affect the development or clinical 

manifestations of food allergies in real-life 

scenarios. Ethical reasons and limitations in 

monitoring the molecular changes of allergens 

in real-life processed food matrices, and 

subsequent processing in humans, highlight the 

currently unmet needs faced in the food allergy 

field. The few studies that evaluate the 

sensitising capacity of modified proteins are 

mostly performed in murine allergy models. 

For instance, Bellinghausen et al. [172] used a 

humanised murine allergy model to assess 

allergen-induced gut inflammation. The authors 

concluded that allergen-specific human IgE 

was greatly enhanced in mice on wheat ATI-

containing diet than in mice on gluten-free diet. 

Accordingly, ATI were considered as key 

sensitizers of wheat allergy and that these 

proteins can be used in nutritional therapeutic 

strategies to address allergen- and gluten-

induced intestinal and extraintestinal 

inflammation [172]. Likewise, Denery‐Papini 

et al. [121] and Gourbeyre et al. [123] reported 

that, despite different sensitisation paths (oral 

and intraperitoneal), deamidated gliadins were 

much more competent than native gliadins in 
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inducing allergic sensitisation in mice, and 

subsequently, in triggering a more severe 

elicitation phase. Mirotti et al. [135] also 

described that lipids were necessary for the 

sensitisation of mice to Ber e 1 (Brazil nut).  

Studies carrying out SPT or DBPCFC are rare, 

mostly due to all ethical issues associated with 

it. SPT are normally conducted using whole 

protein extracts [95,104,117,124,126-128], 

whose results require further verification by 

performing oral food provocation. In addition, 

appropriate analytical methods are required to 

understand the physicochemical changes in the 

food allergens. The combination of analytical 

and clinical characterisation may allow 

drawing conclusions about the impact of 

physicochemical parameters on protein 

allergenicity with regard to clinical 

manifestation.  

However, very few SPT have been performed 

with modified proteins, such as the case of the 

work described by Sancho et al. [119] and 

Vassilopoulou et al. [110], where purified 

native versus heat Mal d 3 (100°C, 60 min) and 

purified native versus digested Vit v 1, 

respectively, were used to assess the effects of 

thermal processing or enzymatic hydrolysis on 

the allergenicity of tested proteins. Likewise, 

Denery‐Papini et al. [121] and Palosuo et al. 

[132] tested natural versus deaminated gluten 

and native versus transglutaminase cross-

linked Tri a 19, respectively, by SPT to evaluate 

the effect of chemical hydrolysis and enzymatic 

cross-linking on the allergenicity of specific 

wheat proteins. 

DBPCFC is normally conducted using the 

whole allergenic food blinded within a complex 

food matrix and the outcome of a food 

challenge is correlated with the specific 

allergenic food. As example, a DBPCFC was 

carried out in humans using raw wheat flour 

and deamidated gluten in a stewed apple, where 

authors concluded that deamidated gluten could 

induce sensitisation to deamidated gliadins in 

wheat tolerant individuals [121].  

 

Conclusions 
The data collected from all the reported studies 

present a huge variability, being normally 

defined at a qualitative level, which increases 

the complexity of the analysis presented in this 

review. It became clear that our knowledge 

provided by the literature still presents 

numerous gaps. 

One of these major gaps concerns the lack of 

harmonised protocols since each study is 

conducted in different conditions. The use of 

different immunoassays, different sources of 

patients’ sera (affected by geographical 

differences, age, sex, presence of other 

diseases, genomic heritage, among others), sera 

or plasma, and the use of pure protein, pure 

extracts or matrix, are just some examples 

among the numerous variables that must be 

considered when conducting this type of 

studies. Additionally, most information come 

from studies evaluating the IgE-binding 

capacity of allergenic proteins as affected by 

different parameters, rather than from 

functional assays, DBPCFC or sensitisation 

tests, thus hampering their correct correlation 

with real clinical outcomes. 

Another important gap, concerns the lack of 

studies evaluating simultaneously the impact of 

such physicochemical proteins in non-allergens 

and allergens of the same family, or even of the 

same type [205,226]. Studying the 

physicochemical properties of allergens can be 

faced as the fundamental background for better 

understanding food allergy and subsequently 

for developing a better allergenicity assessment 

of food proteins. 

The exact role that each parameter has on the 

allergenicity of different types/families of plant 

food allergens is not yet fully understood. 

Within each protein family of plant foods, their 

allergenic members seem to follow the same 

tendency, although occasional exceptions can 

be observed. At individual basis, some 

parameters like heat stability, resistance to 

proteolytic activity and structural stability are 

considered of vital importance for protein 

allergenicity. However, since most of the 

methods used for allergenicity assessment are 

made indirectly, there is still a significant gap 

between the influence of each physicochemical 

parameter and their real clinical impact. 

Ideally, the impact of processing should be 

assayed in vivo in humans using food grade 

preparations. Therefore, in order to study the 
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molecular characteristics in detail, the allergens 

would need to be prepared (extracted, purified) 

from the food grade material, which can result 

in a hard task (difficult and prone to bias), since 

usually only native-like structures are 

extracted. Consequently, other immunoreactive 

and bioavailable structures might be neglected 

due to the fact of being insoluble under the 

conditions of experimental investigation. By 

contrast, one must consider that working on 

single allergens, processed under lab conditions 

might help to better characterise allergens at the 

molecular level, although this experimental 

setting might not fully reflect the in vivo reality. 

Moreover, for human in vivo studies, such food 

grade material would need to be prepared under 

good manufacture practice conditions. There is 

also the debate about using animal models to 

predict the allergenicity, but there is still a 

certain degree of uncertainty to which extend 

the findings can be extrapolated to the human 

condition.  

In summary, several physicochemical 

parameters have been described in the scientific 

literature that can explain their impact on plant 

protein allergenicity (Figure 1). Especially 

parameters that support protein structure 

integrity are of importance. Despite observed 

tendencies within conserved protein families of 

plant food allergens, several exemptions exist 

at the level of individual allergens. Hence, we 

are likely able to explain allergenicity for many 

of the identified plant food allergens, especially 

at the site of symptom elicitation. However, 

using this information for allergenicity 

prediction of novel proteins or in relation to 

food processing parameters remains a future 

challenge. Moreover, the knowledge about 

physicochemical parameters that influence 

sensitisation is scarce and requires further 

attention in food allergen research. 
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Table 1. Data on the composition and structure of proteins from the most important plant allergen families.  

 
2S Albumins nsLTP ATI Cereal prolamins Profilins Legumins Vicilins PR-10 proteins 

Size (aa) 130-160 100-120 120-160 (subunit) 430-480 (gliadin) 

~380 (LMW) 

~850 (HMW) 

~130 480-560 500-600 150-160 

MW (kDa) 10-18 9.5-10.5  
12-16 (subunit) 

30-50 (gliadin) 
40 (LMW) 

85-90 (HMW) 

12-15 360 
~60 (subunit) 

150-190 
40-80 (subunit) 

15-17 

Biological function 

(Abundance) 

Seed storage proteins 

(20-60% depending on 

species) 

Transport proteins. 

(highly expressed in 

pollens, leaves, fruit 
peels) 

(4% of total proteins) 

Regulatory proteins. 

(4% of total proteins) 

Seed storage proteins. 

 (10-20% glutenins, 

40-50% gliadins) 

Structural proteins. 

(highly abundant in 

all cells, especially in 
pollen) 

Seed storage proteins. 

(50-70% depending on 

species) 

Seed storage proteins. 

(~20% depending on 

species) 

Regulatory proteins. 

(highly expressed in 

case of biotic stress) 

Protein structure Tertiary 

Heterodimer 

Tertiary 

Monomer 

Tertiary/quaternary 

Homodimer 

Tertiary 

Monomer (gliadin) 
Polymer (glutenin) 

Tertiary 

Monomer 

Quaternary 

Hexamer 

Quaternary  

Trimer or homotrimer 

Tertiary/quaternary 

Monomer 

Crystal structures 

(Method: 

X-ray diffraction) 

 

 

 

 

 

 

No crystal structures 

available for gliadins 

or glutenins 

 

   

Example of allergen 

(source) 

Peanut Ara h 6 Peach Pru p 3 Wheat Tri a 28 Wheat 
 

Birch pollen Bet v 2 Soybean Gly m 6 Peanut Ara h 1 Celery Api g 1 

PDB accession 

number 

1W2Q 2B5S 1HSS NR 1CQA 2D5H 3SMH 2BK0 

MW, molecular weight; aa, amino acid; NR, not reported; LMW, low molecular weight; HMW, high molecular weight; PDB, Protein Data Bank, https://www.rcsb.org/ . 

 

https://www.rcsb.org/


32 

Table 2. Summary of the assays used to assess the effect of physicochemical parameters on the allergenicity of proteins from plant food families. 

  Specific serum screening Cellular in vitro or ex vivo assays In vivo assays 

Families 
Immunoblot/ 

dot blot 
ELISA 

RAST/EAST/ 

ImmunoCAP 

Basophil 

activation test 

RBL mediator 

release assay 

T-cell 

proliferation 

Murine IgE 

response 

Murine 

anaphylaxis 

Human Skin 

prick tests* 

Human Food 

challenges* 

2S albumins √ √ √ √ √ √ √ √ √ √ 

nsLTP √ √ √ √ √ NR NR NR √ √ 

ATI √ √ NR √ NR √ √ NR √ NR 

Cereal prolamins √ √ √ √ √ √ √ √ √ √ 

Profilins √ √ √ NR √ NR NR NR √ √ 

Legumins √ √ NR NR √ √ NR NR √ NR 

Vicilins √ √ √ √ √ √ NR NR √ √ 

PR-10 √ √ √ √ √ √ NR NR √ √ 

IL, interleukins; IFN, Interferons; RAST, radioallergosorbent test; EAST, enzyme allergosorbent test; RBL, rat basophilic leukaemia; ELISA, enzyme‐linked immunosorbent assay; √, confirmation of tests performed as 

reported on literature; NR, no evidence found in literature; * Human SPT and food challenges are normally performed using pure food extracts or entire food (either alone or hidden within a prepared matrix), respectively. 
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Table 3. Summary of the physicochemical parameters and their effect on the allergenicity of different plant protein families 

Physicochemical 

Parameters 

2S Albumins nsLTP ATI Cereal prolamins Profilins Legumins Vicilins PR-10 proteins 

PTM Glycosylation (↑ Pin p 1) 

Hydroxylation (↑ Ara h 2) 

NR Glycosylation (↑ Tri a 

40 subunit CM16) 

NR NR NR ↑ (glycosylation) NR 

Protein structure → (Loss of 3D structure), 

↓ (Reduction/alkylation) 

→ (loss of 3D) ↓ (Loss of 3D or 4D), 

↓ (rupture of S-S) 

↓ (Loss of 2D), 

↓ (rupture of S-S) 

↓ (Loss of 3D) ↓ (Loss of 4D), 

↓ (rupture of S-S) 

→ (Loss of 4D) ↓ (loss of 3D or 4D) 

Glycation ↑↓ → NR ↓ NR ↓ → ↓, → 

Aggregation ↑ No aggregation NR → NR ↓ → → (for Ara h 8) 

Heat stability Heat-stable: 

↑↓ (roasting), 
↓ (boiling); 

↓ (frying), 

↓ (heat + pressure) 

Heat-stable: 

→ (boiling); 
→ (baking); 

↓ (extreme heat) 

Heat-stable or heat-

labile? 
↓ (boiling); 

↓ (steaming); 

↓ (extreme heat) 

Heat-stable: 

↓ (heat treatments) 

Heat-labile: 

↓ (heat treatments) 

Heat-stable: 

→ (frying); 
→ (dry roasting); 

→ (blanching); 

↓ (autoclaving); 
↓ (extreme heat) 

Heat-stable: 

↑ (roasting), 
↓ (boiling); 

↓ (extreme heat) 

Heat-labile: 

↓, → (roasting) 

Pressure stability Pressure-stable: 

→ (HPP); 

↓ (HP microfluidisation) 

Pressure-stable: 

→ (HPP), 

↓ (HPP + heat) 

NR NR Pressure-stable: 

→ (HPP) 

Pressure-stable: 

↓, → (HPP) 

↓ (HPP + heat) 

Pressure-stable: 

→ (HPP), 

↓ (pressure + heat) 

Pressure stable: 

→ (HPP) 

Light/radiation 

stability 

Light-stable: 

→ (microwave); 
↓ (PUV light) 

Light-stable: 

→ (PEF); 
→ (microwave + 

ultrasound) 

NR Light-stable: 

↑ (microwave) 

Light-stable: 

→ (γ-radiation); 
→ (high voltage 

impulses); 

↓ (microwave) 

Light-stable: 

→ (γ-radiation); 
→ (microwave); 

↓ (PUV light) 

Light-stable: 

→ (γ-radiation); 
→ (microwave); 

↓ (PUV-light) 

Light-stable: 

↓ (microwave) 

Mechanical/ 

Chemical stability 

(Protein integrity) 

↓ (alkylation/reduction), 
→ (enzymatic hydrolysis) 

→ (ultrasound) ↓ (enzymatic 
hydrolysis) 

↑↓ (enzymatic hydrolysis) 
↑↓ (deamidation of gliadins) 

→ (enzymatic 
hydrolysis with 

papain + heat) 

↓ (fermentation; reducing 
agents + heat; or enzymatic 

hydrolysis + sonication + 

heat) 

↓ (fermentation) ↓ (enzymatic 
hydrolysis) 

Digestibility → (partial pepsin/trypsin); 

↗ (presence of lipids) 

→ (partial 

degradation, most 
peptides remain 

reactive) 

→ (resistant to 

digestion) 

→ (partial degradation, most 

peptides remain reactive) 

↓ (after pepsin) ↓ (after pepsin); 

→ (after trypsin); 
↓ (after pepsin + trypsin); 

→, ↗ (presence of lipids) 

→ (after digestion), 

→, ↗ (presence of 

lipids), 

→, ↗ (presence of 

glycation 
aggregates), 

↓ (after pepsin), 

→, ↗ (presence of 

lipids) 

Epithelial transport ↑ ↑ NR ↑ NR NR ↑ NR 

Lipid binding/ 

lipid interaction 

↗ ↑ NR NR NR →, ↗ →, ↗ → 

2D, secondary structure; 3D, tertiary structure; 4D, quaternary structure; HPP, high-pressure processing; S-S, disulphide bond; → maintain IgE-binding capacity; ↑ increase IgE-binding capacity; ↓ decrease IgE-binding 

capacity; ↑↓ contradictory data about the effect on IgE-binding capacity; ↗ slightly increase IgE-binding capacity; NR, not reported; PEF, pulsed electric fields; PUV, pulsed ultraviolet. 
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Table 4. Main conclusions about the adequacy of each physicochemical property as potentially shaping allergenicity. 

 Impact on IgE-binding 

capacity 

Supporting evidence/Main concerns 

ABUNDANCE 

(allergen content in relation to total protein) 

High Potent allergens are often highly abundant. 

BIOLOGICAL FUNCTION High Potent allergens display biological functions as capacity, transport and defence. 

PTM 

Glycosylation Limited Increases allergenicity, most likely IgE-binding regions containing N-glycans. Information mostly limited to vicilins 

Hydroxylation Limited Increase the allergenic potential of Ara h 2 (limited to 2S albumins) 

Phosphorylation - Not reported 

LIPID-BINDING High Lipid binding stabilises protein structure, increasing resistance to proteolysis and processing.  

PROTEIN STRUCTURE 

Loss of 2D High Decreases allergenicity of most plant allergens. Loss of structural integrity. Valid for conformational epitopes 

Loss of S-S bonds High Decreases allergenicity of most plant allergens. Loss of structural integrity. Valid for conformational epitopes 

GLYCATION Low or inconclusive Depending on the protein family, glycation decreases, maintain or increase allergenicity 

AGGREGATION Low or inconclusive Depending on the protein family, aggregation decreases, maintain or increase allergenicity 

HEAT STABILITY High Potent allergens are heat stable. Fails to explain potent heat-labile allergens (e.g. profilins, PR-10 proteins) 

PRESSURE STABILITY Limited Potent allergens are pressure stable, but in vivo evidence has hardly been studied. Maintain protein integrity. 

LIGHT/RADIATION STABILITY High Potent allergens are light/radiation stable. Maintain protein integrity. 

MECHANICAL STABILITY Low Most allergens are stable to mechanical processing. Maintain protein integrity. 

CHEMICAL STABILITY 

Changes in protein structure High Maintain or reduce the IgE-binding capacity. Limited information to nsLTP and legumins 

Changes in protein size (fragmentation) High Maintain or reduce the IgE-binding capacity of 2S albumins, ATI, legumins, vicilins, profilins and PR-10 families. 

Fragmentation of protein into peptides. Loss of protein primary structure. 

Changes in protein size/structure High Enhance and maintain the IgE-binding capacity. Limited information to cereal prolamins and 2S albumins 

DIGESTIBILITY 

Pepsin resistance Low or inconclusive Fails to explain potent pepsin-labile allergens (e.g. Ara h 3, Gly m 6) 

Trypsin/chymotrypsin resistance High Most allergens are resistant to trypsin/chymotrypsin activities. 

Lipid interaction High Presence of lipids protects allergens from proteolysis. Maintain protein integrity. 
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Figure Captions 

Figure 1 – Life cycle of food allergens: from intact source molecules to highly degraded 

peptides with immunological activity. 

 


