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Let (Ln) n≥0 be the Lucas sequence given by L0 = 2, L1 = 1 and Ln+2 = Ln+1 + Ln for n ≥ 0. In this paper, we are interested in finding all powers of three which are sums of two Lucas numbers, i.e., we study the exponential Diophantine equation Ln + Lm = 3 a in nonnegative integers n, m, and a. The proof of our main theorem uses lower bounds for linear forms in logarithms, properties of continued fractions, and a version of the Baker-Davenport reduction method in Diophantine approximation.

Introduction

The determination of perfect powers of Lucas and Fibonacci sequences does not date from today. The real contribution of determination of perfect powers of Lucas and Fibonacci sequences began in 2006. By classical and modular approaches of Diophantine equations, Bugeaud, Mignotte, and Siksek [START_REF] Bugeaud | Classical and modular approaches to exponential Diophantine equations. I. Fibonacci and Lucas perfect powers[END_REF] defined all perfect powers of Lucas and Fibonacci sequences by solving the equations F n = y p and L n = y p respectively. From there, many researchers tackled similar problems. It is in the same thought that, others have determined the powers of 2 of the sum/difference of two Lucas numbers [START_REF] Bravo | Powers of Two as Sums of Two Lucas Numbers[END_REF], powers of 2 of the sum/difference of Fibonacci numbers [START_REF] Bravo | On the Diophantine Equation F n + F m = 2 a[END_REF], powers of 2 and of 3 of the product of Pell numbers and Fibonacci numbers.
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We move our interest on the powers of 3 as a sum of two Lucas numbers. This paper follows the following steps : We first give the generalities on binary linear recurrence, then we demonstrate an important inequality on Lucas numbers and finally determine and reduce a coarse bound by section 3. The section 4 is devoted to the reduction of the obtained bound in section 3 and discussion of possible different cases. We know from Bravo and Lucas [START_REF] Bravo | Powers of Two as Sums of Two Lucas Numbers[END_REF] that the only solutions of the Diophantine equation F n + F m = 2 a in positive integers n, m and a with n ≥ m are given by

2F 1 = 2, 2F 2 = 2, 2F 3 = 4, 2F 6 = 16,
and

F 2 + F 1 = 2, F 4 + F 1 = F 4 + F 2 = 4, F 5 + F 4 = 8, F 7 + F 4 = 16.
and in [START_REF] Bravo | On the Diophantine Equation F n + F m = 2 a[END_REF] that all solutions of the Diophantine equation L n + L m = 2 a in nonnegative integers n ≥ m and a, are

2L 0 = 4, 2L 1 = 2, 2L 3 = 8, L 2 + L 1 = 4, L 4 + L 1 = 8, and L 7 + L 2 = 32.
Here in this paper, we determine all the solutions of the following Diophantine equation:

L n + L m = 3 a (1.1)
in nonnegative integers n ≥ m and a.

We are interested in finding all powers of three which are sums of two Lucas numbers, i.e., we study the exponential Diophantine equation L n + L m = 3 a in nonnegative integers n, m, and a. The proof of our main theorem uses lower bounds for linear forms in logarithms, properties of continued fractions, and a version of the Baker-Davenport reduction method in Diophantine approximation.

We notice that many authors have already tackled this type of problems. 

Preliminaries

H n+k = a 1 H n+k-1 + a 2 H n+k-2 + • • • + a k H n for all n ≥ 0 with a 1 , . . . , a k ∈ C, fixed.
We suppose that a k = 0 (otherwise, the sequence {H n } n≥0 satisfies a recurrence of order less than k). If a 1 , . . . , a k ∈ Z and H 0 , . . . , H k-1 ∈ Z, then we can easily prove by induction on n that H n is an integer for all n ≥ 0. The polynomial f

(X) = X k -a 1 X k-1 -a 2 X k-2 -• • • -a k ∈ C, is called the characteristic polynomial of (H n ) n≥0 . We suppose that f (X) = m i=1 (X -α i ) σi ,
where α 1 , . . . , α m are distinct roots of f (X) with respectively σ 1 , . . . , σ m their multiplicities.

Definition 2.2. We define the sequences (A n ) n≥0 and (B n ) n≥0 for all positive integers N by

A n+2 = aA n+1 + A n , A 0 = 0, A 1 = 1 B n+2 = aB n+1 + B n , B 0 = 2, B 1 = a. For a = 1, (A n ) n≥0 = (F n ) n≥0 and (B n ) n≥0 = (L n ) n≥0
, which are Fibonacci and Lucas sequences respectively, defined above.

On solutions of the Diophantine equation L n + L m = 3 a Remark 2.3. If k = 2, the sequence (H n ) n≥0 is called a binary recurrent sequence. In this case, the characteristic polynomial is of the form

f (X) = X 2 -a 1 X -a 2 = (X -α 1 )(X -α 2 ). Suppose that α 1 = α 2 , then H n = c 1 α n 1 + c 2 α n
2 for all n ≥ 0. Definition 2.4. The binary recurrent sequence {H n } n≥0 is said to be non degenerated if c 1 c 2 α 1 α 2 = 0 and α 1 /α 2 is not a root of unity.

Binet's formula for the general term of Fibonacci and Lucas sequences is obtained using standard methods for solving recurrent sequences, which are given by :

F n = α n -β n α -β and L n = α n + β n where (α, β) = 1 + √ 5 2 , 1 - √ 5 2
are the zeros of the characteristic polynomial X 2 -X -1.

Definition 2.5. For all algebraic numbers γ, we define its measure by the following identity :

M(γ) = |a d | d i=1 max{1, |γ i |},
where γ i are the roots of

f (x) = a d d i=1 (x -γ i ) is the minimal polynomial of γ.
Let us define now another height, deduced from the last one, called the absolute logarithmic height. It is the most used one. 

h(γ) = 1 d log |a d | + d i=1 log max{1, |γ i |} = 1 d log M(γ).
the usual logarithmic absolute height of γ.

The following properties of the logarithmic height, will also be used in the next section:

• h(γ ± η) ≤ h(γ) + h(η) + log 2. • h(γη ±1 ) ≤ h(γ) + h(η).
• h(γ s ) = |s|h(γ).

Inequalities involving the Lucas numbers

In this section, we state and prove important inequalities associated with the Lucas numbers that will be used in solving the equation (1.1).

Proposition 2.7. For n ≥ 2, we have

0.94 α n < (1 -α -6 )α n ≤ L n ≤ (1 + α -4 )α n < 1.15 α n (2.1)
Proof. This follows directly from the formula

L n = α n + (-1) n α -n .
Pagdame Tiebekabe and Ismaïla Diouf

Linear forms in logarithms and continued fractions

In order to prove our main result, we have to use a Baker-type lower bound several times for a non-zero linear forms of logarithms in algebraic numbers. There are many of these methods in the literature like that of Baker and Wüstholz in [START_REF] Baker | Logarithmic and Diophantine Geometry[END_REF]. We recall the result of Bugeaud, Mignotte, and Siksek which is a modified version of the result of Matveev [START_REF] Matveev | An explicit lower bound for a homogeneous rational linear form in the logarithms of algebraic numbers, II[END_REF]. With the notation of section 2, Laurent, Mignotte, and Nesterenko [START_REF] Laurent | Formes linéaires en deux logarithmes et déterminants d'interpolation, (French) (Linear forms in two logarithms and interpolation determinants)[END_REF] proved the following theorem:

Theorem 2.8. Let γ 1 , γ 2 be two non-zero algebraic numbers, and let log γ 1 and log γ 2 be any determination of their logarithms.

Put D = [Q(γ 1 , γ 2 ) : Q]/[R(γ 1 , γ 2 ) : R],
and

Γ := b 2 log γ 2 -b 1 log γ 1 ,
where b 1 and b 2 are positive integers. Further, let A 1 , A 2 be real numbers > 1 such that

log A i ≥ max h(γ i ), | log γ i | D , 1 D , (i = 1, 2).
Then, assuming that γ 1 and γ 2 are mutiplicatively independent, we have

log |Γ| > -30.9 • D 4 max log b , 21 D , 1 2 
2 log A 1 • log A 2 , where b = b 1 D log A 2 + b 2 D log A 1 .
We shall also need the following theorem due to Matveev, Lemma due to Dujella and Pethő and Lemma due to Legendre [START_REF] Dujella | A generalization of a theorem of Baker and Davenport[END_REF][START_REF] Matveev | An explicit lower bound for a homogeneous rational linear form in the logarithms of algebraic numbers, II[END_REF]. 

Λ := η b1 1 • • • η b l l -1 = l i=1 η bi i -1.
Let A 1 , . . . , A l reals numbers such that

A j ≥ max{Dh(η j ), | log(η j )|, 0.16}, 1 ≤ j ≤ l.
Assume that Λ = 0, So we have

log |Λ| > -3 × 30 l+4 × (l + 1) 5.5 × d 2 × A 1 ...A l (1 + log D)(1 + log nB) Further, if L is real, then log |Λ| > -1.4 × 30 l+3 × (l) 4.5 × d 2 × A 1 ...A l (1 + log D)(1 + log B).
During our calculations, we get upper bounds on our variables which are too large, so we have to reduce them. To do this, we use some results from the theory of continued fractions. In particular, for a non-homogeneous linear form with two integer variables, we use a slight variation of a result due to Dujella and Pethő, (1998) which is in itself a generalization of the result of Baker and Davemport [2].

For a real number X, we write X := min{| X -n |: n ∈ Z} for the distance of X to the nearest integer.

On solutions of the Diophantine equation L n + L m = 3 a Lemma 2.10. (Dujella and Pethő, [START_REF] Dujella | A generalization of a theorem of Baker and Davenport[END_REF]) Let M a positive integer, let p/q the convergent of the continued fraction expansion of κ such that q > 6M and let A, B, µ real numbers such that A > 0 and B > 1. Let ε := µq -M κq . If ε > 0 then there is no solution of the inequality

0 < mκ -n + µ < AB -m
in integers m and n with log(Aq/ε) log B m M.

Lemma 2.11. (Legendre) Let τ real number such that x, y are integers such that

τ - x y < 1 2y 2 . then x y = p k q k is the convergence of τ . Further, τ - x y > 1 (q k+1 + 2)y 2 .

Main Results

Our main result can be stated in the following theorem. 

L n = 3 a 2 .
This equation has no solution because, ∀n > 0, L n ∈ Z. So from now, we assume n > m.

If n ≤ 200, the search with SageMath in the range 0 ≤ m < n ≤ 200 gives the solutions (n, m, a) ∈ {(1, 0, 1), (4, 0, 2)}. Now for the rest of the paper, we assume that n > 200 . Let first get a relation between a and n which is important for our purpose. Combining (1.1) and the right inequality of (2.1), we get:

3 a = L n + L m ≤ 2α n + 2α m < 2 n+1 + 2 m+1 = 2 n+1 (1 + 2 n-m ) ≤ 2 n+1 (1 + 1/2) < 2 n+2 .
Taking log both sides, we obtain a log 3 ≤ (n + 2) log 2 =⇒ a ≤ (n + 2)c 1 where c 1 = log 2 log 3 .

Rewriting equation (1.1) as:

L n + L m = α n + β n + L m = 3 a =⇒ α n -3 a = -β n -L m .
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Taking absolute value both sides, we get

|α n -3 a | = |β n + L m | ≤ |β| n + L m < 1 2 + 2α m ∵ |β| n < 1 2
, and L m < 2α m .

Dividing both sides by α n and considering that n > m, we get:

1 -α -n • 3 a < α -n 2 + 2α m-n < 1 α n-m + 2 α n-m ∵ 1 2α n < 1 α n-m ; n > m Hence 1 -α -n • 3 a < 3 α n-m (3.1)
Let's take

γ 1 := α, γ 2 := 3, b 1 := n, b 2 := a, Γ := a log 3 -n log α
in order to apply Theorem 2.8. Therefore equation (3.1) can be rewritten as:

1 -e Γ < 3 α n-m where e Γ = α -n 3 a . (3.2) Since Q( √ 5 
) is the algebraic number field containing γ 1 , γ 2 ; so we can take D := 2. Using equation (1.1) and Binet formula for Lucas sequence, we have :

α n = L n -β n < L n + 1 ≤ L n + L m = 3 a
which implies 1 < 3 a α -n and so Γ > 0. Combining this with (3.2), we get

0 < Γ < 3 α n-m (3.3)
where we used the fact that x ≤ e x -1, ∀x ∈ R. Applying log on right and left hand side of (3.3), we get

log Γ < log 3 -(n -m) log α. (3.4)
Logarithm height of γ 1 and γ 2 are:

h(γ 1 ) = 1 2 log α = 0.2406 • • • , h(γ 2 ) = log 3 = 1.09862 • • • , thus we can choose log A 1 := 0.5 and log A 2 := 1.1.
Finally, by recalling that a ≤ (n + 2)c 1 ; c 1 = 0.63093, we get :

b := b 1 D log A 2 + b 2 D log A 1 = n 2.2 + a = 0.45n + a < 0.45n + (n + 2)c 1 < 2n.
It is easy to see that α and 3 are multiplicatively independent. Then by Theorem 2.8, we have Let us find a second linear form in logarithm. For this, we rewrite (1.1) as follows:

log Γ ≥ -30.9 • 2 4 max log(2n), 21 2 , 1 2 
2 • 0.5 • 1.1 log Γ > -272 max log(2n), 21 2 , 1 2 2 . ( 3 
α n (1 + α n-m ) -3 a = -β n -β m .
Taking absolute values in the above relation, we get

|α n (1 + α m-n ) -3 a | < 2, β = (1 - √ 5)/2, |β| n < 1 and |β| m < 1; ∀n > 200, m ≥ 0.
Dividing both sides of the above inequality by α n (1 + α m-n ), we obtain

1 -3 a α -n (1 + α m-n ) -1 < 2 α n i.e |Λ| < 2 α n . (3.7) 
All the conditions are now met to apply a Matveev's theorem (Theorem 2.9).

• Data:

t := 3; γ 1 := 3; γ 2 := α; γ 3 := 1 + α m-n b 1 := a; b 2 := -n, b 3 = -1. As before, K = Q( √ 5) contains γ 1 , γ 2 , γ 3 and has D := [K : Q] = 2.
Before continuing with the calculations, let's check whether Λ = 0. Λ = 0 comes from the fact that if it was zero, we would have

3 a = α n + α m (3.8)
Taking the conjugate of the above relation in Q( √ 5), we get :

3 a = β n + β m . (3.9) 
Combining (3.8) and (3.9), we get :

α n < α n + α m = |β n + β m | ≤ |β| n + |β| m < 2.
Recall that n > 200. This relation is impossible for n > 200. Hence Λ = 0.

• Calculation of h(γ 3 )

Let us now estimate h(γ 3 ) where

γ 3 = 1 + α m-n γ 3 = 1 + α m-n < 2 and γ -1 = 1 1 + α m-n < 1 so | log γ 3 | < 1. Notice that h(γ 3 ) ≤ |m -n| log α 2 + log 2 = log 2 + (n -m) log α 2 .
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• The calculation of A 1 and A 2 gives :

A 1 := 2.2
and

A 2 := 0.5
and we can take

A 3 := 2 + (n -m) log α since h(γ 3 ) := log 2 + (n -m) log α 2 • Calculation of B
Since a < (n + 2)c 1 , it follows that, B = max{1, n, a}. Thus we can take B = n + 1.

The Matveev's theorem gives the lower bound on the left hand side of (3.7) by replacing the data. We get :

exp (-C(1 + log(n + 1)) • 2.2 • 0.5 • (2 + (n -m) log α))
where

C := 1.4 • 30 6 • 3 4.5 • 2 2 (1 + log 2) < 9.7 × 10 11 .
Replacing in equation (3.7), we get: The continued fraction of the irrational number γ is : and let denote p k /q k its convergent. An inspection using SageMath gives the following inequality 4977896525362041575 = q 41 < 1.2 × 10 20 < q 42 = 805929983250536127817. Since Λ = 0, then z = 0. Two cases arise : z < 0 and z > 0. For each case, we will apply Lemma 2.10.

exp (-C(1 + log(n + 1)) • 2.2 • 0.5 • (2 + (n -m) log α)) < |Λ| < 2 α n which leads to n log α -log 2 < C((1 + log(n + 1)) • 1.1 • (2 + (n -m) log α) < 2C log n • 1.1 • (2 + (n -m) log α) then n log α -log 2 < 1.26 × 10 12 log n • (2 + (n -m) log α) (3 
[a 0 ,
• Case 1 : z > 0 From (4.4), we obtain 0 < z ≤ e z -1 < 2 α n . Replacing (4.3) in the above inequality, we get: 

0 < a log 3 -n log α -log ρ(n -m) ≤ 3 a α -n ρ(n -m) -1 -1 < 2α -n

Definition 2 . 6 .

 26 ( Absolute logarithmic height) For a non-zero algebraic number of degree d on Q where the minimal polynomial on Z is f (x) = a d d i=1 (xγ i ), we denote by

Theorem 2 .

 2 9. (Matveev [8]) Let n ≥ 1 an integer. Let L a field of algebraic number of degree D. Let η 1 , . . . , η l non-zero elements of L and let b 1 , b 2 , . . . , b l integers, B := max{|b 1 |, ..., |b l |}, and

Theorem 3 . 1 .

 31 The only solutions (n, m, a) of the exponential Diophantine equation L n + L m = 3 a in nonnegative integers n ≥ m and a, are : (1, 0, 1) and (4, 0, 2) i.e L 1 + L 0 = 3, and L 4 + L 0 = 9. Proof. First, we study the case n = m, next we assume n > m and study the case n ≤ 200 with SageMath in the range 0 ≤ m < n ≤ 200 and finally we study the case n > 200. Assume throughout that equation (1.1) holds. First of all, observe that if n = m, then the original equation (1.1) becomes

. 5 ), 1 2 2 . ( 3 . 6 )

 5236 Combining (3.4) and (3.5), we obtain the following important result (n -m) log α < 276 max log(2n), 21 2 On solutions of the Diophantine equation L n + L m = 3 a

2 . 4 .

 24 .10) where we used inequality 1 + log(n + 1) < 2 log n, which holds for n > 200. Now, using(3.6) in the right term of the above inequality (3.10) and doing the related calculations, we get n < 7.3 × 10 14 log n max log(2n), 21 2 (3.11) If max{log(2n), 21/2} = 21/2, it follows from (3.11) that n < 8.04825 • 10 16 log n =⇒ n < 3.5 • 10 18 . On the other hand, if max{log(2n), 21/2} = log(2n), then from (3.11), we get n < 7.3 • 10 14 log n log 2 (2n) and so n < 7.2 • 10 19 . We can easily see that for the two possible values of max{log(2n), 21/2}, n < 7.2 • 10 19 . All the calculations done so far can be summarized in the following lemma. Lemma 3.2. If (n, m, a) is a solution in positive integers of (1.1) with conditions n > m and n > 200, then inequalities a ≤ n + 2 < 1.2 × 10 20 hold. On solutions of the Diophantine equation L n + L m = 3 a Reducing of the bound on n Dividing across inequality (3.3) : 0 < a log 3 -n log α < 3 α n-m by log α, we get 0 < aγ -n < 7 α n-m ; where γ :

Furthermore, a

 a M := max {a i |i = 0, 1, ..., 42} = 161 Now applying Lemma 2.11 and properties of continued fractions, we obtain|aγ -n| > 1 (a M + 2)a . (4.2)Combining equation (4.1) and (4.2), we get1 (a M + 2)a < |aγ -n| < 7 α n-m =⇒ 1 (a M + 2)a < 7 α n-m =⇒ α n-m < 7 • (161 + 2)a < 1.3692 • 10 23 .Applying log above and divide by log α, we get :(n -m) ≤ log (7 • 163 • a) log α < 111.To improve the upper bound on n, let consider z := a log 3 -n log α -log ρ(u) where ρ = 1 + α -u . (4.3) From (3.7), we have |1 -e z | < 2 α n . (4.4)

hence 0 < a log 3 -

 3 n log α -log ρ(n -m) < 2α -n and by diving above inequality by log α 0 < a log 3 log α -n -log ρ(n -m) log α < 5 • α -n . (4.5) Taking, γ := log 3 log α , µ := -log ρ(n -m) log α , A := 5, B := α, inequality (4.5) becomes 0 < aγ -n + µ < AB -n .

  a 1 , a 2 , ......] = [1, 2, 3, 1, 1, 2, 3, 2, 4, 2, 1, 11, 2, 1, 11, ......]
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Since γ is irrational, we are now ready to apply lemma 2.10 of Dujella and Pethö on (4.5) for n -m ∈ {1, ..., 111}.

Since a ≤ 1.2 × 10 20 from lemma 3.2, we can take M = 1.2 × 10 20 , and we get n < log(Aq/ε) log B where q > 6M and q is the denominator of the convergent of the irrational number γ such that ε := ||µq|| -M ||γq|| > 0.

With the help of SageMath, with conditions z > 0, and (n, m, a) a possible zero of (1.1), we get n < 112 which contradicts our assumption n > 200. Then it is false.

• Case 2 : z < 0

Since n > 200, then 2 α n < 1 2 . Hence (4.4) implies that |1 -e |z| | < 2. Also, since z < 0, we have

Replacing (4.3) in the above inequality and dividing by log 3, we get:

In order to apply lemma 3.2 on (4.6) for n -m ∈ {1, 2, ..., 111}, let's take again M = 1.2 × 10 20 . With the help of SageMath, with conditions z < 0, and (n, m, a) a possible zero of (1.1), we get n < 111 which contradicts our assumption n > 200. Then it is false. This completes the proof of our main result (Theorem 3.1).
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