
HAL Id: hal-03242988
https://hal.science/hal-03242988

Submitted on 31 May 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimizing VoIP server resources using linear
programming model and autoscaling technique: An SDN

approach
Ahmadreza Montazerolghaem

To cite this version:
Ahmadreza Montazerolghaem. Optimizing VoIP server resources using linear programming model and
autoscaling technique: An SDN approach. Concurrency and Computation: Practice and Experience,
2021, �10.1002/cpe.6424�. �hal-03242988�

https://hal.science/hal-03242988
https://hal.archives-ouvertes.fr

Optimizing VoIP Server Resources Using Linear Programming
Model and Autoscaling Technique:

An SDN Approach

Ahmadreza Montazerolghaem∗

Faculty of Computer Engineering, University of Isfahan, Isfahan, Iran.

Abstract

Nowadays, the Voice Over IP (VoIP) technology is an important component of the commu-

nications industry as well as a low-cost alternative to Public Switched Telephone Networks

(PSTNs). Communication in VoIP networks consists of two main phases, e.g., signaling and

media exchange. VoIP servers are responsible for signaling exchange using the Session Initia-

tion Protocol (SIP) as the signaling protocol. The saturation of SIP server resources is one of

the issues with the VoIP network, which causes problems such as overload or loss of energy.

Resource saturation occurs mainly due to a lack of integrated server resource management. In

the traditional VoIP networks, management and routing are distributed among all equipment,

including servers. These servers are overloaded during peak times and face energy loss dur-

ing idle times. Given the importance of this issue, this paper introduces a framework based

on Software-Defined Networking (SDN) technology for SIP server resource management. The

advantage of this framework is to have a global view of all the server resources. In this frame-

work, the resource allocation optimization problem and resource autoscaling are presented to

deal with the problems posed. The goal is to maximize total throughput and minimize energy

consumption. In this regard, we seek to strike a balance between efficiency and energy. The

proposed framework is implemented in the actual testbed. The results show that the proposed

framework has succeeded in achieving these goals.

Keywords: VoIP network, Energy-efficient overload control, Linear programming, Autoscaling

∗Corresponding author
Email address: a.montazerolghaem@comp.ui.ac.ir (Ahmadreza Montazerolghaem)

Preprint submitted to Concurrency and Computation: Practice and Experience, May 11, 2021

1. Introduction

The prevalence and diversity of services provided by IP networks have led to the integration

of various technologies and the integration of different types of access networks and the con-

version to the next-generation network. The use of SIP [1] protocol, especially for VoIP-based

voice and video calls, has been growing, with SIP practically considered as a signaling protocol

in IMS, the proposed signaling platform for next-generation networks. Despite having features

such as text-based, IP-based, end-to-end, data-driven independence, and mobility support, this

protocol lacks a proper mechanism for dealing with overload conditions. This challenge will

cause a wide range of next-generation network users to experience a severe decline in Quality

of Service (QoS) [2].

Providing QoS on next-generation networks requires deploying mechanisms to deal with the

sudden increase in SIP traffic that causes overload on SIP servers. A list of causes of over-

load is provided in RFC 5390 [3], which may include sudden reductions in processing capacity,

component errors, one-off startups, instant congestion, and DOS attacks. Overload conditions

are exacerbated when SIP uses UDP and also intends to increase reliability by resubmitting all

unanswered requests. Although using TCP does improve server performance to some extent,

it does cause scalability problems, as shown in [4] and [5], as well as delay in TCP calls much

higher than UDP. Until now, UDP has been the most common option for SIP, and we assume

in this paper that SIP runs on the UDP transport layer protocol.

The main server of the service provider in the SIP protocol is called the server. The capacity of

each server to other servers (whether the same operator or other operators) is limited. There-

fore, the limited resource saturation of SIP servers at peak times is the main reason for these

networks overload.

In addition, stationary resources of SIP servers in idle times consume energy, as all server

resources are constant at peak and non-peak times. The main solution is server resource man-

agement. For example, we present an energy-efficient framework called GreenVoIP to manage

the resources of virtualized cloud VoIP centers. By managing the number of VoIP servers

and network equipment, such as switches, this framework not only prevents overload but also

supports green computing by saving energy in [6]. GreenVoIP is implemented and evaluated

on real platforms, including Floodlight, Open vSwitch, and Kamailio. The results show that

the proposed framework can minimize the number of active devices, prevent overloading, and

provide service quality requirements.

In the present article, we are also looking for the goals of increasing efficiency and reducing

2

energy consumption with a new approach: linear mathematical modeling, the autoscaling mech-

anism, and SDN.

The concepts of Software-Defined Networking (SDN) [7, 8, 9, 10] and Network Functions Virtu-

alization (NFV) [9, 11] can provide an abstract, focused view of network resources and servers.

This can be quite helpful in managing resources and addressing the challenges of a variety of

networks such as overload, energy consumption, routing, load balance, and quality of service

assurance [12, 13, 14, 7, 15]. More precisely, software-based networks allow advanced man-

agement by separating data planes and controls from one another, as well as centralized and

software control. This will lead to efficient routing and resource management. Furthermore,

virtualization technology for network functions can help improve resource management by vir-

tualizing a variety of devices and network functions and autoscaling techniques. This can be

done by optimally allocating resources as needed[16]. For example, during peak load times

when the overload probability is high, it can be possible to increase network resources such as

servers (scaling up) or to reduce the resources of inactive network servers (scaling down).

Given the importance of the challenges presented, the main purpose of this paper is to control

overload and energy in SIP networks using SDN based resource management. In this regard,

we present an SDN-based framework based on the convex mathematical programming model

and autoscaling technique to prevent overloading and loss of energy in the SIP network. This

framework increases the throughput of the entire network through optimal resource allocation.

In this regard, inspired by the congestion control of the TCP protocol, we present the problem

of optimizing SIP resource allocation. We also discuss the automation scaling technique for

managing SIP resources for optimal energy consumption.

TCP congestion control uses a network model with a set of L links with a limited capacity (C)

that are used jointly by N traffic generator sources (with index s). Each traffic generator uses

a series of links, so S(l) = {s ∈ N, l ∈ L}. The L(s) set specifies an L×N matrix (Rls) which

equals 1 if the source s uses the link l; otherwise, it equals 0. Each source s generates xs(t)

traffic at any given moment, and each link l updates a value of λt(l) at any moment as the

link cost. The total traffic generated per link must be less than the capacity of this link. This

network can be modeled by the Network Utility Maximization (NUM) optimization problem,

which is found in [17, 18] introduced:

maximize
∑
s

Us(xs) (1)

subject to Rx ≤ c (2)

3

minimize(λ≥0) D(λ) =
∑
s

max(Us(xs)− xs
∑
l

Rsλl) +
∑
l

clλl (3)

Considering the optimization problem of Eq. (1) and its dual, it is possible to derive the general

model of congestion control algorithms and show that the TCP congestion control methods are

interpreted into distributed algorithms, which is the problem of NUM Eq. (1).

Resource allocation and congestion control of the TCP and SIP protocols are theoretically5

similar in that they are optimized to maximize resource utilization. The biggest difference

between TCP congestion control and SIP overload control is that TCP congestion control is a

mechanism for maximizing the capacity of links, while SIP overload control is a mechanism for

maximizing server capacity utilization while preventing overload. Therefore, the SIP overload

problem has the following complexities:10

• Each server functions both as a source of traffic generation and a link. Users are actual

source of traffic generation; however, since each request is related to an individual user and

modeling the overload control of such a scenario is practically impossible, the upstream server

is considered as the source of traffic generation (when traffic is sent from users of one server to

users from another server, the server is upstream. When traffic is sent from other servers to15

the desired server, the server is downstream).

• SIP network servers must also bear the cost of dropping overload. In TCP, traffic gen-

eration resources must themselves control the forwarded load. However, in SIP, this is not

an easy task, and traffic is generated by users, each generating only as much as one session.

Overload dropping on servers requires the use of processing resources and should be added to20

the optimization problem.

• Overload control methods (implicit or explicit) affect the efficiency of overload control. In

TCP, the cost of links is generally observed by implicit methods in traffic generation sources.

The overhead of the implicit method used in traffic generation resources will not have a role

in link efficiency. While in SIP congestion control, the cost of overload control (implicit or25

explicit) has a significant impact on proxy performance.

On the other hand, network functions virtualization provides resources scalability and au-

toscaling technique. Autoscaling is the key strategy for dynamic resource supply. This tech-

nique should automatically allocate the resources needed by the servers. If a server requires

some more resources, they should be allocated to the server without causing any problems30

with the user service. Moreover, if excess resources are needed, additional resources should be

temporarily withdrawn so that they can be reused if required. This saves energy and does not

4

compromise efficiency.

1.1. Contributions

Some of the main contributions of this article can be summarized as follows:35

1. Introducing an SDN-based framework for the softwarization of SIP networks for in-

tegrated resource management, including two major components, e.g., overload control and

energy consumption control.

2. Mathematical modeling of the problem of optimal allocation of resources to SIP servers.

Defining the problem mentioned above in the form of a mathematical model, identifying the40

types of model constraints according to the requirements, assumptions and constraints and

goals defined, as well as a precise definition of the variables, parameters, and inputs of the

problem. Hence, in this article, a new approach will be presented to tackle the SIP overload

because resource allocation has already been used by researchers to control TCP congestion.

This paper introduces the optimal resource allocation to prevent overload from increasing the45

throughput across the SIP network.

3. Providing a mechanism to scale up and scale down the SIP resources for energy con-

trol (Developing a scheme of reducing energy consumption using SDN and autoscaling, which

effectively decreases the total energy consumption of servers).

4. Implementing the proposed framework in the actual testbed and evaluating the perfor-50

mance of the proposed approach under different scenarios.

So in this paper, by stating the causes of occurrence and persistence of overload in SIP

servers, an extensive study has been done on the problems caused by SIP server overload, the

behavior of servers in these conditions, and the parameters affecting server performance in this

case. Due to the lack of processing and memory resources, proper resource management in the55

SIP network is very important as the most destructive factor affecting the performance of SIP

servers in case of overload. In this regard, a novel framework is presented. The framework is

based on resource optimization and SDN-based network technology. To achieve no overload

through resource management, the problem of optimal resource allocation is first modeled.

According to the server resources, the proposed resource allocation model tries to maximize60

the acceptance of calls so that they can be distributed among the servers in the network without

any overload. Also, with the virtualization of SIP networks and the capabilities such as resizing

the resources it provides, the limitation of hardware resources can be somewhat reduced. This

approach provides more dynamic and efficient resource management and provides an abstract

5

view of all SIP network resources. The framework was also equipped with an automated scaling65

scheme (at the virtual machine level) to allocate an appropriate amount of resources to both

achieve the maximum acceptance rate and minimize resource wastage.

1.2. Organizations

The rest of the article is organized as follows. Section 2 discusses related work. Section 3

provides a comprehensive list of challenges in managing SIP resources. Section 4 presents the70

proposed framework. In this section, we address the details and components of the proposed

framework as well as the solution to the optimization problem with the objective function of

maximizing the total throughput. In addition, the details of the proposed autoscaling technique

are presented in this section. Section 5 introduces the testbed, test tools, performance evalu-

ation, and results. Finally, Section 6 concludes the work and provides suggestions for future75

work.

2. Related Work

The most prominent existing approaches to overcoming VoIP overload can be categorized

as shown in Fig. 1. In this figure, one way to prevent overload is the distribution of the load

between SIP servers based on their capacity [19, 20, 21]. Another categorized mechanism is80

overload control methods, which are divided into five general categories [1, 22, 23, 24, 25, 26],

the most important of which are local and distributed methods.

2.1. Local methods

In local methods, each SIP server monitors its consumable resources independently and

rejects additional calls without the need to interact with other servers [1].85

This method is based on the basic SIP mechanism for overload control, which rejects ad-

ditional requests by sending a 503 response message. In local overload control methods, the

monitor and operator are both located on the overload proxy. In this method, it is assumed

that the cost of rejecting additional calls is lower than accepting them. Therefore, the proxy

will be able to serve more calls in total while spending less resources to reject additional calls.90

On the other hand, because the overloaded proxy itself constantly monitors its consumption

resources, it applies its control method without the need to interact with other network proxies.

Of course, this method alone can not prevent the harms of proxy exposure to overload. It is

necessary to install other methods along with this mechanism in other network components. So

6

V
o
IP

 O
v
erlo

ad
 P

rev
en

tio
n

M
eth

o
d
s

Overload control

Distributed

 Local

Local and Distributed
 composition

 Load balancing

 SDN-based Retransmission-based

Using capabilities of the
 transport layer

Rate-based

 Loss-based

 Window-based

 Signal-based

 On/Off control

Figure 1: Categorization of papers on VoIP overload

that the local overload control method is the last proxy backup layer. The disadvantage of this95

method is that the cost of rejecting the call is not insignificant. In the event of a heavy overload,

the proxy must devote all its resources to rejecting additional calls. As a result, it will not be

able to service all calls and its throughput will be zero. In addition, a ”re-try after” header

is embedded in this reply message, informing the overloaded proxy of its non-response time to

other upstream proxies. During this time, upstream proxies can redirect incoming requests to100

other proxies on the network. This will cause the load to fluctuate between the proxies in the

network if the overload is heavy and continues for a while. Therefore, using this method alone

can not completely eliminate the negative effects of overload.

2.2. Distributed methods

In distributed methods, SIP servers prevent overload by interacting with each other and105

exchanging information. These methods are also divided into five categories, depending on the

type of exchanged information[27, 28, 29, 30, 31, 32, 33, 34]. For instance, [31] is a window-

based method in which the load is sent to the downstream server only if the upstream server

window has empty space. Also, message delays are used to adjust the size of the window.

When a SIP proxy is overloaded by other proxies, the so-called ”server-server” overload110

occurs. In addition to local control mechanisms, distributed overload control methods are used

to keep the reference load to the normal load. Distributed overload control methods are also

divided into two categories, explicit and implicit: depending on whether the overloaded server

informs its status to the upstream servers, or whether the upstream servers themselves are be

informed.115

In explicit overload control methods with direct feedback, the SIP proxy explicitly uses a signal

7

(such as a packet or the inclusion of relevant information in a field of a packet) to indicate

that an overload is imminent. Upstream proxies that receive this signal adjust their load rate

according to the received signal to be optimal for the downstream proxy. The advantage of this

method is that each proxy can actively adjust its own load, so that it can use its maximum120

processing power.

The implicit overload control or indirect feedback method uses the absence of responses, or the

loss of packets as a criterion for detecting overload. An upstream proxy that understands such

a situation reduces its load rate to its downstream proxy. Given that no explicit feedback is

used in this method, it is a robust mechanism, as it is not dependent on proxy reaction under125

overload. Another advantage of this mechanism is that upstream proxies will be able to avoid

overloading the downstream proxy that cannot respond.

In addition, distributed methods are divided into two categories, step-by-step and end-to-end,

depending on how the servers on the network interact to control overload. In step-by-step

methods, the amount of feedback is transmitted directly between each pair of adjacent proxies.130

Therefore, independent control policies and parameters can be applied between each pair of

proxies. In other words, the operating unit of the overload control structure is located in

the upstream proxy, which directly uses the monitoring information located in its downstream

proxy to control the overload. But in the end-to-end method, a feedback loop is closed along

the path between the primary sender server and the final receiver. Therefore, the control is135

performed by the primary sender server. In other words, the monitoring unit is located in each

of the proxies located along the route, while the operating unit is located at the origin of the

sender of the messages. The disadvantage of this method is its high complexity for finding all

routes to the desired destination and summarizing the information obtained to decide whether

to limit the sending of packets to a particular route.140

2.3. Retransmission rate methods

The third approach applied for overload control is based on retransmission rate methods

which review retransmission mechanism of SIP by studying servers buffer size [24, 25]. By

limiting the dedicated memory of the server, it can be prevented from admitting the over-

capacity calls. However, this policy loses its efficiency once the call rate rises, as the server145

processor is forced to analyze the messages to recognize their content. Therefore, under such

conditions, the server reaches saturation, which typically occurs under the higher loads.

As mentioned, by limiting the memory allocated to the server, it can be prevented from

8

accepting calls beyond its capacity. But this policy loses its effectiveness as the call rate

increases. Because in this case, the server processor has to parse messages to know the contents150

of them. So in this case, too, it will be saturated, although this event will occur under higher

loads.

2.4. TCP flow control methods

The next approach to overload avoidance is based on TCP flow control for the purpose of

regulating SIP overload [26]. However, problems such as scalability and high delay hinder use155

of this protocol. Furthermore, the congestion designed for TCP control mechanism occurs due

to limited bandwidth, whereas the overload in SIP is caused by the limited processing capacity

of servers CPU [24].

As mentioned, overload control can be implemented in any of the data link, network, trans-

mission, and application. Since SIP is an application layer protocol, most overload control160

methods are application layer. However, methods for controlling overload in the transmission

layer when using TCP have also been considered to improve the TCP flow control procedure

for controlling SIP overload. In this regard, the effect of using different transmission layer

protocols on call delay has been investigated.

Based on the mentioned points, it can be stated that the main disadvantages of the present165

overload control approaches are: Firstly, their reliance merely over the local call reject reduces

their throughput. Secondly, for the majority of explicit feedback-based methods, continuous

revision of the status and feedback calculation (which is the function of overloaded server) has

complexity and header. The third defect of these methods is the delay in feedback arrival to

the upstream, which results in instability of these methods. Nevertheless, these methods are170

more accurate in overload detection as compared to the implicit methods. Therefore, overload

detection, feedback generation, and running the overload control algorithm incurs CPU and

memory usage costs and affects throughput of the server.

3. Existing Challenges

This section examines a limited number of challenges in optimizing the allocation of SIP175

resources, some of which are addressed in this article. These challenges can be helpful for other

articles as well. These challenges can be classified into several main phases.

1. Collection of decision-making data and knowledge of open source SIP servers (how and

when to measure server resources):

9

To get the optimal allocation of server resources, the resource allocation algorithm requires180

some critical information. For example, knowing the number of server resources remaining, the

number of call requests per server, the topology, how to connect servers, and so on.

2. Determining the importance of SIP servers activity for allocating resources to them:

To avoid wasting resources on SIP servers, authorized operations should be reviewed to

allocate resources to them. Depending on whether the caller and the callee are both on the185

same domain (registered on one server) or registered on different domain servers, each server call

requests can be divided into local or extra-domain requests. Thus, categorizing the activities

authorized by the servers to allocate resources to them can be considered as local calls or relaying

(trunking) extra-domain requests. For example, in Fig.2, each server can spend its resources on

making local calls and calls between two users from different domains. An essential component190

of the overload control mechanism is the optimal adjustment of local and extra-domain call

rates due to limited SIP network resources.

SIP Proxy 1

UAC

&

UAS

SIP Proxy 2

UAC

&

UAS

Domain 1 Domain 2

 Figure 2: SIP network with two servers

3. Determining the impact factor of server activities on resource consumption:

After determining the authorized activities of the servers to allocate resources to them, the

importance coefficient of these activities in resource consumption should be specified as well.195

For example, making local calls will require more resources than making extra-domain calls

to a particular server. Obtaining these coefficients is, in itself, a challenge in allocating server

resources. It is also important to note that these coefficients vary for different sources. For

example, making a local call affects the processing and memory resources of a server differently.

4. No restrictions on the topology and links between SIP network servers:200

As discussed in [35, 36, 31, 37], the SIP server network can have different topologies. The

resource allocation algorithm should not limit how the SIP servers are connected or topologized.

10

As in Fig.3, there is no direct relationship between Server 1 and Server 3. Therefore, to

communicate between Server 1 users and Server 3 users, the relevant signaling must pass

through Server 2 and reach the destination. Determining this path is also one of the challenges205

in optimizing the allocation of server resources.

5. Creating a balance between increased throughput and decreased resource consumption

of SIP servers:

The proposed resource allocation algorithm should not overlook increasing the total network

throughput to maintain server resources. Conversely, it should not increase the likelihood of210

an overload on SIP network servers to increase the network throughput by allocating total

network resources. Creating a balance between increasing the total network throughput and

the non-occurrence of overload due to resource constraints is one of the challenges ahead.

SIP Proxy 1

UAC

&

UAS

Domain 1

UAC

&

UAS

Domain 2

UAC

&

UAS

Domain 3

SIP Proxy 2

SIP Proxy 3

Figure 3: SIP network with three servers and no direct connection between server 1 and server 3

6. Centralized optimal resource allocation:

Gathering server information and deciding how to allocate resources provided that the215

throughput is increased and overload is not occurred, by a central controller and how to design

it is another challenge ahead.

7. The heterogeneity of the network SIP servers.

11

4. Proposed Approach

As discussed earlier, with the growing use of SIP, the traditional configuration of this type of220

network is faced with several problems such as ineffective routing, overloaded SIP servers, and

lack of optimal management of server resources (including processing and memory resources).

An integrated SIP softwarization is required. This section introduces a new approach to up-

grading the SIP network framework using new SDN and NVF technologies. SDN allows for

advanced management by decoupling data and control panels, as well as centralized and soft-225

ware control. This will lead to efficient routing and resource management. Using SDN, the

entire network and its components can be controlled and programmed as an integrated network

by software controllers and designed APIs (such as the OpenFlow protocol). SDN architecture

and the OpenFlow protocol make the network smarter and more manageable, and the core

network infrastructure is separated from applications. NFV can also help SDN by virtualizing230

a variety of network equipment and functions. This section mainly aims to separate the core

functionalities of SIP networks (the mastermind of these networks) from the hardware infras-

tructure of these networks (which are currently highly complex) and to present as software.

The following framework is provided in this regard.

4.1. Proposed Framework235

Fig.4 outlines the proposed framework. As can be seen in this figure, a controller tries to

maximize the admission of calls so that it can distribute them between servers on the network

and save energy at the same time. However, given the limited resources of the servers and the

information and status of the servers as well as the knowledge of the topology and paths in the

SIP network, this controller seeks to find the optimal solution to the problem by solving the240

proposed mathematical model.

In addition, due to limited resources of SIP servers (given that hardware resources are

constant), full acceptance rates cannot be achieved when the input load is greater than the

network capacity. Energy loss occurs when the input load is much lower than the server

capacity. Therefore, the virtualization of SIP networks and capabilities such as changes in245

resource scaling it provides can reduce hardware resource constraints to some extent. This

approach leads to more dynamic and efficient resource management. Virtualization techniques

can provide an abstraction of physical server resources and allocate a portion of the overall

hardware to different operating environments (e.g., different virtual machines), each operating

in the form of a separate, independent system. Virtualization also allows for on-demand resource250

12

sharing. As such, computing resources such as CPU and memory as well as storage resources are

allocated as needed and as needed. The amount of these resources can be allocated dynamically.

As a result, the amount of time spent optimizing, optimizing, and wasting resources for the

provider is also minimized. This eliminates static resource allocation (which allocates resources

as much as needed and commensurate with its peak usage). In short, virtualization leads to255

improved resource efficiency, dynamic resource sharing, and better energy management along

with improved scalability, accessibility, and reliability of resources.

Monitoring

Linear

Programming

Model

Autoscaling

Control Plane

Data Plane

SDN Controller

Virtual SIP Servers

4

3

n

i

2

1

Rule ManagerSelected Flavors

Module 1 Module 2

Module 3 Module 4

flavors

OpenFlow

Rules

Figure 4: The proposed SIP resource management framework based on the SDN concept

As shown in Fig.4, the data plane includes SIP virtual servers. These servers are equipped

with the OpenFlow protocol to communicate with the SDN controller. The controller has

four main modules. The monitoring module collects and observes information required from260

the infrastructure. Given the information collected as well as the capacity of the servers, the

second module calculates the maximum possible throughput by solving a linear programming

model in a short time. Given the output of module 2, the next module calculates and satisfies

the required resources. That is, it determines the size of the virtual machine for each SIP

server. Finally, the last module sends the results to the servers in the form of appropriate rules265

and OpenFlow messages.Fig. 5 shows the proposed controller algorithm described.

13

Figure 5: Controller Proposed Algorithm

4.1.1. Linear Programming Model

Generally, the SIP network consists of L SIP servers with a Ci capacity. Each server

divides this capacity into upstream and downstream between other servers. Fig.6 shows the

SIP network with four servers (L = 4). For example, in this figure, the request rate of Server270

1 users to Server 2 users is specified with λ12. In overload mode, Server 1 sends T12 to Server

2 and drops the rest.

SIP Proxy 1SIP Proxy 2

SIP Proxy 3 SIP Proxy 3

Figure 6: SIP-based network with L = 4

An essential component of the overload control mechanism is to set the transmission rate to

each server (Tij). Therefore, in the optimization problem, this parameter must be adjusted to

maximize the objective function. The other point is that in the overload mode, the upstream

14

transmission request rate may be higher than the allocated capacity from one server to another

(λij). Some requests will be dropped at a wrej cost, and the throughput will be equal Tij .

Based on these assumptions, the optimization problem will be defined as following equation:

maximize
∑
i,j∈L

Uij(Tij) (4)

subject to (5)

∑
j∈L

(Tij +Wrej(λij − Tij) + λijkwret + Tji)− Tii ≤ Ci, i ∈ L (6)

0 ≤ Tij ≤ λij , i, j ∈ L (7)

The first constraint of this problem is written to divide the server capacity between other

servers into two upstream and downstream roles. In this statement, the dedicated capacity of

server i must be greater than the sum of the following streams:275

• Tij :Transmission server throughput toward other downstreams.

• (λij − Tij).Wrej :Overhead of downstream capacity overload dropping.

• (λijk).Wret: The cost of processing downstream traffic redirects coming from users. The

third term of this statement is written for cases where the upstream server input load is resent

to an average of k times.280

• Tji: Throughput received from upstream servers.

It is noteworthy that in the first case of the optimization problem since Tii appears twice in the

first two and four terms of sigma, sigma is reduced. The second constraint of the optimization

problem determines that all throughputs (Tij) and input loads (λij) must be a non-negative

value, and none of the throughputs can be higher than their corresponding input traffic.285

The objective function of the Eq. (4) is the sum of the productivity of each traffic flow. The

productivity of each traffic flow is a function of the transmitted throughput.

4.1.2. Autoscaling

Next, we consider the cost of dropping calls in the linear programming model introduced

as zero. This means that dropping calls does not happen because the resources are fixed.290

The process of matching the number of resources required with server requirements is called

horizontal scaling, which can be very challenging. This approach is implemented by two general

15

methods, e.g., horizontal and vertical. In horizontal scaling, also known as scale in /out, new

virtual machines are added to the computational system or platform, and the workload is

distributed among all available virtual machines. In vertical scaling, also known as scale-295

up/down, more resources are added to the same virtual machine to fulfill server requests. For

example, adding more RAM, disk space, or CPU to the same machine. As such, we manage

load increases. This paper uses vertical scaling assuming that we have f (flavor) sizes with

specified sources as flavor flavor[f] = [Pf ,Mf] (Pf represents processor and Mf represents

virtual machine memory f). The third module selects the closest size for each server virtual300

machine according to Table 1 so that the throughput is satisfied and minimum resources are

used (to reduce power consumption). If total throughput of server i is equal to its capacity,

no action is taken; if it is greater than its capacity, scale-up should be done, and if it is lower,

scale-down should be done. Resource scale-up occurs when overload is likely. Scale-down also

happens to save energy. Fig. 7 shows the autoscaling proposed algorithm.305

Table 1: Scaling rules

Actions Rules

NOP
∑
Tij = Ci

Scale Up
∑
Tij > Ci

Scale Down
∑
Tij < Ci

The third module aims to dynamically adapt the server resources based on throughput and

establish a balance between fulfilling the throughput and minimizing resource consumption. It

should be noted that concerning the obtained Tij , this paper assumes that routing between

OpenFlow switches is performed by the Dijkstra’s algorithm and in the controller. The rules

are also installed on OpenFlow switches by the controller.310

16

Figure 7: Proposed Algorithm for Autoscaling

5. Performance Evaluation

In this section, open-source Asterisk1 software is used to implement SIP server, open-source

SIPp2 software for user agent implementation. Moreover, Floodlight is used for controller

implementation, and CVX software [38] is used to solve the mathematical model. All servers

and controllers have homogeneous hardware, including the INTEL Dual Core 3GHZ processor315

and 2 GB of RAM using the CentOS 6.3 Linux operating system. Asterisk software reports are

also used to measure call status. Oprofile software is used to measure CPU usage and server

memory.

The requirements for the implementation of the proposed method is given in Table 2 This

1Asterisk is a software implementation of a private branch exchange (PBX). In conjunction with suitable

telephony hardware interfaces and network applications, Asterisk is used to establish and control telephone calls

between telecommunication endpoints, such as customary telephone sets, destinations on the public switched

telephone network (PSTN), and devices or services on voice over Internet Protocol (VoIP) networks. Its name

comes from the asterisk (*) symbol for a signal used in dual-tone multi-frequency (DTMF) dialing.
2SIPp is a free Open Source test tool / traffic generator for the SIP protocol. It includes a few basic

SipStone user agent scenarios (UAC and UAS) and establishes and releases multiple calls with the INVITE

and BYE methods. It can also reads custom XML scenario files describing from very simple to complex

call flows. It features the dynamic display of statistics about running tests (call rate, round trip delay, and

message statistics), periodic CSV statistics dumps, TCP and UDP over multiple sockets or multiplexed with

retransmission management and dynamically adjustable call rates.

17

prototype was implemented in VoIP type approval laboratory whose backbone is 10 Mbps links.320

Table 2: Testbed Characteristics for the Experiments

VoIP

Servers

SDN

Controller

OpenFlow

Switches

Traffic

Generator

Software Asterisk Floodlight v1.2 Open vSwitch v2.4.1 SIPp

Quantity 3 1 2 1

CPU INTEL Dual Core 3GHZ INTEL Dual Core 3GHZ INTEL Dual Core 1.8GHz INTEL Dual Core 1.8GHz

RAM 2 GB 2 GB 1 GB 2 GB

Operating System CentOS 6.3 Linux CentOS 6.3 Linux Linux kernel v3.10 Red Hat v6

5.1. Implementation and Experimental Results

In this section, it is assumed that the network has two SIP servers. Server 1 parameters

are C1 = 460 cps, λ11 = 100 cps, λ12 = 180 cps and Server 2 parameters are C2 = 460 cps,

λ22 = 50 cps, λ21 = 180 cps. In addition, k = 0,Wret = 0.1,Wrej = 0.2.325

The considered values are selected with high sensitivity. They are selected from several

values. Each value is tested several times and the average of the results is considered to bring

the results closer to the actual value. C Indicates the capacity of the server, which depends

on the hardware specifications of the server. The C values were considered according to the

specifications of the servers mentioned in the previous subsection, as well as the various tests330

performed on the server. C1 is equal to C2 because the hardware of both servers is the same

(all servers and controllers have homogeneous hardware, including the INTEL Dual Core 3GHZ

processor and 2 GB of RAM using the CentOS 6.3 Linux operating system). λs are percentage

of C that servers can handle. So the sum of λ11 and λ12 and λ21is less than or equal the C1.

We define three scenarios, e.g., low-load, medium-load, and high-load. In the low-load335

scenario, 400 calls per second (cps) is injected into the network. In the medium and high-load

scenarios, 600 cps and 800 cps were injected into the network, respectively. For SIP virtual

machines, four flavors (f = 4) are given in Table 3. Initially, the specifications of all virtual

machines are homogeneous, and others are small.

Next, we show the results of network traffic injection. Fig.8 shows the server throughput340

(Tij) in three low-load, medium-load, and high-load scenarios for the proposed SDN-based

mechanism and the traditional mechanism. As can be seen, the throughput in SDN mode is

higher than the traditional mode in all three scenarios. Besides, as the load (Cij) increases, the

throughput also increases. Nonetheless, increased throughput is higher in SDN mode because,

in the high-load scenario, the traditional mode becomes overloaded and fail to handle the load.345

18

http://voip-lab.um.ac.ir/index.php?lang=en

Table 3: Available flavor specifications

Flavor Memory (MB) vCPUs Disk (GB)

Small 2048 1 20

Medium 4096 2 40

Big 8192 4 80

Very Big 16384 8 160

Table 4 shows the flavor of virtual machines for different Cijs in both SDN-based and traditional

modes. In the traditional mode, the flavor of the virtual machine is the same as the original

size. Nevertheless, in SDN mode, the flavor of the machine varies with load. Under heavy loads,

the flavor of the machine grows and shrinks under light loads. This is effective in saving energy

consumption. From Fig.8 and Table 4, it can be concluded that compared to the traditional350

mechanism, the SDN-based mechanism has managed to increase throughput (according to the

linear programming model) and contribute to a decrease in energy consumption (due to the

virtual machine scaling mechanism).

Table 3 shows the flavor of virtual machines for different Cijs in both SDN-based and traditional

modes. In the traditional mode, the flavor of the virtual machine is the same as the original size.

Nevertheless, in SDN mode, the flavor of the machine varies with load. Under heavy loads, the

flavor of the machine grows and shrinks under light loads. This is effective in saving energy

consumption. From Fig. 5 and Table 3, it can be concluded that compared to the traditional

mechanism, the SDN-based mechanism has managed to increase throughput (according to the

linear programming model) and contribute to a decrease in energy consumption (due to the

virtual machine scaling mechanism).

Figure 5. Server throughput in three scenarios

Table 3. The flavor of virtual machines at different loads

800 (cps) 600 (cps) 400 (cps) Cij

Small Small Small Traditional-based

Big Medium Small SDN-based

Figure 6 shows message retransmission rates. As virtual machine flavors do not change in the

traditional method and remain small, overload occurs in scenarios 2 and 3 (medium- and high-

load). This causes resources to be saturated, and the message rate to increase rapidly. However,

0

100

200

300

400

500

600

700

800

Cij=400 (cps) Cij=600 (cps) Cij=800 (cps)

T
ij

 (
cp

s)

low load medium load high load

traditional based SDN based

Figure 8: Server throughput in three scenarios

Table 4: The flavor of virtual machines at different loads

Cij 400 (cps) 600 (cps) 800 (cps)

Traditional-based Small Small Small

SDN-based Small Medium Big

Fig.9 shows message retransmission rates. As virtual machine flavors do not change in the

traditional method and remain small, overload occurs in scenarios 2 and 3 (medium- and high-355

19

load). This causes resources to be saturated, and the message rate to increase rapidly. However,

the SND-based method does not overload as the central controller solves the mathematical

model as well as regulates the sources. This does not increase the retransmission rates and the

congestion of the network.

An increase in retransmission rates is directly related to the occurrence of overload. As360

much as this rate can be controlled, overload can be prevented. The reason for the increase

in retransmission rates is the inability of servers to respond to requests, which is due to a lack

of resources. In other words, if server resources are saturated, then retransmission begins and

grows in a short time.

the SND-based method does not overload as the central controller solves the mathematical model

as well as regulates the sources. This does not increase the retransmission rates and the

congestion of the network.

Figure 6. Retransmission rate in three scenarios

Figure 7 shows that resource saturation and exposure to overload increase delay in the traditional

mode. However, the SDN-based mechanism has been able to keep the delay below 100 ms even

under a high-load scenario. The reason for the high delay in the traditional method is illustrated

in Figure 8. In the traditional method and medium- and high-load scenarios, the message

rejection rates increase dramatically. The reason for this is the lack of awareness and centralized

decision-making in this way. Despite consuming all the resources, the traditional method still

failed to handle all the messages properly, resulting in higher rates of rejection and delay.

0

250

500

750

1000

Cij=400 (cps) Cij=600 (cps) Cij=800 (cps)

R
et

ra
n

sm
is

si
o

n
 r

a
te

 (
cp

s)

low load medium load high load

traditional based SDN based

Figure 9: Retransmission rate in three scenarios

Fig.10 shows that resource saturation and exposure to overload increase delay in the tradi-365

tional mode. However, the SDN-based mechanism has been able to keep the delay below 100

ms even under a high-load scenario. The reason for the high delay in the traditional method

is illustrated in Fig.11. In the traditional method and medium- and high-load scenarios, the

message rejection rates increase dramatically. The reason for this is the lack of awareness and

centralized decision-making in this way. Despite consuming all the resources, the traditional370

method still failed to handle all the messages properly, resulting in higher rates of rejection and

delay.

Delay is toxic to multimedia systems. The main reason for the increase in delay is the

growth of the rejection rate. Lack of processing resources and memory of servers makes it

impossible to respond to requests in the allotted time and the timer is timed out. From375

now on, retransmissions will start and the situation will get worse. As the retransmissions

rate increases, the shortage of resources gets worse. As the resources become saturated, the

rejection rate increases and the delay becomes very large.

20

Figure 7. The average delay in three scenarios

Figure 8. Message rejection rate in three scenarios

In the proposed mechanism, servers will never face resource saturation (Figures 9 and 10).

Therefore, even at heavy input loads, the performance of the servers will not decrease, and they

will not face the consequences of overload (Figures 5 to 7). For example, in the high-load

scenario, without a sudden increase in the retransmission rate and the average call delay (Figures

6 and 7), it reaches the throughput of 789 successful requests from 800 requests only by

consuming an average of 50% CPU and 61% RAM (Figures 9 and 10) yielded (Figure 5).

1

10

100

1000

10000

100000

1000000

Cij=400 (cps) Cij=600 (cps) Cij=800 (cps)

A
ve

ra
g

e
ca

ll
 s

et
u

p
 d

el
a

y
(m

s)

low load medium load high load

SDN based traditional based

0

10

20

30

40

50

60

70

80

90

100

Cij=400 (cps) Cij=600 (cps) Cij=800 (cps)

R
ej

ec
ti

o
n

 r
a

te
 (

%
)

low load medium load high load

traditional based SDN based

Figure 10: The average delay in three scenarios

Figure 7. The average delay in three scenarios

Figure 8. Message rejection rate in three scenarios

In the proposed mechanism, servers will never face resource saturation (Figures 9 and 10).

Therefore, even at heavy input loads, the performance of the servers will not decrease, and they

will not face the consequences of overload (Figures 5 to 7). For example, in the high-load

scenario, without a sudden increase in the retransmission rate and the average call delay (Figures

6 and 7), it reaches the throughput of 789 successful requests from 800 requests only by

consuming an average of 50% CPU and 61% RAM (Figures 9 and 10) yielded (Figure 5).

1

10

100

1000

10000

100000

1000000

Cij=400 (cps) Cij=600 (cps) Cij=800 (cps)

A
ve

ra
g

e
ca

ll
 s

et
u

p
 d

el
a

y
(m

s)

low load medium load high load

SDN based traditional based

0

10

20

30

40

50

60

70

80

90

100

Cij=400 (cps) Cij=600 (cps) Cij=800 (cps)

R
ej

ec
ti

o
n

 r
a

te
 (

%
)

low load medium load high load

traditional based SDN based

Figure 11: Message rejection rate in three scenarios

In the proposed mechanism, servers will never face resource saturation (Fig.12 and 13).

Therefore, even at heavy input loads, the performance of the servers will not decrease, and380

they will not face the consequences of overload (Fig. 8 to 10). For example, in the high-

load scenario, without a sudden increase in the retransmission rate and the average call delay

(Fig.9 and 10), it reaches the throughput of 789 successful requests from 800 requests only by

consuming an average of 50% CPU and 61% RAM (Fig.12 and 13) yielded (Fig.8). However,

in the traditional mechanism and the high-load scenario, a throughput no better than 344385

successful requests can be reached with all the server resources consumed (Fig.8).

Increasing throughput and reducing energy consumption in the proposed method is based

on the global, integrated, and coordinated management of traffic and network resources. Since

the proposed controller oversees the entire network and its components, it can make decisions

about resource resizing and server acceptance rates in a centralized and accurate manner. This390

is much more efficient and informed than when decisions were traditionally made and distributed

21

by switches or servers.

However, in the traditional mechanism and the high-load scenario, a throughput no better than

344 successful requests can be reached with all the server resources consumed (Figure 5).

Figure 9. The average CPU usage of servers in three scenarios

Figure 10. The average memory usage of servers in three scenarios

All of the previous experiments were only in one period; however, in the subsequent

experiments, we will examine efficiency over time. Figure 11 shows the cumulative throughput

of the servers over time. In this experiment, the time is divided into five 100s intervals, during

which low-load, medium-load, and high-load are executed scenarios, respectively. As can be

0

10

20

30

40

50

60

70

80

90

100

Cij=400 (cps) Cij=600 (cps) Cij=800 (cps)

A
ve

ra
g

e
C

P
U

 u
sa

g
e(

%
)

low load medium load high load

traditional based SDN based

0

10

20

30

40

50

60

70

80

90

100

Cij=400 (cps) Cij=600 (cps) Cij=800 (cps)

A
ve

ra
g

e
m

em
o

ry
 u

sa
g

e(
%

)

low load medium load high load

traditional based SDN based

Figure 12: The average CPU usage of servers in three scenarios

However, in the traditional mechanism and the high-load scenario, a throughput no better than

344 successful requests can be reached with all the server resources consumed (Figure 5).

Figure 9. The average CPU usage of servers in three scenarios

Figure 10. The average memory usage of servers in three scenarios

All of the previous experiments were only in one period; however, in the subsequent

experiments, we will examine efficiency over time. Figure 11 shows the cumulative throughput

of the servers over time. In this experiment, the time is divided into five 100s intervals, during

which low-load, medium-load, and high-load are executed scenarios, respectively. As can be

0

10

20

30

40

50

60

70

80

90

100

Cij=400 (cps) Cij=600 (cps) Cij=800 (cps)

A
ve

ra
g

e
C

P
U

 u
sa

g
e(

%
)

low load medium load high load

traditional based SDN based

0

10

20

30

40

50

60

70

80

90

100

Cij=400 (cps) Cij=600 (cps) Cij=800 (cps)

A
ve

ra
g

e
m

em
o

ry
 u

sa
g

e(
%

)

low load medium load high load

traditional based SDN based

Figure 13: The average memory usage of servers in three scenarios

All of the previous experiments were only in one period; however, in the subsequent exper-

iments, we will examine efficiency over time. Fig.14 shows the cumulative throughput of the

servers over time. In this experiment, the time is divided into five 100s intervals, during which395

low-load, medium-load, and high-load are executed scenarios, respectively. As can be seen, in

SDN-based mode, throughput is higher in all scenarios compared to the traditional mode. For

example, in the 200-300s interval where the high-load scenario is implemented, the traditional

mode failed to achieve a better throughput than 300cps due to being overloaded. However, the

SDN-based method has achieved the maximum possible throughput of approximately 1100cps.400

Note that the Tij fluctuation changes according to the input load to the system.

Fig.15 and 16 show the average resources consumed over time. In these figures, it is evident

that resource saturation has taken place in the traditional mode, and this has led to a decline in

throughput. However, the SDN-based approach has been able to achieve maximum throughput

22

with minimal resource consumption by resource scale-up and scale-down. This is also illustrated405

in Table 5. Due to the input load (Cij), the flavor of the virtual machines on the SIP servers is

changed, which is very effective in power consumption. However, in the traditional mode, the

flavor of the machines is constant throughout the time interval. In sum, it can be concluded

that the SDN approach has managed to create a trade-off between energy and throughput in

the VoIP system by solving the proposed linear programming model, as well as the proposed410

autoscaling technique.

seen, in SDN-based mode, throughput is higher in all scenarios compared to the traditional

mode. For example, in the 200-300s interval where the high-load scenario is implemented, the

traditional mode failed to achieve a better throughput than 300cps due to being overloaded.

However, the SDN-based method has achieved the maximum possible throughput of

approximately 1100cps. Note that the Tij fluctuation changes according to the input load to the

system.

Figures 12 and 13 show the average resources consumed over time. In these figures, it is evident

that resource saturation has taken place in the traditional mode, and this has led to a decline in

throughput. However, the SDN-based approach has been able to achieve maximum throughput

with minimal resource consumption by resource scale-up and scale-down. This is also illustrated

in Table 4. Due to the input load (Cij), the flavor of the virtual machines on the SIP servers is

changed, which is very effective in power consumption. However, in the traditional mode, the

flavor of the machines is constant throughout the time interval. In sum, it can be concluded that

the SDN approach has managed to create a trade-off between energy and throughput in the VoIP

system by solving the proposed linear programming model, as well as the proposed autoscaling

technique.

Figure 11. Cumulative throughput of the servers over time

0

200

400

600

800

1000

1200

0 100 200 300 400 500

T
ij

 (
cp

s)

Time (Second)

traditional based SDN based

Figure 14: Cumulative throughput of the servers over time

Figure 12. The average CPU usage of servers over time

Figure 13. The average server memory usage over time

Table 4. Size of virtual machines at different loads and over time

400-500 300-400 200-300 100-200 0-100 Time

(Second)

800(cps) 600(cps) 800(cps) 600(cps) 400(cps) Cij

0

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500

A
ve

ra
g

e
C

P
U

 u
sa

g
e(

%
)

Time (Second)

traditional based SDN based

0

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500

A
ve

ra
g

e
m

em
o

ry
 u

sa
g

e(
%

)

Time (Second)

traditional based SDN based

Figure 15: The average CPU usage of servers over time

Fig. 17 shows the details of processor consumption by the proposed controller obtained

through Oprofile. As can be seen, the Floodlight Kernel takes up more than half of the con-

troller processor, but the proposed modules consume much less CPU power. This is evidence of

the high scalability of the proposed controller. This means that the proposed modules do not415

impose a high processing overhead on the controller. Among these modules, the Linear Pro-

gramming Model module consumes more CPU due to the implementation of the mathematical

23

Figure 12. The average CPU usage of servers over time

Figure 13. The average server memory usage over time

Table 4. Size of virtual machines at different loads and over time

400-500 300-400 200-300 100-200 0-100 Time

(Second)

800(cps) 600(cps) 800(cps) 600(cps) 400(cps) Cij

0

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500

A
ve

ra
g

e
C

P
U

 u
sa

g
e(

%
)

Time (Second)

traditional based SDN based

0

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500

A
ve

ra
g

e
m

em
o

ry
 u

sa
g

e(
%

)

Time (Second)

traditional based SDN based

Figure 16: The average server memory usage over time

Table 5: Size of virtual machines at different loads and over time

Time (Second) 0-100 100-200 200-300 300-400 400-500

Cij 400(cps) 600(cps) 800(cps) 600(cps) 800(cps)

Traditional-based Small Small Small Small Small

SDN-based Small Medium Big Medium Small

method. The Autoscaling module takes the next place in terms of CPU consumption due to

the implementation of the flavor increase and size decrease algorithms. This figure also shows

that the controller processor is not saturated up to the heavy load of 500 cps.420

Also, Fig. 18 shows the details of memory consumption by the proposed controller. As

can be seen, the Floodlight Kernel takes up more than half of the controller memory, but the

proposed modules consume much less memory. This is evidence of the high scalability of the

proposed controller. This means that the proposed modules do not impose a high memory

overhead on the controller.425

Figure 19 shows that as time goes on and load increases, CPU consumption also increases.

But this increase is different for different modules. For example, for the kernel module more

than other modules. So proposed modules are not overhead and processing bottlenecks.

This is also shown in Figure 20. As can be seen, with the passage of time and increasing

load, memory consumption by different modules also increases. Most of this increase is related430

to the kernel and the proposed modules are not an additional overhead.

24

Figure 17: The computational overhead of proposed modules by changing the load

6. Conclusion and Future Work

Saturation or overflow of SIP server resources is one of the issues with the VoIP network,

bringing about several problems such as overload or energy loss. These servers are overloaded

during peak times and face energy loss in idle times. Given the importance of this topic,435

this paper introduces a framework based on software-defined networking (SDN) technology for

managing SIP server resources. The advantage of this framework is to provide a global view

of all the server resources. In this framework, the resource allocation optimization problem,

as well as resource autoscaling, are presented to deal with the problems posed. The goal is to

maximize total throughputs and minimize energy consumption. In this regard, we seek to strike440

a balance between efficiency and energy. In this respect, a variety of experiments were carried

out under different scenarios in a real test environment. The results show that the proposed

SDN-based approach has succeeded both in improving the metrics related to overload control

and in improving energy.

25

Figure 18: The memory overhead of proposed modules by changing the load

The results show that resource saturation has taken place in the traditional model, which445

has led to a decline in throughput. However, the proposed SDN-based approach has been able

to achieve maximum throughput with minimal resource consumption by resource scale-up and

scale-down. In the proposed mechanism, servers will never face resource saturation. Therefore,

even at heavy input loads, the performance of the servers will not decrease, and they will not

face the consequences of overload. For example, in the high-load scenario, without a sudden450

increase in the retransmission rate and the average call delay, it reaches the throughput of

789 successful requests from 800 requests only by consuming an average of 50% CPU and 61%

RAM. However, in the traditional mechanism and the high-load scenario, a throughput no

better than 344 successful requests can be reached with all the server resources consumed. In

sum, it can be concluded that the SDN approach has managed to create a trade-off between455

energy and throughput in the VoIP system by solving the proposed linear programming model,

as well as the proposed autoscaling technique.

It is also important to note that the capacity of the entire SIP network in this method is limited

26

Figure 19: The memory overhead of proposed modules during the time

to the capacity of the controller. Of course, because the controller is logically centralized,

multiple controllers can be used. In addition, the designed modules are very simple so as not460

to add complexity and overhead to the controller. The result is an efficient and agile controller

that can manage the network seamlessly. We can also divide the whole SIP network into a

number of domains and consider separate controllers to manage each domain. In this case, the

task of the controller becomes easier.

For future work, we will generalize and develop mathematical models for optimal allocation465

of SIP resources as well as taking into account SLA traffic flows between servers. We are

also looking to develop autoscaling policies. Using the virtual machine migration technique to

manage virtual SIP servers is also a part of the future works of this article.

27

user
Highlight

user
Cross-Out

Figure 20: The memory overhead of proposed modules during the time

References

[1] L. De Cicco, G. Cofano, S. Mascolo, Local sip overload control: Controller design and470

optimization by extremum seeking, IEEE Transactions on Control of Network Systems

2 (3) (2015) 267–277.

[2] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R. Sparks, M. Han-

dley, E. Schooler, Sip: session initiation protocol, Tech. rep. (2002).

[3] J. Rosenberg, Requirements for management of overload in the session initiation protocol,475

rfc 5390.

[4] V. K. Gurbani, R. Jain, Transport protocol considerations for session initiation protocol

networks, Bell Labs Technical Journal 9 (1) (2004) 83–97.

[5] M. Ohta, Performance comparisons of transport protocols for session initiation protocol

28

signaling, in: 2008 4th International Telecommunication Networking Workshop on QoS in480

Multiservice IP Networks, IEEE, 2008, pp. 148–153.

[6] A. Montazerolghaem, M. H. Yaghmaee, A. Leon-Garcia, Green cloud multimedia network-

ing: Nfv/sdn based energy-efficient resource allocation, IEEE Transactions on Green Com-

munications and Networking 4 (3) (2020) 873–889. doi:10.1109/TGCN.2020.2982821.

[7] V. S. N. Amulothu, A. Kapur, K. Khani, V. Shukla, Adaptive software defined networking485

controller, uS Patent App. 10/257,073 (Apr. 9 2019).

[8] D. Kreutz, F. M. Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodolmolky, S. Uhlig,

Software-defined networking: A comprehensive survey, Proceedings of the IEEE 103 (1)

(2015) 14–76.

[9] Y. Li, M. Chen, Software-defined network function virtualization: A survey, IEEE Access490

3 (2015) 2542–2553.

[10] Y. Zhang, L. Cui, W. Wang, Y. Zhang, A survey on software defined networking with

multiple controllers, Journal of Network and Computer Applications 103 (2018) 101–118.

[11] D. Cotroneo, L. De Simone, R. Natella, Nfv-bench: A dependability benchmark for network

function virtualization systems, IEEE Transactions on Network and Service Management495

14 (4) (2017) 934–948.

[12] R. Amin, M. Reisslein, N. Shah, Hybrid sdn networks: A survey of existing approaches,

IEEE Communications Surveys & Tutorials 20 (4) (2018) 3259–3306.

[13] F. Bannour, S. Souihi, A. Mellouk, Distributed sdn control: Survey, taxonomy, and chal-

lenges, IEEE Communications Surveys & Tutorials 20 (1) (2018) 333–354.500

[14] K. Xie, X. Huang, S. Hao, M. Ma, P. Zhang, D. Hu, E3 mc: Improving energy efficiency

via elastic multi-controller sdn in data center networks, IEEE Access 4 (2016) 6780–6791.

doi:10.1109/ACCESS.2016.2617871.

[15] C. Pham, N. H. Tran, S. Ren, W. Saad, C. S. Hong, Traffic-aware and energy-efficient vnf

placement for service chaining: Joint sampling and matching approach, IEEE Transactions505

on Services Computing.

29

http://dx.doi.org/10.1109/TGCN.2020.2982821
http://dx.doi.org/10.1109/ACCESS.2016.2617871

[16] A. Montazerolghaem, M. H. Yaghmaee, A. Leon-Garcia, M. Naghibzadeh, F. Tashtarian,

A load-balanced call admission controller for ims cloud computing, IEEE Transactions on

Network and Service Management 13 (4) (2016) 806–822.

[17] S. H. Low, A duality model of tcp and queue management algorithms, IEEE/ACM Trans-510

actions on Networking (ToN) 11 (4) (2003) 525–536.

[18] M. Chiang, S. H. Low, A. R. Calderbank, J. C. Doyle, Layering as optimization decompo-

sition: A mathematical theory of network architectures, Proceedings of the IEEE 95 (1)

(2007) 255–312.

[19] A. Montazerolghaem, S. Shekofteh, M. Yaghmaee, M. Naghibzadeh, et al., A load scheduler515

for sip proxy servers: design, implementation and evaluation of a history weighted window

approach, International Journal of Communication Systems 30 (3).

[20] H. Jiang, A. Iyengar, E. Nahum, W. Segmuller, A. N. Tantawi, C. P. Wright, Design,

implementation, and performance of a load balancer for sip server clusters, IEEE/ACM

transactions on networking 20 (4) (2012) 1190–1202.520

[21] K. Singh, H. Schulzrinne, Failover, load sharing and server architecture in sip telephony,

Computer Communications 30 (5) (2007) 927–942.

[22] J. Wang, J. Liao, T. Li, J. Wang, J. Wang, Q. Qi, Probe-based end-to-end overload control

for networks of sip servers, Journal of Network and Computer Applications 41 (2014) 114–

125.525

[23] R. G. Garroppo, S. Giordano, S. Niccolini, S. Spagna, A prediction-based overload control

algorithm for sip servers, IEEE transactions on network and service management 8 (1)

(2011) 39–51.

[24] Y. Hong, C. Huang, J. Yan, Modeling and simulation of sip tandem server with finite buffer,

ACM Transactions on Modeling and Computer Simulation (TOMACS) 21 (2) (2011) 11.530

[25] Y. Hong, C. Huang, Yan, Mitigating sip overload using a control-theoretic approach, in:

Global Telecommunications Conference (GLOBECOM 2010), 2010 IEEE, IEEE, 2010, pp.

1–5.

[26] C. Shen, H. Schulzrinne, On tcp-based sip server overload control, in: Principles, Systems

and Applications of IP Telecommunications, ACM, 2010, pp. 71–83.535

30

[27] J. Liao, J. Wang, T. Li, J. Wang, J. Wang, X. Zhu, A distributed end-to-end overload

control mechanism for networks of sip servers, Computer Networks 56 (12) (2012) 2847–

2868.

[28] G. Mishra, S. Dharmaraja, S. Kar, Reducing session establishment delay using timed out

packets in sip signaling network, International Journal of Communication Systems 29 (2)540

(2016) 262–276.

[29] C. Shen, H. Schulzrinne, E. Nahum, Session initiation protocol (sip) server overload control:

Design and evaluation, in: Principles, systems and applications of IP telecommunications.

Services and security for next generation networks, Springer, 2008, pp. 149–173.

[30] M. Homayouni, H. Nemati, V. Azhari, A. Akbari, Controlling overload in sip proxies: An545

adaptive window based approach using no explicit feedback, in: Global Telecommunica-

tions Conference (GLOBECOM 2010), 2010 IEEE, IEEE, 2010, pp. 1–5.

[31] S. V. Azhari, M. Homayouni, H. Nemati, J. Enayatizadeh, A. Akbari, Overload control in

sip networks using no explicit feedback: A window based approach, Computer Communi-

cations 35 (12) (2012) 1472–1483.550

[32] A. Abdelal, W. Matragi, Signal-based overload control for sip servers, in: Consumer Com-

munications and Networking Conference (CCNC), 2010 7th IEEE, IEEE, 2010, pp. 1–7.

[33] E. Noel, C. R. Johnson, Novel overload controls for sip networks, in: Teletraffic Congress,

2009. ITC 21 2009. 21st International, IEEE, 2009, pp. 1–8.

[34] A. Montazerolghaem, M. H. Y. Moghaddam, F. Tashtarian, Overload control in sip net-555

works: A heuristic approach based on mathematical optimization, in: Global Communi-

cations Conference (GLOBECOM), 2015 IEEE, IEEE, 2015, pp. 1–6.

[35] M. Brandenburg, Growth opportunities in the voip access and sip trunking services market

(2017).

URL http://www.frost.com/560

[36] A. Rakity, Ovum telecom research (2018).

URL https://ovum.informa.com/

[37] A. Montazerolghaem, M. H. Y. Moghaddam, A. Leon-Garcia, Opensip: Toward software-

defined sip networking, IEEE Transactions on Network and Service Management 15 (1)

(2018) 184–199.565

31

http://www.frost.com/
http://www.frost.com/
https://ovum.informa.com/
https://ovum.informa.com/

[38] M. Grant, S. Boyd, Y. Ye, Cvx: Matlab software for disciplined convex programming

(2008).

32

	Introduction
	Contributions
	Organizations

	Related Work
	Local methods
	Distributed methods
	Retransmission rate methods
	TCP flow control methods

	Existing Challenges
	Proposed Approach
	Proposed Framework
	Linear Programming Model
	Autoscaling

	Performance Evaluation
	Implementation and Experimental Results

	Conclusion and Future Work

