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Introduction

In this paper, both population growth as well as population decline are represented by the bipolar form of the Narayana sequence, namely, ..., -13, -9, -6, -4, -3, -2, -1, -1, -1, 0, 1, 1, 1, 2, 3, 4, 6, 9, 13, ...

There is an inherent self-similarity in Narayana sequences (see, e.g., the partial plot of three different forms of this sequence shown in Fig. 1.

For the k th member N k of a population, the Narayana growth model is defined by the linear recurrence sequence N k = N k-1 +N k-3 , k ≥ 3, starting with N 0 , N 1 , N 2 , N 3 = Figure 1. Narayana population growth & decline plot over [-13, 13] 0, 1, 1, 1 representing 3 generations that starts growing at N 3 = N 2 +N 0 = 1+1 = 2. This population growth model was introduced 1356 by Nārāyana Paṇḍita [START_REF] Paṇḍita | Gaṇita kaumudī[END_REF]. Similarly, this sequence has a population decline model defined by N k = N k-1 + N k-3 , k ≤ -3, starting with N 0 , N -1 , N -2 , N -3 = 0, -1, -1, -1 representing 3 declining generations that starts delining at N -4 = N -1 + N -3 = -1 + (-1) = -2.

The self-similarity in Fig. 1 is a result of considering the generalized Narayana sequence [START_REF] Ramirez | A note on the k-narayana sequence[END_REF] defined by 3, 4, 6, 9, 13, with the initial values N k,0 = 0, N k,1 = 1 and N k,2 = k, yielding the sequence 0, 1, k, k 2 , k 3 + 1, k 4 + 2k, k 5 + 3k 2 . In the study of Narayana sequence self-similarity, we consider ±N k,n , k ≥ 3, representing population growth as well as population decline.

N k,n = kN k,n-1 + N k,n-3 , n ≥ 0, k ≥ 3 = 0, 1, 1, 1, 2,
It is well-known graph self-similarity such that shown for ±N k,n in Fig. 1 leads to generalizations of self-similarity [5, §4.4,p. 120]. From the edges in graph similarity, it is possible to construct examples of border (outline) fractals [5, §6.1]. The selfsimilarity of the Narayana sequence ±N k,n leads to the following result.

Theorem Every Narayana sequence is self-similar.

A flip graph is a form of undirected, simple graph, which we consider next in a closer look at Narayana sequences and their self-similarities.

Preliminaries

In this section the construction of self-similar graphs via bipolar Narayana sequences. A bipolar Narayana sequence ±N k,n represents two extremes, namely, the growth of a population at one extreme and the decline of a population at the other extreme, representable in a planar self-similar graph.

This paper also considers Pascal-like triangles [START_REF]Generalized catalan numbers associated with a family of pascal-like triangles[END_REF] with corresponding finite cyclic group presentations derived from k-Narayana sequences. Definition 1. [START_REF] Milich | On flips in planar matchings[END_REF][START_REF] Milich | Kreise für planare matchings[END_REF] A planar flip graph is a 2D graph whose vertexes represent combinatorial objects of interest and an edge between any two objects that differ only by a small change operation called a flip.

Example 1.

A flip graph representing the beginning of a population and its decline is shown in Fig. 2.1. This flip graph exhibits the simplest form self-similarity centered at the origin, i.e., -2,-1-1,-1,0,1,1,1,2. The altitude 2 to the right of the Proof. Let ±N k,n be a bipolar Narayana sequence. We start with k = ±3 with three vertexes, namely, vertexes at ±1, ±3 on the horizontal axis and a vertexes at (3,2), (-3,2), which we triangulate. The edge from (1,0) to (3,2) represents a small change (a flip) in population growth, which contrasts another flip along the edge from (-1,0) to (-3,2). Continuing this triangulation on additional triple vertexes derived from a Narayana sequence constructs a flip graph.

Theorem 1. Every bipolar Narayana sequence is self-similar.

Proof. From what has been observed about the relationship between self-similarity and flip graphs and from Lemma 1, the result follows.

Remark 2.

From Theorem 1, we obtain a natural basis for a free group presentation of the flip graph for a Narayana sequence. That is, a flip graph viewed as a pair of cycles along the edges of the triangles in the graph make it possible to travel in either the positive or negative direction. In effect, every + ve traversal a to the right in a Narayana flip graph has a corresponding -ve traversal -a to the left, giving us inverse elements, which sum to zero, a -a = 0. For more about this, see Section 5 and Appendix C.

The k-Narayana numbers are given by Binet's formula.

(1)

N k,n = α n+1 k (α k -β k )(α k -γ k ) + β n+1 k (β k -α k )(β k -γ k ) + γ n+1 k (γ k -β k )(γ k -α k )
where

α k = 1 3 (k + k 2 3 2 27 + 2k 3 + 3 √ 81 + 12k 3 + 3 27 + 2k 3 + 3 √ 81 + 12k 3 2
).

β k = 1 3 (k -wk 2 3 2 27 + 2k 3 + 3 √ 81 + 12k 3 + w 2 3 27 + 2k 3 + 3 √ 81 + 12k 3 2
).

γ k = 1 3 (k + w 2 k 2 3 2 27 + 2k 3 + 3 √ 81 + 12k 3 + w 3 27 + 2k 3 + 3 √ 81 + 12k 3 2 ). w = 1+i √ 3 2
is the primitive cube root of unity [START_REF] Ramirez | A note on the k-narayana sequence[END_REF]. Characteristic equation of these numbers is (2)

x 3 + kx 2 -1 = 0
For any integer number k, k ̸ = 0 , we have

Q k =   k 0 1 1 0 0 0 1 0   and for n ≥ 3, (Q k ) n =   N k,n+1 N k,n-1 N k,n N k,n N k,n-2 N k,n-1 N k,n-1 N k,n-3 N k,n-2  
Then Q k is a generating matrix of the k-Narayana sequence [START_REF] Ramirez | A note on the k-narayana sequence[END_REF].

The k-Narayana numbers and properties

Theorem 2. [Cassini's Identity]

N k,n-1 N k,n+1 -N 2 k,n = -N k,-n-1 .
Proof. By using the Binet's formula, we get

( α n k (α k -β k )(α k -γ k ) + β n k (β k -α k )(β k -γ k ) + γ n k (γ k -β k )(γ k -α k ) ) ( α n+2 k (α k -β k )(α k -γ k ) + β n+2 k (β k -α k )(β k -γ k ) + γ n+2 k (γ k -β k )(γ k -α k ) ) -( α n+1 k (α k -β k )(α k -γ k ) + β n+1 k (β k -α k )(β k -γ k ) + γ n+1 k (γ k -β k )(γ k -α k ) ) 2 = α n k β n+2 k -2α n+1 k β n+1 k + α n+2 k β n k (α k -β k )(α k -γ k )(β k -α k )(β k -γ k ) + α n k γ n+2 k -2α n+2 k γ n k + α n+2 k γ n k (α k -β k )(α k -γ k )(γ k -α k )(γ k -β k ) + β n k γ n+2 k -2β n+1 k γ n+1 k + β n+2 k γ n k (β k -α k )(β k -γ k )(γ k -α k )(γ k -β k ) = α n k β n k (α k -β k ) 2 (α k -β k )(α k -γ k )(β k -α k )(β k -γ k ) + α n k γ n k (α k -γ k ) 2 (α k -β k )(α k -γ k )(γ k -α k )(γ k -β k ) + β n k γ n k (β k -γ k ) 2 (γ k -α k )(γ k -β k )(β k -α k )(β k -γ k ) = -( α n k β n k (α k -γ k )(β k -γ k ) + α n k γ n k (α k -β k )(γ k -β k ) + β n k γ n k (β k -α k )(γ k -α k ) ) = -( γ -n k (α k -γ k )(β k -γ k ) + β -n k (α k -β k )(γ k -β k ) + α -n k (β k -α k )(γ k -α k ) ) = -N k,-n-1
Remark 3. A 3D flip graph exhibiting the self-similarity of the Narayana sequence using Binet's formula is shown in Fig. 3.

Theorem 3. lim n→∞ N k,n N k,n-1 = α k
Proof. Symmetric with the proof of Theorem 2.

Theorem 4. For any integer n ≥ 2, we have

α n+3 k = kα n+2 k + 1. β n+3 k = kβ n+2 k + 1. γ n+3 k = kγ n+2 k + 1.
where α k , β k , γ k are the roots of the characteristic equation 2. 

k i N k,2i = 0.
Proof. Symmetric with the proof of Theorem 2.

Theorem 5. For n ≥ 3, we have

N k,n+1 N k,n-1 N k,n N k,n N k,n-2 N k,n-1 N k,n-1 N k,n-3 N k,n-2 = 1
Proof. If we are making some algebraic operation:

N 3 k,n+1 + N 3 k,n + N 3 k,n-1 -2N 2 k,n+1 N k,n + N 2 k,n N k,n+1 + N k,n+1 N 2 k,n-1 + N 2 k,n N k,n-1 -3N k,n-1 N k,n+1 N k,n = 1
We get the equation. For example, n = 3, we have

N k,4 N k,2 N k,3 N k,3 N k,1 N k,2 N k,2 N k,0 N k,1 = k 3 + 1 k k 2 k 2 1 k k 0 1 = 1
Similarly, we obtain the following result.

Theorem 6 (Sum of first terms). . Let S k,n be the sum of the first (n + 1) terms of the k-Narayana sequence, that is

S k,n = n i=0 N k,i .
Then

S k,n = N k,1 + N k,n + N k,n+1 + N k,n+2 k -N k,n+1 .

The Pascal 3-triangle

We deduce the value of any k-Narayana number by simple substitution on the corresponding N k,n . The sequence N 1,n is the classical Narayana sequence. By the definition of the k-Narayana numbers [START_REF] Ramirez | A note on the k-narayana sequence[END_REF], the first of them are:

N k,1 = 1 N k,2 = k N k,3 = k 2 N k,4 = k 3 + 1 N k,5 = k 4 + 2k N k,6 = k 5 + 3k 2 N k,7 = k 6 + 4k 3 + 1 N k,8 = k 7 + 5k 4 + 3k N k,9 = k 8 + 6k 5 + 6k 2 N k,10 = k 9 + 7k 6 + 10k 3 + 1
It is worth to be noted that the obtained coefficients can be written in a triangular position, in this way that every side of the triangle is triple, and for this reason this triangle has been called Pascal 3-triangle. See table 1.

Free Abelian Group Presentation of a Pascal 3-Triangle

This section introduces free finitely-generated (fg) Abelian group presentations that correspond to Pascal 3-triangles in a planar CW space. Briefly, a planar CW space is a collection of cells in a finite, bounded region of the Euclidean plane. A cell in the Euclidean plane is either a 0-cell (vertex K 0 ) or 1-cell (edge K 1 ) or 2-cell (filled triangle K 2 ). A cell complex is a collection cells attached to each other by 0-or 1-cells or by having one or more common cells. A nonvoid collection of cell complexes K has a Closure finite Weak (CW) topology, provided K is Hausdorff (every pair of distinct cells is contained in disjoint neighbourhoods [12, §5.1, p. 94]) and the collection of cell complexes in K satisfy the Whitehead [24, pp. 315-317] conditions, namely, containment (the closure of each cell complex is in K) and intersection (the nonempty intersection of cell complexes is in K) (for the details, see App. A). Notice that the pair of collections of nested cycles derived from Pascal 3-triangles form a pair of distinct shapes, namely, shape shE in Fig. 4.1 and shape shE ′ in Fig. 4.2. The boundary of shE is denoted by bdy(shE) (represented by its vertexes).

Each of these shapes has a distinct boundary, which is a source of generators of a free fg Abelian group presentation derived from a Pascal 3-triangle. For the details concerning CW shape complexes, see App. B. From Theorem 9 in App. C, a Pascal 3-triangle leads to a collection of nested cycles in the CW space in K (Fig. 4.1) and in the CW space in K' (Fig. 4.2), each of which as a free finitely-generated (fg) Abelian group presentation. Example 6. Each of the of the collections of nested cycles in Fig. 4 has a free fg Abelian group presentation, e.g.,

1 o
The collection of nested cycles in shE in Fig. 4.1 is represented by G(⟨1 ′ , 2, 3⟩, +)

with vertexes 1',2,3 as the generators, i.e., every vertex in the cycle can be reached from vertexes 1',2,3. 2 o The collection of nested cycles in shE ′ in Fig. 4.2 is represented by G(⟨1 ′ , 2, 3, 4, 5, 3 ′ ⟩, +)

with vertexes 1',2,3,4,5,3' as the generators, i.e., every vertex in the cycle can be reached from vertexes 1',2,3,4,5,3'.

Views and Properties of the Pascal 3-triangle

Let us examine two points on x and y lines in orthogonal coordinate system. One can see clearly, a way between an x-point and a y-point is not inverting way in the first sestet from x to y by horizontal and vertical unit section. For instance, there are four way from the point x = (3, 0) to the point y = (0, 1):

{(3, 0)(2, 0)(1, 0)(0, 0)(0, 1)} {(3, 0)(2, 0)(1, 0)(1, 1)(0, 1)} {(3, 0)(2, 0)(2, 1)(1, 1)(0, 1)} {(3, 0)(3, 1)(2, 1)(1, 1)(0, 1)}
The number of ways between an x-point and a y-point can be seen on diagonals in Pascal 3-triangle. In table 2, each element is obtained the sum of the elements on previous row from the left to element above. For example, number 21 in the third row is the conclusion of summing up the elements of the second row: 1 + 2 + 3 + 4 + 5 + 6 = 21.

One of the properties of this table is each entrance in the diagonal beginning {i, j, ...} reports the number of terms in the expansion of (a 1 + a 2 + a 3 + ... + a n+3-j ) n for n ≥ j -2. For instance, diagonal {1, 3, 10, 35, 126, } means the number of terms in the expansion of (a 1 + a 2 + a 3 + ... + a n-1 ) n , for n ≥ 2, which is 2n-2 n-2 . Obviously, one can be obtained the sequence of Catalan's numbers by dividing each term of this diagonal by 1, 2, 3, 4, ..., respectively.

The ith row of antidiagonals in Table 2 is equivalent to the i th row of the classical Pascal triangle. The term a i,j of Table 2 satisfies a i,j = a i-1,j + a i,j-1 .

The determinants of matrices generated by the term a 1,1 are equal to 1. Also, the square matrices obtained from the term a 1,1 are symmetric in accordance with the diagonal {1, 2, 6, 20, 70, }.

As well as, if in 2 each row is moved two places to the right according as the prior row, table 3 existed. Take into account each column of Table 3 the corresponding diagonal of the Pascal 3-triangle which is also known as the "deformed" Pascal triangle [START_REF] Stakhov | The generalized golden proportions, a new theory of real numbers, and ternary mirror-symmetrical arithmetic[END_REF].

6.1. Some Properties of the Pascal 3-triangle Diagonals. It will be called here triple diagonal to each of the different lines of triples of contiguous numbers on the Pascal 3-triangle as shown in Table 1, from right to left and the from first row to bottom. For instance, the second triple diagonal is {1 -3 -6, 10 -15 -21, } these lines are also called ' anti-diagonals'.

It is clear that the n th diagonal terms of the Pascal 3-triangle are definitely the coefficients of the Taylor expansion of function g n (x) = 1 (1-x) n centered at the origin.

For a small value x = 10 -r (r ∈ N), when the function g n (x) written as a decimal number has its integer part equal to 1, and its decimal number can be seen as r-uplas showing the first terms of the n th antidiagonal of the Pascal 3-triangle. For instance, g 5 (10 -3 ) = 1 (1 -10 -3 ) 5 = 1.005015035070 ... → {1, 5, 15, 35, 70, ...} which are the fifth anti-diagonal terms of the Pascal 3-triangle. Some characteristic properties of the Pascal 3-triangle are as follow:

1. The second diagonal is positive integer numbers. The third and fourth diagonal equal to the triangular and tetrahedral numbers, respectively. In general, i th diagonal equal to the (i -1)-dimensional simplex number [START_REF] Graham | Matematyka konkretna. (polish) [concrete mathematics[END_REF].

2.Each element is obtained the sum of the preceding element at same row and the previous element in the preceding diagonal.

3. The sum of the consecutive terms in the third diagonal is a perfect square. [START_REF] Cattabriga | Strongly-cyclic branched coverings of (1,1)-knots and cyclic presentations of groups[END_REF]. By subtracting the odd number sequence from the triangular number sequence, the triangular number sequence is obtained again.

The n th element of the i th anti-diagonal denoted by

A r (n). Then A r (n)= n+r-2 r-1
here (r -1) is (i -1) th anti-diagonal. 6.2. Properties of the rows the Pascal 3-triangle. Some properties of the Pascal 3-triangle rows are as follow:

1. The sum of the elements of the i th row is equal to the i th term of Narayana sequence.

2. The sum of the i th row elements and the (i + 1) th row elements is the corresponding {2, 2, 3, 5, 7, 10, 15, 22, 32, 47, 69, } which are on OEIS, as A097333 and A058278 in http://oesis.org 3. Beginning with 1 on the left, and writing down the following number on its right in the immediately lower row, and so on the classical Pascal triangle is obtained.

Expression of k n as a k-Narayana number

Firstly, the equations for the k-Narayana number is written in matrix form as follow T and B is the lower triangular matrix with elements the coefficients appearing in the expansion of the k-Narayana number in increasing powers of k:

N = B • K . Here, N = (N k,1 , N k,2 , N k,3 , ..) T , K = (1, k, k 2 , k 3 , ...)
B =                 1 0 1 0 0 1 1 0 0 1 0 2 0 0 1 0 0 3 0 0 1 1 0 0 4 0 0 1 0 3 0 0 5 0 0 1 0 0 6 0 0 6 0 0 1 1 0 0 10 0 0 7 0 0                
It is clear that, the non-zero elements in matrix B are same the terms of diagonals of the Pascal triangle. The sum of the elements of i th row is equal to the i th term of the classical Narayana sequence. Furthermore, the inverse of matrix B is

B -1 =               1 0 1 0 0 1 -1 0 0 1 0 -2 0 0 1 0 0 -3 0 0 1 3 0 0 -4 0 0 1 0 7 0 0 -5 0 0 1 0 0 12 0 0 -6 0 0 1               .
Also, it is clear that k n is equal to linear combination of k-Narayana number:

1 = N k,1 k = N k,2 k 2 = N k,3 k 3 = N k,4 -N k,1 k 4 = N k,5 -2N k,2 k 5 = N k,6 -3N k,3 k 6 = N k,7 -4N k,4 -3N k,1 k 7 = N k,8 -5N k,5 + 7N k,2 k 8 = N k,9 -6N k,6 + 12N k,3
8. Catalan transform of the k-Narayana sequence

Catalan number

For n ≥ 0, the n th Catalan number is showed by [START_REF] Barry | A Catalan transform and related transformations on integer sequences[END_REF].

C n = 1 n + 1 2n n or C n = (2n)! (n + 1)!n!
For some n, the first Catalan numbers are {1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, ...} From now on OEIS, as A000108 in http://en.wikipedia.org/wiki/Catalan number. Following [START_REF] Cvetkovi'c | Ivkovi'c, Catalan numbers, and Hankel transform and Fibonacci numbers[END_REF][23], we define the Catalan transform of the k-Narayana sequence as

{N k,n } CN k,n = n i=1 i 2n -i 2n -i n -i N k,i , for n ≥ 1 with CN k,0 = 0
We can give some members of Catalan transform of the first k-Narayana number. These are the polynomials in k:

CN k,1 = 1 i=1 i 2 -i 2 -i 1 -i N k,i = 1 CN k,2 = 2 i=1 i 4 -i 4 -i 2 -i N k,i = 1 + k CN k,3 = 3 i=1 i 6 -i 6 -i 3 -i N k,i = k 2 + 2k + 2 CN k,4 = 4 i=1 i 8 -i 8 -i 4 -i N k,i = k 3 + 3k 2 + 5k + 6 CN k,5 = 5 i=1 i 10 -i 10 -i 5 -i N k,i = k 4 + 4k 3 + 9k 2 + 14k + 18 CN k,6 = 6 i=1 i 12 -i 12 -i 6 -i N k,i = k 5 + 5k 4 + 14k 3 + 31k 2 + 52k + 56
We can show {N k,n } as the n × 1 matrix N k and the product of the lower triangular matrix C as

      CN k,1 CN k,2 CN k,3 CN k,4 ...       =       1 1 1 2 2 1 5 5 5 3 ... ... ... ... ...             N k,1 N k,2 N k,3 N k,4 ...       =       1 1 + k k 2 + 2k + 2 k 3 + 3k 2 + 5k + 6 ...       =       1 1 1 2 2 1 5 5 5 3 ... ... ... ... ...             1 k k 2 k 3 + 1 ...       where C i,j = i-1 i=j-1 C i-1,r
. The lower triangular matrix C n,n-i is known as the Catalan triangle and its elements verify the formula

C n,n-i = (2n-i)!(i+1) (n-i)!(n+1)! with 0 ≤ i ≤ n.

Hankel Transform

Let A = {a 0 , a 1 , a 2 , ...} be a sequence of real numbers [START_REF] Barry | A Catalan transform and related transformations on integer sequences[END_REF]. The Hankel transform of A is the sequence of determinants H n = Det[a i+j-2 ] , i.e. [START_REF] Sloane | The on-line encyclopedia of integer sequences[END_REF]. In [START_REF] Rajkovic | The hankel transform of the sum of consecutive generalized catalan numbers[END_REF], hey show that the Hankel transform of the sum of consecutive generalized Catalan numbers is equal to the bisection of the Fibonacci sequence. Considering the Catalan transform of the k-Narayana sequence, we get:

H n =       a 0 a 1 a 2 a 3 ...
HCN k,1 = Det[1] = 1 HCN k,2 = 1 1 + k 1 + k k 2 + 2k + 2 = 1 HCN k,3 = 1 1 + k k 2 + 2k + 2 1 + k k 2 + 2k + 2 k 3 + 3k 2 + 5k + 6 k 2 + 2k + 2 k 3 + 3k 2 + 5k + 6 k 4 + 4k 3 + 9k 2 + 14k + 18 = -2k-2 10.

Conclusion

We give some properties and theorems related to the k-Narayana numbers and show Cassini's identity and limit of the k-Narayana sequence. We also calculate the determinant of the k-Narayana numbers and show that their determinant are fixed terms. Also, we give sum of the first terms of the k-Narayana sequence and we deduce many properties of the k-Narayana numbers and relate with the so-called Pascal 3-triangle. As well as we give an expression of k n as a k-Narayana number. Finally, we give the CN k,n description of the Catalan transformation of k-Narayana N k,n sequences. Furthermore, we write CN k,n transformation as the multiplying of Catalan matrix C which is the lower triangular matrix, and the N k matrix of n × 1 type. We calculate determinants of matrixes which are formed with CN k,n by using Hankel transform. These identities can be used to develop new identities of sequences. 

(e n ) = Complex contour → closure cl(e n ) minus Int(e n ) interior f (bdy(e n )) = cl(e n ) -int(e n ).
Notice that a subcomplex X ⊂ K has the weak topology, since X is the union of a finite number intersections X ∩ cl(e) for single cells e ∈ K [25, §5, p. 223]. From a geometric perspective, a cell complex is a triangulation of the CW space K [24, p. 246].

Appendix B. Shape Complexes

A shape complex has two basic parts, namely, contour and interior, introduced in [START_REF] Peters | Proximal planar shapes. correspondence between triangulated shapes and nerve complexes[END_REF]. Definition 3. A planar shape contour of a shape complex shE (denoted by bdy(shE)) is a simple , closed curve with no self-loops.

Each shape complex shE has a nonempty interior that excludes all points on the shape contour. The fundamental parts of every shape complex are gathered together in the closure of a shape complex, definite using the Hausdorff distance [START_REF] Hausdorff | Grundzüge der mengenlehre[END_REF] (see, also, [9, §23, p. 128]) between all points in a CW complex K and a shape shE.

Lemma 2. Every finite 1-cycle in a CW space has a corresponding Abelian cyclic group.

Proof. Let cycE be a 1-cycle in a CW space K and let v 0 be a vertex in cycE. From Def. 6, cycE is path-connected. Let + be a forward move (traversal) of an edge between adjacent vertexes in cycE and let v ∈ ⟨v 0 ⟩, i.e., v = kv 0 . For each pair v, v ′ ∈ cycE, we have

v + v ′ = kv 0 + k ′ v 0 = (k + k ′ )v 0 = (k ′ + k)v 0 = v + v ′ .
Consequently, + is Abelian. Similarly, it can be shown that + is associative. For every v ∈ cycE, there is a reverse move -v (the additive inverse of v). Let 0v 0 ∈ ⟨v 0 ⟩ represent 0 moves from v 0 , i.e., 0v 0 = v 0 . The element 0v 0 serves as an identity element. For each v = kv 0 ∈ ⟨v 0 ⟩, we have v + 0v 0 = kv 0 + 0v 0 = (k + 0)v 0 = kv 0 = v, and

v -v = kv 0 -kv 0 = (k -k)v 0 = 0v 0 = v 0 .
Hence, cycE(⟨v 0 ⟩, +) is an Abelian cyclic group.

From Lemma 2, we obtain the following result for shape contours defined by the boundary of a collection of nested cycles. Theorem 9. The contour of every planar shape complex in a CW space has a cyclic Abelian group presentation.

Proof. Let cycE be a 1-cycle in a CW space K and let 2 K be the collection of all subsets of K. Further, let the mapping f : 2 k → 2 K be defined by

f (cycE) = {kg : 0 ≤ k ≤ |cycE| & g ∈ cycE} (f rom Lemma 2) = G(⟨g⟩, +) = Z 1 .
Hence, cycE has a cyclic Abelian group presentation.

From Theorem 8, we obtain the following result for shapes defined by a collection of path-connected vertexes in nested cycles, attached to each other to form a vortex. Recall that a finite free Abelian group has n generators, n ≥ 1. Theorem 10. Every shape complex that is a collection of nested 1-cycles attached to each other pairwise via edges in a CW space, has a free finitely-generated Abelian group presentation.

Proof. Let vorE be a vortex, which is a collection n 1-cycles {cyc i E, 1 ≤ i ≤ n} attached to each other via edges in a CW space K and let 2 K be the collection of all subsets of K. Each 1-cycle cyc i E has its distinguished vertex g i ∈ cycE i that is a generator of a cyclic group. Further, let the mapping f : 2 k → 2 K be defined by

f (vorE) = {{kg i } : 0 ≤ k ≤ |cycE i | & g i ∈ cycE i , , 1 ≤ i ≤ n} (from Lemma 2).
= G(⟨g 1 , . . . , g n ⟩, +) = Z n .

Hence, vorE has a finite free Abelian group presentation.
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Definition 4 .

 4 Shape complex interior.Set of points bounded by shE contour int(shE) = shE \ bdyE.

Table 1 .

 1 The Pascal 3-triangle

			1		
			1		
			1		
		1	1		
		1	2		
		1	3		
		1	4	1	
		1	5	3	
		1	6	6	
	1	7	10	1	
	1	8	15	4	
	1	9	21	10	
	...	...	...	...	...

Table 2 .

 2 Number of paths between x-points and a y-points

	X	Y							
		0	1	2	3	4	5	6	7
	0	1	1	1	1	1	1	1	1
	1	1	2	3	4	5	6	7	8
	2	1	3	6	10	15	21	28	36
	3	1	4	10	20	35	56	84	120
	4	1	5	15	35	70	126	210	330
	5	1	6	21	56	126	252	462	792
	6	1	7	28	84	210	462	924	1716
	7	1	8	36	120	330	792	1716	3432
	8	1	9	45	165	495	1287	3003	6435
	9	1	10	55	220	715	2002	5005	11440

Table 3 .

 3 is equal to Rectangular

	Pascal 3-triangle

Table 4 .

 4 Minimal Planar Cell Complexes ) such that the closure of an n cell e n ∈ K (denoted by cl(e n ) is the image of a map f : σ n → cl(e n ), where σ n is a fixed n-simplex and where the boundary bdy(e n ) (otherwise known as the contour of a complex) is defined by bdy

	Minimal Complex Cell e n : n ∈ {0, 1, 2} Planar Geometry	Interior
	e 0	Vertex	nonempty
	e 1	Edge	line segment w/o end points
	e 2	Filled triangle	nonempty triangle interior w/o edges
	of disjoint open cells e, e n , e n i		

Appendix A. Cell Complexes A planar Whitehead cell complex K [START_REF]Computational geometry, topology and physics of digital images with applications. Shape complexes, optical vortex nerves and proximities[END_REF] (usually called a CW complex) is a collection of n-dimensional minimal cells e n α , n ∈ {0, 1, 2}, i.e., K = e n α ⊂ R 2 : n ∈ {0, 1, 2} . in the Euclidean plane π. Definition 2. A cell subcomplex shE := {e n α } ∈ 2 K (shape complex) is a closed subcomplex, provided the subcomplex includes both a nonempty interior (denoted by int(e n α )) and its boundary (denoted by bdy(e n α )). In effect, shE is closed, provided shE = int(shE) ∪ bdy(shE) (Closed subcomplex).

Let 2 π be the collection of all subsets in the Euclidean plane π. In the plane, a Whitehead Closure-finite Weak (CW) cell complex K ∈ 2 π has two properties, namely, C: A cell complex K is closure-finite, provided each cell e n α ∈ K is contained in a finite subcomplex of K. In addition, each cell e n α ∈ K has a finite number of immediate faces. One cell e n α is an immediate face of another cell e m α , provided e n α ∩ e m α ̸ = ∅ [START_REF] Switzer | Algebraic topology -homology and homotopy[END_REF] (also called a common face [13, p. 3]). W: The plane π has a weak topology induced by cell complex

provided it has the closure-finite property and π has the weak topology property induced by K.

Minimal cell planar complexes are given in Table 4.

Remark 4.

Closure finite cell complexes with weak topology (briefly, CW complexes) were introduced by J.C.H. Whitehead [START_REF] Whitehead | Simplicial spaces, nuclei and m-groups[END_REF], later formalized in [START_REF]Combinatorial homotopy[END_REF]. In this work 1 , a cell complex K (or complex) Appendix C. Finite 1-cycles and their Cyclic Group Presentation Finite 1-cycles in a CW space and their cyclic group presentations [START_REF]Computational geometry, topology and physics of digital images with applications. Shape complexes, optical vortex nerves and proximities[END_REF], [START_REF] Cattabriga | Strongly-cyclic branched coverings of (1,1)-knots and cyclic presentations of groups[END_REF] are briefly considered in this section. In arriving at cyclic group presentation derived from Pascal 3-triangles, we first consider 1-cycles, filled 1-cycles and shape complexes in a CW space.

Definition 6. A 1-cycle E (denoted by cycE) in a CW space is a finite, nonempty collection of path-connected vertexes e

is a zero cell on 1-cells (edges) with no end vertex. Definition 7. A filled 1-cycle in a CW space is a 1-cycle cycE has a boundary bdy(cycE) (called its contour) that is a simple, closed curve with a nonempty interior int(cycE).

Definition 8. In a CW space K, a shape complex E (denoted by shE) is a finite region of K bounded by a simple closed curve with nonempty interior. Theorem 8. Every filled 1-cycle in a CW complex K is a shape complex of K.

Proof. Immediate from Def. 7 and Def. 8.

We can select what is known as a generator vertex in each 1-cycle. Definition 9. A generator vertex v 0 in a 1-cycle cycE is the first vertex at the beginning of every path leading to any other vertex in cycE. Let |cycE| be the number of vertexes in cycE and let the set ⟨v 0 ⟩ be defined [19, p. 21] by

Recall that a finite group G is a nonempty set equipped with an associative binary operation • (denoted by G(•)) such that G has the following members: identity e: : g • e = g for every g ∈ G. inverse -g:

A cyclic group with p generators is denoted by Z p [START_REF] Giblin | Graphs, surfaces and homology[END_REF]. Intuitively, every boundary of a cell complex is a cycle [6, §4.8, p. 104]. This intuition leads to the following useful Lemma.
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