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Wireless networks are widely deployed to support trans-
missions of the huge amount of data emitted by hetero-
geneous connected devices. The quality of service (QoS)
and energy requirements in wireless networks are dramati-
cally increasing and becoming challenging issues. Integrat-
ing network coding, in the data transmission process, leads
to reduced energy consumption and improved QoS. In this
work, we study the problem of energy efficiency in wireless
multi-hop networks, namelywireless unsplittablemulticommodity
flow with network coding (wUMCFC). We propose mixed-
integer programming formulations of the wUMCFC prob-
lem and an exact approach based on the branch-and-price
algorithm. To the best of our knowledge, this work is the
first study of this problem by mathematical programming
tools. We perform a computational study on realistic in-
stanceswith an analysis of the performance of the proposed
methods. The obtained results show the efficiency of the
network coding and provide important information for strate-
gic decisions on routing policies and network management.
K E YWORD S

Network Optimization, Mixed Integer Programming (MIP), Branch
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1 | INTRODUCTION

Multi-hop wireless networks support many applications requiring wireless communication on various platforms. We
can mention unmanned aerials vehicles (UAVs) [41, 44], flying taxis (Vertical Take-Off and Landing: VTOL) [45],
Internet-of-Things (IoT) sensor devices for monitoring [11, 52], connected healthcare [27, 53] and various emerging
smart city [38, 56], whose components are connected via wireless networks. In all these cases, energy efficiency and
traffic optimization are key challenges. In the upcoming IoT landscape [2, 47], smart systems are expected to be widely
deployed everywhere over the world [22]. Current statistics indicate that billions of IoT devices are already deployed
and connected in 2020, and this is expected to grow substantially in the future [3]. The research community faces
solving optimization problems that will shape the connectivity of billions of devices with significant energy issues.
Wireless networks are having significant and growing effects on energy consumption and environmental issues.

The main research in wireless networks focuses on single-hop communications. However, multi-hop extensions
attract increasing interest for various wireless and IoT-related technologies, both in cellular [48] and non-cellular [26]
multi-hop approaches.

In this work, we study the problem of energy efficiency of unsplittable routing with network coding in wireless
multi-hop networks.

In wireless networks, each traffic demand is routed unsplittably through a single path [17]. The routing path of a
demand connects its source node to its target node; data packets of the same demand follow the same path. Hence,
the intermediate nodes in the path are not in charge of computing for each packet the next hop-node. Unsplittable
routing speeds up packet handling processes, minimizes loss rates, and enables better quality of service (QoS) [17]. In
contrast, splittable routing is very complex to apply in a wireless context. This would require sophisticated protocols
and more intelligence in the network components. For more details on routing protocols in wireless networks, we
refer to [18].

Network coding [1, 13, 16, 32, 37] can be defined as amechanism allowing the intermediate nodes of a network to
combine (encode) their incoming data and then transmit by broadcasting. Broadcasting is the term used to describe
communication where the data packets are sent from one node to all other nodes. There is just one sender, but
the information is sent to all connected receivers. Applying ideas from network coding and broadcasting realizes
significant benefits in terms of resource and energy efficiency. Energy consumption is closely linked to the number
of transmissions necessary for a unit of data to reach other nodes of the network. With network coding, we can get
benefits in terms of throughout, scalability, and security [21].

In wireless networks, interference [54] is the dominant factor affecting the performance in terms of capacity,
quality of service and energy consumption.

In [43], the authors proposed a linear program to compute routes that minimize the number of data transmissions,
but that solution did not take the interference into account. In [35], anMILPmodel was proposedwith network coding
but it did not consider the effect of energy saved by network coding.

Many network optimization problems are naturally modelled as multi-commodity flow (MCF) problems [4, 10, 12,
24, 36, 51]. The classical MCF problems can be solved efficiently by mathematical programming methods. However,
each network optimization problem is faced with new specific network features with new technical constraints. These
yield complexMCFproblems. The unsplittablemulti-commodity flow (UMCF) problem [6] is a particularlywell-studied
variant of MCF problems, which has invoked the applications [30] in wireless networks. UMCF is also one of the well
known NP-hard problems in combinatorial optimization [20, 33, 34]. The column generation approaches [39] have
proven efficient in solving MCF-related problems [9, 25, 30, 46, 50].

The problem addressed in this work is more complex since it generalizes UMCF with additional coding and inter-
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ference constraints. Formulating telecommunication problems and adapting mathematical programming approaches
to develop efficient algorithms require extensive research.

1.1 | Contributions

The first contribution of this work is our quantitative analysis andmodeling of interference, network coding and energy
consumption in the context of wireless networks. We propose a new problem, namely wireless UMCF with network
coding (wUMCFC) and new models to integrate interference and coding.

Given the network topology, source-target traffic demands, transmissions capacities, and channels’ interference,
the wUMCFC problem seeks to minimize the energy cost of data transmission in multi-hop wireless networks and
find an optimal unsplittable traffic routing. The wUMCFC incorporates network coding to reduce data transmission,
save energy consumption and improve quality of service (QoS). We show that wUMCFC is NP−hard.

Concerning the interference, we generalize the conventional concept of edge capacity constraints to capacity
constraints over a set of edges, namely clique capacity constraints on a conflict graph. In addition, we show that
network coding improves power consumption and network management.

The second contribution involves our formulations of the wUMCFC problem. The first class of formulations are
compact edge-based formulations, which consist of a mixed-Boolean quadratic programming (MBQP) formulation
and two mixed-integer linear programming (MILP) formulations. The two MILP formulations are the edge balance
formulation and the edge linearization formulation. We study the strength of these two formulations. The second class
of formulations is a Dantzig-Wolfe reformulation of the edge balance formulation, namely a path-based formulation.

To solve the path-based formulation efficiently, we develop a column generation approach and a branch-and-price
(B&P) algorithm [5, 9, 25]. This yields our third contribution. In our B&P algorithm, the pricing problem is reduced to a
shortest path problem in an extended graph. Although the edges’ weights of the extended graph can be negative, we
prove that the cycles of the extended graph have positive costs. Therefore, the shortest path in the extended graph
can be calculated in polynomial time. We show that, under our reduction, the path generated in the original graph is
always a simple path.

We perform a computational study on realistic problem instances with an analysis of the performance of the B&P
algorithm and the effect of the network coding.

1.2 | Outline

This work is organized as follows: In Section 2, we introduce the classical UMCF problem formulation and notations.
Then we introduce energy consumption, clique capacity constraints, and network coding, which form the wUMCFC
problem. We then analyze the complexity of the wUMCFC problem. In Section 3, we present the compact edge-
based formulations and the path-based formulation and compare these formulations. In Section 4, we present our
algorithm to solve the LP relaxation of the path-based formulation. We describe the column generation and the
solution approach for the pricing problem. In Section 5, we present branching rules to enforce the integrality of path
variables. In Section 6, we perform two experiments. The first experiment shows that the B&P algorithm for the path-
based formulation outperforms the MILP solver CPLEX for the edge balance formulation. The second experiment
demonstrates that the network coding mechanism can decrease the energy cost significantly. Conclusions are drawn
in Section 7 along with the prospect of future research.
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2 | MODELS AND NOTATION

The network topology is represented by a bi-directed graph G = (V , E ) , where V denotes the set of nodes corre-
sponding to wireless transmission devices and E denotes the set of transmission links that can be used to route the
traffic flows.

Unsplittable traffic demands are denoted by a set D of source-target node pairs (s, t ) (st , for short).
Let’s define the following notation:
Ci j : the transmission capacity of the edge (i , j ) , it measures the number of data packets that can be sent through

the channel (i , j ) per unit of time.
βi j : the energy cost parameter for flow transmission along the edge (i , j ) . It measures the energy cost to transmit

a unit data packet per unit of time.
d st : the traffic demand from the source node s to the target node t for st ∈ D .
Decision variables:
x st
i j

: binary variable indicating whether demand st is routed on the edge (i , j ) , for st ∈ D and (i , j ) ∈ E .
The occupancy time ratio (OTR) is an important concept in wireless communication. For each edge (i , j ) ∈ E , its

OTR is defined as the total flow per unit of time divided by its capacity, i.e.,∑
st∈D d

st x st
i j

Ci j
. (1)

The OTRmeasures the ratio that the channel along (i , j ) is transmitting data per unit of time. Hence, the forward-
ing node i consumes energies during the occupancy time.

The UMCF problem aims to find a unique routing path for each demand that minimizes the total energy cost
under capacity and demand constraints.

Before introducing network interference and network coding, let us recall the ILP formulation of the classical
minimum cost (UMCF) problem:

UMCF



min z = ∑
st∈D

∑
(i ,j )∈E

βi j d
st x sti j (2.0)∑

j :(i ,j )∈E
x sti j −

∑
j :(j ,i )∈E

x stj i = 0, [i ∈ V − {s, t }, [st ∈ D , (2.1)∑
(s,i )∈E

x stsi −
∑
(i ,s )∈E

x sti s = 1, [st ∈ D , (2.2)∑
(i ,t )∈E

x sti t −
∑
(t ,i )∈E

x stt i = 1, [st ∈ D , (2.3)∑
st∈D

d st

Ci j
x sti j ≤ 1, [(i , j ) ∈ E , (2.4)

x st
i j
∈ {0, 1}, [(i , j ) ∈ E , [st ∈ D .

(2)

Objective function z (2.0): energy consumption of data transmission per unit of time.
Flow conservation constraints (2.1) to (2.3): flow conservation constraints at each node.
Edge capacity constraint (2.4): the total flow on an edge should be equal at most to the available transmission

capacity. This constraint stipulates that the OTR of an edge must be at most 1.
The mathematical formulation of our wUMCFC problem requires the addition of new constraints and new vari-

ables to the classical UMFC. This to integrate interference and coding mechanisms.
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In the following subsections, we present energy consumption, clique capacity constraints, and network coding.

We also analyze the complexity of the wUMCFC problem.

2.1 | Energy consumption

This work considers the energy consumption induced by data transmissions via active devices (nodes) in the network.
A node i ∈ V is active when it is transmitting data. We introduce an energy cost parameter βi that measures the

cost of energy consumed by an active node per unit of time. This parameter depends on the characteristics of the
node’s communication device.

Let fi j be the flow on the edge (i , j ) ∈ E , i.e., the number of data packets to transmit from node i to node j per
unit of time. Recall that the OTR fi j

Ci j
is the time ratio that node i is active in transmitting data along the channel. The

energy cost per unit of time by the channel (i , j ) is fi j
Ci j
βi . During the other 1 − fi j

Ci j
portion of a unit time, no energy

is consumed because the node does not transmit data through this channel. βi j , the energy cost parameter of (i , j ) ,
follows as:

βi j =
βi
Ci j

(3)

2.2 | Clique capacity constraint

The difference between wireless and wired networks lies mainly in the use of communication channels and transmis-
sion technologies [55]. In wired networks, the capacity of one channel is not affected by the data transmissions of any
other channels. In wireless networks, channels inherently share the same communication space, and the interference
between channels in a neighborhood would decrease their capacities. When a channel transmits a data packet, it
consumes capacity at its neighbors. Network interference reduces transmissions capacities significantly [7].

We model interference using capacity constraints, which are defined over the clique set of an undirected conflict
graph Gc = (N , L) where N = E .

The nodes of the conflict graph Gc are the edges of the network graph G . The links of Gc represent interference
between the edges of G which cannot transmit data at the same time.

If two edges in G are in interference, then a link between their corresponding nodes is in Gc .
The graph Gc is constructed incrementally with an initial empty link set L, as follows:

1. N = E and L = ∅.
2. If (i , j ) ∈ N and (k , l ) ∈ N are under interference then

add the link {(i , j ), (k , l ) } to L: L = L ∪ {(i , j ), (k , l ) }.
Hence, two edges of G share capacity if they are adjacent in Gc .

Interference can be modeled in various ways [28]. We introduce the n−dist interference model to construct the
conflict graphs in our experiments. The n−dist model extends single-hop and two-hop models proposed in [15].

Let p = (v1, . . . ,vh ) be a simple path in the graph G , where vt ( t ∈ {1, . . . , h }) is the node in the path p . We
define the length of p as the number of nodes h in the path. For i , k ∈ V , we define dist(i , k ) as the length of the
shortest path from i to k or from k to i , i.e., the path with the minimum number of hops. Let (i , j ) and (k , l ) ∈ E , the
distance dist ( (i , j ), (k , l )) is defined as the length of a shortest path between any pair of {i , k }, {i , l }, {j , k }, and {j , l },



6 Xu and Vanier.
i.e., dist ( (i , j ), (k , l )) = mint1∈{i ,j },t2∈{k ,l } {dist(t1, t2),dist(t2, t1) }. Hence, dist ( (i , j ), (k , l )) measures the minimum
distance between the tail and end nodes of edges (i , j ) and (k , l ) .

If dist ( (i , j ), (k , l )) ≤ n , then under the n−dist model, (i , j ) and (k , l ) are in interference.
For example, Figure (1a) shows a network of five nodes and Figure (1b) shows its conflict graph constructed via

the 2−dist interference model. The 2−dist interference model corresponds to the single-hopmodel in [15]. This model
considers that a node interferes with its neighbors.

The distance between (1,2) and (4,5) is 3, so they are not connected via any link in Gc .
The distance between (1,2) and (3,4) is 2, so they are connected via one link in Gc . One can check whether two

edges share capacity by the adjacency of their corresponding nodes in Gc .
1

2

3

4

5

(a) Network with 5 hops
(1, 2)

(2, 3)

(4, 5)

(5, 4)

(3, 4)

(b) Conflict graph
F IGURE 1 Interference model

We adopt the capacity-sharingmodel in wireless communication context from [29]. Let fi j be the flow on the edge
(i , j ) ; recall that fi j

Ci j
is the OTR of this edge. Two nodes in interference can not transmit at the same time otherwise

these transmissions will fail.
Let m be a subset of edges of G f t. Ihe corresponding nodes in Gc are a clique, then every edge of m shares OTR

with other edges in m.
The sum of OTRs of edges in m should be at most 1. The clique capacity constraint follows as:

∑
(i ,j )∈m

fi j

Ci j
≤ 1. (4)

For any two clique sets m1 and m2, such that m1 ⊂ m2, it follows that the clique capacity constraint over m1 is
dominated by the clique capacity constraint over m2:

∑
(i ,j )∈m1

fi j

Ci j
≤

∑
(i ,j )∈m2

fi j

Ci j
. (5)

Therefore, non-dominated constraints are defined over maximal cliques. The dominance relation over clique
capacity constraints is equivalent to set inclusion over the corresponding cliques. Then, it suffices to consider only
non-dominated constraints induced by maximal cliques in the model.

We denote the set of maximal cliques of Gc by M . For example in Figure (1b), {(1, 2), (2, 3) } is a clique set,
but {(1, 2), (2, 3), (3, 4) } is the maximal clique set including it, so the model solely needs to stipulate the constraint:∑
(i ,j )∈{(1,2) ,(2,3) ,(3,4) }

fi j
Ci j
≤ 1. There are twomaximal cliques ofGc in Figure (1b). Then, in this case,M = {{(1, 2), (2, 3), (3, 4) } , {(2, 3), (3, 4), (4, 5), (5, 4) }}.
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j i k
P2 P2

P1P1

(a) Classical forwarding
j i k
P3 = P1 ⊕ P2 P2

P3 = P1 ⊕ P2P1

(b) Forwarding with network coding
F IGURE 2 Network coding

2.3 | Network coding

Wireless communications cause the interference, but they allow data to be transmitted simultaneously between
nearby components. Therefore, when a node i ∈ V forwards a data packet to a node j ∈ V , other connected nodes
will also receive this packet. This communication case is called broadcasting. Broadcasting is the term used to describe
communication where the data packets are sent from one node to all other connected nodes.

Network coding [42] is a mechanism that allows intermediate nodes to combine data packets before forwarding
them. It saves data transmissions by broadcasting.

Figure (2) illustrates the principle of network coding by a triple of nodes; node j ∈ V and node k ∈ V send packets
P1 and P2 to each other through the intermediate node i ∈ V .

The classical forwarding scheme in Figure (2a) uses 4 transmissions to send P1 and P2. Node j (resp. k ) sends its
packet P1 (resp. P2) to node i , and node i sends P1 to k and P2 to j , separately.

With network coding in Figure (2b), only 3 transmissions are needed, and hence the energy cost by the device at
i is saved. After node j and node k record and send their packets to node i , node i encodes data of these two data
packets by XOR operation to obtain an encoded packet P3 := P1 ⊕ P2, where ⊕ is the bit-wise Boolean addition.

Node i broadcasts the encoded packet P3 to node j and node k simultaneously. Node j and node k decode data
of P3 by XOR-ing with recorded packets, P1 = P3 ⊕ P2 and P2 = P3 ⊕ P1. As a result, i only needs one transmission.

In principle, if (j , i ), (i , k ), (k , i ) , and (i , j ) are in E , then there is a coding opportunity, we call it a three-hop
pattern.

We define the opportunity set as follows:

Λi{k ,j } := {(j , i ), (i , k ), (k , i ), (i , j ) } . (6)
For Λi{k ,j } ⊂ E , let fj i k be the flow along j → i → k , and let fk i j be the flow along k → i → j . If fj i k and fk i j are

non-zero, then network coding can be applied, and the node i could encode parts of the opposite flows fj i k and fk i j .
We define u i{k ,j } as the flow encoded by node i it measures the number of fj i k and fk i j data packets that node i

could code per unit of time.
Since the maximum encoded data cannot exceed data arriving at a node i , u i{k ,j } has to satisfy the following

inequality:

u i{k ,j } ≤ min(fj i k , fk i j ) . (7)
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The next Sections explain how the network coding increases the capacity of the network and decreases the

energy cost by fewer data transmissions.

2.3.1 | Effects on clique capacity constraints

Network coding reduces the occupancy time rate (OTR) and hence decreases the left-hand side of the capacity con-
straints.

Without network coding, the sum of OTRs of transmitting fj i k and fk i j is
fj i k

Cj i
+
fj i k

Ci k
+
fk i j

Ck i
+
fk i j

Ci j
. (8)

The amount of encoded flow u i{k ,j } could be broadcast from i to its targets k and j . Let the OTR of broadcast
u i{k ,j } by network coding beT i{k ,j }u i{k ,j } , whereT i{k ,j } is a transmission parameter according to the network property.

It must be that
T i{k ,j } ≥ max{ 1

Ci k
,
1

Ci j
}, (9)

because the time of broadcasting should be at least the time of any of two separated forwardings.
The remaining parts of fj i k − u i{k ,j } and fk i j − u i{k ,j } are transmitted by the classical forwarding scheme.
The OTR with network coding follows as:

fj i k

Cj i
+
fj i k − u i{k ,j }

Ci k
+
fk i j

Ck i
+
fk i j − u i{k ,j }

Ci j
+T i{k ,j }u

i
{k ,j }

=
fj i k

Cj i
+
fj i k

Ci k
+
fk i j

Ck i
+
fk i j

Ci j
− ( 1

Ci j
+

1

Ci k
−T i{k ,j })u

i
{k ,j } .

(10)

Let C i{k ,j } be the increased capacity with network coding within the three-hop pattern Λi{k ,j } . C i{k ,j } measures the
number of data packets that will no longer be transmitted on Λi{k ,j } due to network coding, and

1

C i{k ,j }
=

1

Ci j
+

1

Ci k
−T i{k ,j } . (11)

We obtain the following bound on 1
C i{k ,j }

by the bound onT i{k ,j } :

1

C i{k ,j }
≤ min

{
1

Ci j
,
1

Ci k

}
. (12)

Equivalently, C i{k ,j } ≥ max{Ci j ,Ci k }.
As a result, the OTR can be rewritten as:
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fj i k

Cj i
+
fj i k

Ci k
+
fk i j

Ck i
+
fk i j

Ci j
−
u i{k ,j }

C i{k ,j }
. (13)

We observe that the decrease of OTR within Λi{k ,j } is u i{k ,j }
C i{k ,j }

. Let m ∈ M be a maximal clique of Gc . By summing
up the OTRs decreased by network coding for all opportunity sets in m , the resulting clique capacity constraint over
m follows as:

∑
(i ,j )∈m

fi j

Ci j
−

∑
Λi{k ,j }⊂m

u i{k ,j }

C i{k ,j }
≤ 1. (14)

Inequalities (14) and (7) define the clique capacity constraint with network coding. In our experiments, we set
T i{k ,j } to its lower bound max{ 1

Ck i
, 1
Ci j
}, and correspondingly set C i{k ,j } to 1/( 1

Ci j
+ 1
Ci k
−T i{k ,j }) = min{Ck i ,Ci j }. In

practice, the OTR of broadcast u i{k ,j } may be greater than the lower bound max
{
u i{k ,j }
Ck i
,
u i{k ,j }
Ci j

}
; a higher C i{k ,j } can be

set accordingly.

2.3.2 | Effects on energy consumption

Network coding can also reduce the energy cost and yield a negative term in the objective function.
Recall, without network coding, the energy consumption to send u i{k ,j } separately from node i to node j and

node k is u i{k ,j } (βi j + βi k ) . Let β i{k ,j }u i{k ,j } be the cost of broadcasting u i{k ,j } by network coding, where the energy
cost parameter β i{k ,j } measures the energy consumption to send a unit packet of u i{k ,j } per unit time by broadcasting.
Because i is responsible for transmitting the data in u i{k ,j } , the cost β i{k ,j }u i{k ,j } equals the OTR of broadcasting u i{k ,j }at i times βi , i.e., β i{k ,j }u i{k ,j } = u i{k ,j }T i{k ,j }βi . Dividing by u i{k ,j } , it follows that β i{k ,j } = βiT i{k ,j } .Therefore, the energy cost of sending flow fj i k and fk i j is reduced to

βj i fj i k + βi k (fj i k − u i{k ,j }) + βk i fk i j + βi j (fk i j − u
i
{k ,j }) + β

i
{k ,j }u

i
{k ,j }

=βj i fj i k + βi k fj i k + βk i fk i j + βi j fk i j − u i{k ,j } (βi k + βi j − β
i
{k ,j }) .

(15)

Denote τ i{k ,j } = βi j + βi k − β i{k ,j } , so the energy cost saved by network coding is τ i{k ,j }u i{k ,j } . The energy saving
and the increased capacity are coupled according to Section (2.1):

τ i{k ,j } = βi

(
1

Ci j
+

1

Ci k
−T i{k ,j }

)
= βi

1

C i{k ,j }
. (16)

It follows from the relationship in (2.1) and the inequality (12) that:

0 ≤ τ i{k ,j } ≤ βi min
{
1

Ci j
,
1

Ci k

}
≤ min {

βi j , βi k
}
. (17)
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2.4 | Complexity analysis

Wemodel the wUMCFC problem as a UMCF problem with additional network coding and clique capacity constraints.
This problem is a generalization of the single-source unsplittable flow problem [20, 33, 34, 40].

wUMCFC problem can be reduced to a single-source unsplittable flow problem by considering a single source
demand, where clique sets are singletons, and the coding variables are fixed to zero,

Single-source unsplittable flow problem is NP−hard, hence the wUMCFC problem is also NP−hard.

3 | MATHEMATICAL FORMULATIONS

This Section is dedicated to presenting mathematical programming formulations of the wUMCFC problem: the com-
pact edge-based formulations and the path-based formulation. We first clarify our model notations.

We denote by wUMCF a model derived from the UMCF (2) problem, in which the edge capacity constraints are
replaced by clique capacity constraints, and the objective function is the same as the objective function z of UMCF
(2). The wUMCF problem is a generalization of the wUMCF problem in the wireless context, but it is not a completed
model.

We denote by wUMCFC an extended model of wUMCF that includes network coding related variables and con-
straints. Moreover, its objective function z− is obtained by subtracting zc := ∑

Λi{k ,j }⊂E
τ i{k ,j }u

i
{k ,j } from z , where zc is

the energy cost saved by network coding (CSC).
An abbreviation for edge (resp. path) formulation, i.e.„, E# (resp. P), is appended at the end of model notation,

where #will be revealed subsequently. For example, wUMCFC-P denotes the path-based formulation of thewUMCFC
model.

3.1 | Compact edge-based formulations

In this subsection, we propose and compare two edge-based MILP formulations, the edge balance formulation and
the edge linearization formulation. These two edge-based formulations differ by the way they represent flows on
incident edges.

3.1.1 | MBQP formulation

We denote the variables of our first MBQP formulation as follows:
Decision variables:
x st
i j

: binary variable indicating whether demand st ∈ D is routed on the edge (i , j ) ∈ E .
q st
j i k

: fractional variable denoting the quantity of flow of the demand st ∈ D routed along the incident edges
j → i → k . q st

j i k
should satisfy the quadratic constraint q st

j i k
= d st x st

j i
x st
i k
.

u i{k ,j } : fractional coding variable denoting the quantity of two opposite flows along the incident edges k → i → j

and j → i → k , which would be encoded at i .
Recall that M is the set of the maximum cliques of the conflict graph Gc , and τ i{k ,j }u i{k ,j } (Λi{k ,j }u i{k ,j } ⊂ E ) is theenergy cost saved by network coding.
The MBQP formulation, denoted by wUMCFC-EQ, follows as:
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wUMCFC-EQ



min z− = ∑
st∈D

∑
(i ,j )∈E

βi j d
st x sti j −

∑
Λi{k ,j }⊂E

τ i{k ,j }u
i
{k ,j } (18.0)∑

(i ,j )∈E
x sti j −

∑
(j ,i )∈E

x stj i = 0, [i ∈ V − {s, t }, [st ∈ D , (18.1)∑
(s,i )∈E

x stsi −
∑
(i ,s )∈E

x sti s = 1, [st ∈ D , (18.2)∑
(i ,t )∈E

x sti t −
∑
(t ,i )∈E

x stt i = 1, [st ∈ D , (18.3)

q st
j i k
− d st x st

j i
x st
i k
= 0, [(j , i ), (i , k ) ∈ E , [st ∈ D , (18.4)

u i{k ,j } −
∑
st∈D

q stj i k ≤ 0, [Λi{k ,j } ⊂ E , (18.5)

u i{k ,j } −
∑
st∈D

q stk i j ≤ 0, [Λi{k ,j } ⊂ E , (18.6)∑
st∈D

∑
(i ,j )∈m

d st

Ci j
x sti j −

∑
Λi{k ,j }⊂m

u i{k ,j }

C i{k ,j }
≤ 1, [m ∈ M , (18.7)

x st
i j
∈ {0, 1}, [(i , j ) ∈ E , [st ∈ D ,

q st
j i k
∈ Ò+, [(j , i ), (i , k ) ∈ E , [st ∈ D ,

u i{k ,j } ∈ Ò+, [Λi{k ,j } ⊂ E .

(18)

Objective function z− (18.0): minimize the energy consumption of data transmissions per unit of time, after remov-
ing the energy cost saved by network coding from z in (2.0).

Flow conservation constraints (18.1) to (18.3): flows entering and leaving at each node are balanced.
Incident edge flow constraints (18.4): the flow q st

j i k
on incident edges (j , i ) and (i , k ) equals d st if the demand st

takes its unsplittable path through (j , i ) and (i , k ) , otherwise q st
j i k

= 0.
Coding opportunity constraints (18.5) and (18.6): the coding variable u i{k ,j } (cf. inequality (7)) is less or equal to the

minimum of the two aggregated opposite flows along j → i → k and k → i → j .
Clique capacity constraint (18.7) with network coding: OTR within a clique set m should be at most 1 (cf. (14)).
The wUMCFC-EQ contains the classical constraints of the UMCF, and additionally the clique capacity constraints

and the network coding constraints and variables. ThewUMCFC-EQproblem is a non-convexmixed-Boolean quadratic
program.

3.1.2 | Edge linearization formulation

In this Section we propose an MILP reformulation of the nonlinear MBQP formulation.
Recall that q st

j i k
= d st x st

j i
x st
i k

is a quadratic constraint, and x st
j i

and x st
i k

are binaries. q st
j i k

= d st x st
j i
x st
i k

admits the
standard exact linearization as follows:

q stj i k ≥ d
st (1 − x stj i − x

st
i k ),

q stj i k ≤ d
st x stj i ,

q stj i k ≤ d
st x sti k ,

q stj i k ≥ 0.

(19)
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Edge linearization formulation, denoted bywUMCFC-EL, replaces incident edge flowconstraints (18.4) ofwUMCFC-

EQ with the following linearization constraints:
q stj i k ≥ d

st (1 − x stj i − x
st
i k ), [(j , i ) ∈ E , [(i , k ) ∈ E , [st ∈ D , (20)

q stj i k ≤ d
st x stj i , [(j , i ) ∈ E , [(i , k ) ∈ E , [st ∈ D , (21)

q stj i k ≤ d
st x sti k , [(j , i ) ∈ E , [(i , k ) ∈ E , [st ∈ D , (22)

q stj i k ≥ 0, [(j , i ) ∈ E , [(i , k ) ∈ E , [st ∈ D . (23)
Indeed, the wUMCFC-EL is a standard linearization of wUMCFC-EQ, which is currently employed by the commercial
solvers, e.g. CPLEX [14].

3.1.3 | Edge balance formulation

The edge balance formulation uses the balanced property of flows on edges to represent the flows on incident edges,
which is a similar property to the balanced property of flows entering and leaving nodes. We denote the edge bal-
ance formulation by wUMCFC-EB. More precisely, wUMCFC-EB replaces incident edge flow constraints (18.4) of
wUMCFC-EQ with the following edge balance constraints:

∑
(i ,k )∈E

q stj i k − d
st x stj i = 0, [(j , i ) ∈ E , [st ∈ D ,∑

(j ,i )∈E
q stj i k − d

st x sti k = 0, [(i , k ) ∈ E , [st ∈ D .
(24)

wUMCFC-EB is an MILP.
We illustrate the usage of subscript/superscript notations for the subsequent part of this work. When we omit

subscripts and/or superscripts of some variables, we denote the subset of variables restricted to the rest of subscripts
and/or superscripts. For example, x denotes the set of entire flow variables over all superscripts (demands) and sub-
scripts (edges), and x st denotes the set of st−flow variables over all subscripts (edges). wUMCFC-EB is a reformulation
of wUMCFC-EQ by the following theorem.
Theorem 1 Let x take binary values satisfying flow conservation constraints (18.1), (18.2) and (18.3) on nodes. Then q
satisfy (18.4) if and only if q satisfies (24).
Proof Assume x take binary values satisfying flow conservation constraints (18.1), (18.2) and (18.3) on nodes, then x
is already an UMCF. For any (j , i ) and (i , k ) ∈ E and st ∈ D , q st

j i k
= d st x st

j i
x st
i k
if and only if q st

j i k
is the amount of st -flow

over incident edges (j , i ) and (i , k ) . For each st ∈ D , since x st is an unsplittable flow, the st−flow takes a unique path
from s to t . Then the latter condition is equivalent to that for any edge (i , j ) ∈ E , the st− flow entering (i , j ) from its
incident edges equals the st− flow leaving (i , j ) to its incident edges, which is exactly edge balance constraint (24).

According to the following theorem, the linear relaxation of wUMCFC-EL is not stronger than the linear relaxation
of wUMCFC-EB.
Theorem 2 The optimum value of wUMCFC-EL’s linear relaxation is less or equal to that wUMCFC-EB’s linear relaxation.
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Proof Let (x̄ , q̄ , ū) be a feasible solution of the linear relaxation of wUMCFC-EB. Since the x̄ of the relaxation repre-
sents a fractional MCF, for each st ∈ D , we can partition x̄ st and d st to a finite number of unsplittable st−flows and
corresponding flow values. Let the set of paths for those unsplittable st−flows with non-zero flow values be χ st . For
p ∈ χ st , let I p

i j
∈ {0, 1} ( (i , j ) ∈ E ) be the Bool indicating whether the path p contains the edge (i , j ) , and let d st ,p be

the value of the st−flow routed by path p . It follows that
d st x̄ sti j =

∑
p∈χst

d st ,p I
p
i j
,

d st =
∑
p∈χst

d st ,p
(25)

According to the edge balance constraints (24), q̄ st
j i k

((j , i ) and (i , k ) ∈ E ) could be decomposed by unsplittable
st−flows in χ st . Let q̄ st ,p

j i k
be the st−flow of path p containing edge (j , i ) and (i , k ) , if p does not contain edge (j , i )

and (i , k ) , q̄ st ,p
j i k

is defined as zero. It follows that

q̄ stj i k =
∑
p∈χst

q̄
st ,p
j i k
,

q̄
st ,p
j i k

d st ,p
∈ {0, 1},

q̄
st ,p
j i k

d st ,p
= I

p
j i
I
p
i k
.

(26)

As q̄
st ,p
j i k

d st ,p
= I

p
j i
I
p
i k

admits exact the linearization as follows:

q̄
st ,p
j i k
≥ d st ,p (1 − I p

j i
− I p

i k
),

q̄
st ,p
j i k
≤ d st ,p I p

j i
,

q̄
st ,p
j i k
≤ d st ,p I p

i k
,

q̄
st ,p
j i k
≥ 0.

(27)

By summing up four inequalities over p ∈ χ st , and substitute equations (25), we obtain:
q̄ stj i k ≥ d

st (1 − x̄ stj i − x̄
st
i k ),

q̄ stj i k ≤ d
st x̄ stj i ,

q stj i k ≤ d
st x̄ sti k ,

q stj i k ≥ 0.

(28)

which are exactly constraints (19) of wUMCFC-EL formulation. Therefore, (x̄ , q̄ , ū) is also a feasible solution of the
linear relaxation of wUMCFC-EL formulation. The feasible set of the linear relaxation of wUMCFC-EL includes that
of wUMCFC-EB, so the result follows.

wUMCFC-EL formulation is not a stronger formulation, and the linearization (20) introduces more constraints
compared to (24). wUMCFC-EB model is more suitable from the computational view, so we only solve wUMCFC-EB
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(18) in our experiments (see Section 6).

3.2 | Path-based formulation

The edge-based formulation cannot be applied to large-scale problems because its number of columns and constraints
increases significantly with the network size and the number of demands. We propose a new formulation, using path
variables, that facilitates the representation of unsplittable routing and coding constraints. The path-based formulation
is a Dantzig-Wolfe decomposition of wUMCFC-EB, where path variables are extreme points of the convex hull of edge
variables of the edge balance formulation. Their linear relaxations have the same value, but the sizes of LPs are not
the same, and hence times to solve corresponding MILPs are different (see Section 6). The path-based formulation
contains an exponential number of path variables w.r.t. the size of the graph, but it can be solved efficiently by the
column generation method.

Denote by ϕst the set of all simple paths from the source s to the target t . We define the following decision
variables used by the path-based formulation:

Decision variables:
y stp : binary variable indicating whether demand st ∈ D is routed along the path p ∈ ϕst .
u i{k ,j } : fractional coding variable denoting the amounts of two opposite flows along k → i → j and j → i → k ,

which can be encoded at i .
The path-based MILP formulation, denoted by wUMCFC-P, follows as:

wUMCFC-P



min z− = ∑
st∈D

∑
p∈ϕst

∑
(i ,j )∈p

βi j d
st y stp −

∑
Λi{k ,j }⊂E

τ i{k ,j }u
i
{k ,j } (29.0)

u i{k ,j } −
∑
st∈D

∑
p∈ϕst

∑
(k ,i ) ,(i ,j )∈p

d st y stp ≤ 0,

u i{k ,j } −
∑
st∈D

∑
p∈ϕst

∑
(j ,i ) ,(i ,k )∈p

d st y stp ≤ 0, [Λi{k ,j } ⊂ E , (29.1)

∑
st∈D

∑
p∈ϕst

∑
(i ,j )∈p∩m

d st

Ci j
y stp −

∑
Λi{k ,j }⊂m

u i{k ,j }

C i{k ,j }
≤ 1, [m ∈ M , (29.2)∑

p∈ϕst
y stp = 1, [st ∈ D , (29.3)

y stp ∈ {0, 1}, [st ∈ D , [p ∈ ϕst ,
u i{k ,j } ∈ Ò+, [Λi{k ,j } ⊂ E .

(29)

Objective function z− (29.0): energy consumption of data transmissions in the network per unit of time.
Coding opportunity constraints (29.1): every three-hop coding opportunity set induces a pair of constraints, associ-

ated with two opposite flows, such that the coding variable u i{k ,j } (cf. inequality (7)) is less or equal to the aggregated
flows along k → i → j and j → i → k .

Clique capacity constraints (29.2) with network coding: OTR within a clique set m should be at most 1 (cf. (14)).
Unsplittable constraints (29.3): each demand has to be routed by a single path.
The path-based formulation wUMCFC-P has an exponential number of path variables, but it contains less other

variables and fewer constraints than edge-based formulations. The numerical experiments in Section 6 show that it
can be solved efficiently by the column generation approach.
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TABLE 2 Comparison of constraints

#Flow cons #Coding opportunity cons #Clique capacity cons
Path-based formulation O ( |D |) O ( |E |2) O ( |M |)

Edge-based formulation O ( |D | |V |) O ( |E | |D |) + O ( |E |2) O ( |M |)

Tables (1) and (2) compare sizes of edge and path-based formulations in terms of number of variables and number
of constraints.
TABLE 1 Comparison of variables

Routing vars Coding vars Auxiliary vars
Path-based formulation Exponential O ( |E |2) 0
Edge-based formulation O ( |E | |D |) O ( |E |2) O ( |E |2 |D |)

4 | COLUMN GENERATION

Column generation [19, 25, 39, 49] proved efficiency in solving large-scale linear programming (LP) problems. Column
generation approaches start by solving the initial LP restricted to a small subset of variables and generate new columns
dynamically.

We use the column generation approach to solve the LP relaxation of the path-based formulation wUMCFC-P
(29). The LP relaxationwith full columns is called themaster problem. At each iteration, the column generationmethod
solves a restricted master problem (RMP) limited to a subset of active columns. The primal and dual information of the
RMP is used to add new columns with a negative reduced cost. The pricing algorithm is developed here to generate
columns into the basis of RMP.

Our pricing algorithm consists of two parts. The first part is called reduced cost pricing, and it adds paths with the
minimum negative reduced cost to improve the optimality. The second part is called Farkas pricing which identifies
and repairs the infeasibility. We construct an extended graph to reduce the pricing problem to the shortest path
problem.

4.1 | Reduced cost pricing

When the RMP is solved to optimality and no variables have negative reduced costs, we can conclude the RMP indeed
converges to be optimal for the master problem. The optimality condition for the RMP primal problem is derived from
the RMP dual problem.

We introduce the dual variables γj i k , γk i j , ζm and ηst associated to the constraints ((29).1), (29.2) and (29.3), re-
spectively.
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The dual constraint (reduced cost) on a path p ∈ ϕst , denoted by RCst (p) , follows as:

RCst (p) := ∑
(k ,i ) ,(i ,j )∈p

−d st γk i j +
∑
(i ,j )∈p

d st βi j +
∑
m∈M

∑
(i ,j )∈p∩m

d st
ζm
Ci j

+ ηst . (30)

The dual of the LP relaxation of wUMCFC-P follows as:

Dual-wUMCFC-P



max− ∑
m∈M

ζm −
∑
st∈D

ηst (31.0)

γk i j + γj i k − τ i{k ,j } −
∑

m∈M :Λi{k ,j }⊂m
ζm

C i{k ,j }
= 0, [Λi{k ,j } ⊂ E , (31.1)

RCst (p) ≥ 0, [st ∈ D , [p ∈ ϕst , (31.2)
ζm ∈ Ò+, [m ∈ M , (31.3)
γk i j , γj i k ∈ Ò+, [Λi{k ,j } ⊂ E , (31.4)
ηst ∈ Ò, [st ∈ D . (31.5)

(31)

Note that the domain of the dual variables γ is originally defined over the opportunity sets Λ ⊂ E ×E . We extend
this domain to E × E , so that the subsequent analysis is simpler: for (k , i ), (i , j ), (j , i ), (i , k ) ∈ E , if Λi{k ,j } 1 E , wedefine γk i j = 0 and γj i k = 0.

Let σst ⊂ ϕst ( st ∈ D ) be the set of active path variables (columns) added into RMP, only constraints (31.2)
indexed by σst are included in the dual RMP.

The pricing problem is decomposed into |D | sub-problems. For each st ∈ D , the corresponding sub-problem
checks whether there exists a path p from s to t such that RCst (p) < 0 (a violated dual constraint).

We define the path cost function PC, such that for a path p in the graph G we have:
PC(p) := ∑

(k ,i ) ,(i ,j )∈p
−γk i j +

∑
(i ,j )∈p

βi j +
∑
m∈M

∑
(i ,j )∈p∩m

ζm
Ci j
. (32)

Let p∗ = argminp∈ϕst PC(p) , it follows that RCst (p∗) = d stPC(p∗) + ηst = minp∈ϕst RCst (p) .
If RCst (p∗) < 0, then we add the column associated to p∗ to the RMP.
The pricing problem is reduced to find the path p with the minimum path costPC(p) . Notice thatPC(p) includes

positive and negative costs on incident edges, so the shortest path algorithm in the original graph G is not applicable.
However, we have the following polynomial reduction of the pricing problem to the shortest path problem in an
extended graph.

4.1.1 | Extended Graph

Denote by EG = (H ,A) the weighted directed extended graph to construct, and let w be the weight function over
edges of A. Let E =

{
(i , j ) | (i , j ) ∈ E

} be auxiliary edges that are copies of original edges. We build EG as the follows:
1. Let H = E ∪ E .
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k i j

wk i j

wk i wi j

(a) Edges in original graph G
(k , i ) (k , i ) (i , j ) (i , j )

wk i wk i j wi j

(b) Corresponding nodes in extended graph EG
F IGURE 3 G and EG

2. If (k , i ) ∈ E and (i , j ) ∈ E , then (
(k , i ), (i , j )

)
∈ A;

If (i , j ) ∈ E , then (
(i , j ), (i , j )

)
∈ A.

Denote
A≤ =

{(
( (k , i ), (i , j )

)
| (k , i ), (i , j ) ∈ E

}
,

A≥ =
{(
(i , j ), (i , j )

)
| (i , j ) ∈ E

}
.

(33)

Consequently, A = A≤ ∪ A≥ is partitioned into two subsets.
3. For (

(k , i ), (i , j )
)
∈ A≤ , its weight is

w
((
(k , i ), (i , j )

))
= −γk i j , (34)

and we abbreviate it by wk i j , which is non-positive. We call A≤ the set of non-positive edges.
For (

(i , j ), (i , j )
)
∈ A≥ , its weight is

w
((
(i , j ), (i , j )

))
= βi j +

∑
m∈M :(i ,j )∈m

ζm
Ci j
, (35)

and we abbreviate it by wi j , which is non-negative. We call A≥ the set of non-negative edges.
By construction, non-positive edges are only incident to non-negative edges, and vice versa.
Notice that the size of EG is polynomial in the size of G , its node size and edge size are O ( |E |) and O ( |E |2) ,

respectively.
Figure (3) is an example of building an extended graph.
We define the weight w (p′) on a path p′ in EG as the sum of weights of its edges.
We adopt two representations of the paths. The edge representation is an ordered sequence of edges enclosed

by () , and the node representation is an ordered sequence of nodes enclosed by []. We call the first (resp. last) node
of a path as its source (resp. target) node. We define the following mapping:
Definition Let a path p in G be (e1, . . . , en ) where e i ∈ E for i = 1, . . . , n , the path mapping π maps p to a path π (p)
in EG s.t. π (p) = [e1, e1, . . . , en , en ].

Figure (3) shows that π maps a path ( (k , i ), (i , j )) in (3a) to a path [
(k , i ), (k , i ), (i , j ), (i , j )

] in (3b).
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s i t

lm

(a) A cyclic path p in G
(s, i )(s, i )

(i , l ) (i , l ) (l ,m) l ,m) (m, i ) (m, i )

(i , t )(i , t )

(b) A simple path p′ = π (p) in EG
F IGURE 4 π−1 does not preserve the acyclicity from EG to G

Therefore, the source and target of p are s and t if and only if the source and target of π (p) are (s, i ) and (j , t )
for some i ∈ V and some j ∈ V .

Recall that ϕst is the set of simple paths in G from node s ∈ V to node t ∈ V .
We define ψst as the set of simple paths in EG of which source nodes are (s, i ) ∈ E for some i ∈ V and target

nodes are (j , t ) for some j ∈ V .
Lemma 3 The following properties are satisfied by the mapping π:

1. π is an injection.
2. For p ∈ ϕst , PC(p) = w (π (p)) , wherew is the sum of weights of edges of π (p) .
3. π (ϕst ) ( ψst .

Proof By checking the construction of EG and π , π is injective and PC(p) = w (π (p)) . By checking the construction
of EG , π (ϕst ) ⊂ ψst . To prove the strictness of the inclusion, we give an example in Figure (4).

p = ( (s, i ), (i , l ), (l ,m), (m, i ), (i , t ))

is cyclic,
p′ = π (p) =

[
(s, i ), (s, i ), (i , l ), (i , l ), (l ,m), (l ,m), (m, i ), (m, i ), (i , t ), (i , t )

]
is simple, thus π (ϕst ) , ψst .

One can check that every path p′ in EG with source node in E and target node in E is the map of a unique path p
inG (see Figure (4)), and the inverse π−1 is well defined on those p′. Since π preserves the path cost and is an injection,
the pricing problem is reduced to find argminp′∈π (ϕst ) w (p′) , and recover the inverse path.

There are two issues to solve:
• Enumerating all paths in π (ϕst ) is not efficient. Note that ψst is a set of paths in EG with known sources in E

and targets in E , but it strictly includes π (ϕst ) .
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Let p∗ = argminp′∈ψst w (p′) be the shortest path in ψst , it follows that

w (p∗) ≤ min
p′∈π (ϕst )

w (p′) = min
p∈ϕst

PC(p) . (36)

We will prove that p∗ ∈ π (ϕst ) (equivalently, π−1 (p∗) is simple), and hence w (p∗) = minp′∈π (ϕst ) w (p′) .
• p∗ is the shortest simple path in EG between a known set of sources and targets indicated by ψst . Notice there

are edges with negative weights in EG , we will prove that there are no negative cycles in EG , and hence the
shortest simple path problem is solvable in polynomial time.
We first deal with negative weights.

Lemma 4 For Λi{k ,j } ⊂ E ,wi k +wk i j +wj i k ≥ 0 andwi j +wk i j +wj i k ≥ 0.

Proof From the constraint (31.1) and 1
C i{k ,j }

≤ min {
1
Ci j
, 1
Ci k

} (cf. (12)), we have
γk i j + γj i k − τ i{k ,j } =

∑
m∈M :Λi{k ,j }⊂m

ζm

C i{k ,j }
≤

∑
m∈M :Λi{k ,j }⊂m

ζm
Ci j
≤

∑
m∈M :(i ,j )∈m

ζm
Ci j
. (37)

It follows from the definition of wk i j ,wj i k and wi j that

−wk i j −wj i k

=γk i j + γj i k

≤τ i{k ,j } +
∑

m∈M :(i ,j )∈m
ζm
Ci j

≤βi j +
∑

m∈M :(i ,j )∈m
ζm
Ci j

=wi j .

(38)

The last inequality follows from (17).
Hence, wi j +wk i j +wj i k ≥ 0 holds. The proof for wi k +wk i j +wj i k ≥ 0 is similar.

Theorem 5 Let e1 and e2 be two incident edges of EG , and let e1 be non-positive, and let e2 be non-negative. Then,
w (e1) +w (e2) ≥ 0

Proof Let e1 = (
(k , i ), (i , j )

) be non-positive and e2 = (
(i , j ), (i , j )

) be non-negative. If Λi{k ,j } ⊂ E , it follows fromLemma (4) that
w (e1) +w (e2)

=wk i j +wi j

≥ −wj i k

≥0.

(39)
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Otherwise, according to the extension of γ in subsection 4.1 and definition of weights,w (e1) = wk i j = 0 andw (e2) =
wi j ≥ 0, so w (e1) +w (e2) ≥ 0.
Corollary 6 Let r be an arbitrary simple cycle of EG , thenw (r ) ≥ 0.

Proof Denote r = (e1, ..., e t ) , and let its length be t . Because of alternative appearances of non-positive and non-
negative edges in the cycle, t is even s.t t = 2h for some integer h. W.l.o.g., we assume e1 is non-positive.

By Lemma (5), then w (r ) = ∑
h∈{1,..., t2 }

(w (e2h−1) +w (e2h )) ≥ 0.
We use the Bellman-Ford algorithm to compute the shortest simple path p∗ in the graph EG . The time complexity

of the Bellman-Ford algorithm in this graph isO ( |E |3) , because the number of nodes and edges of the extended graph
are O ( |E |)) and O ( |E |2) , respectively.

The complexity of the pricing algorithm is O ( |D | |E |3) . Bellman-Ford algorithm can output the shortest length
path when there are multiple shortest paths of the same weight, so the pricing algorithm works even if the weight of
a cycle is zero. Lemma 7 demonstrates that the removal of cycles of flows would decrease the objective value.

Now, we prove that π−1 (p∗) is simple based on the perturbation analysis and the optimality of p∗.
Let (y ,u) be a feasible solution of LP relaxation of (31), denote by z− (y ,u) the objective value of solution (y ,u) .

If there exists a path p in G such that yp > 0, and p contains a cycle r , we call this solution is cyclic.
Here, we take the edge representation of a path/cycle, and p \ r denotes the usual set minus operation. Since the

left-hand sides of clique capacity constraints and the objective function are proportional to OTRs, deleting cycles of
a path would reduce OTRs on the edges of cycles. As a result, deleting cycles could both decrease the objective and
increase the feasibility.
Lemma 7 Let ( ȳ , ū) be a cyclic solution such that there exists a path ¤p with ȳ ¤p > 0, and ¤p contains a cycle ¤r , denote by
¥p = ¤p \ ¤r the path without the cycle ¤r . There exists another feasible solution ( ŷ , û) , such that ŷ ¤p = 0, ŷ ¥p = ȳ ¤p + ȳ ¥p , ŷp = ȳp ,
for all p , ¤p and ¥p , and z− ( ŷ , û) ≤ z− ( ȳ , ū) .

Proof We can assume that û (resp. ū ) equals its upper-bound defined by the pair of constraints (31.1) for fixed ŷ (resp.
ȳ ). This is because increasing û does not change the feasibility of the solution and decreases the objective value.

Assume ȳ follows value assignment of the lemma, and the value of ū to the upper-bound defined by the pair of
constraints (31.1) with ȳ fixed.

In contrast to the path ¤p , the path ¥p does not contain the cycle ¤r . Denote by ¤r + = ¤r ∪ {(j , i ) | (i , j ) ∈ ¤r } the union
of the cycle ¤r and its reverse cycle. For Λi{k ,j } ⊂ ¤r + ∩ E , flow on cycle ¤r affects coding variable û i{k ,j } . By deleting thecycle ¤r , the right hand side of one of the constraint pair (31.1) decreases by at most ȳ ¤p .

Coding variables affected by cycle ¤r satisfy the following conditions

ū i{k ,j } − û
i
{k ,j } ≤ d

st ȳ ¤p , [Λi{k ,j } ⊂ ¤r
+ ∩ E , (40)

ū i{k ,j } − û
i
{k ,j } = 0, [Λi{k ,j } 1 ¤r

+ ∩ E . (41)
We first check that the clique capacity constraint (31.2) is still feasible for each clique set m.
Assume that ¤p ∈ ϕst . If r ∩ m = ∅, then ¤p ∩ m = ∅, thus ŷp = ȳp for p s.t. p ∩ m , ∅, and ū i{k ,j } = û i{k ,j } for all

Λi{k ,j } ⊂ m , so the left hand side of the clique capacity constraints on m remains the same (feasible). Else if r ∩m , ∅,
then for Λi{k ,j } ⊂ m ∩ ¤r +, associated coding variables decrease from û i{k ,j } to ū i{k ,j } .
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It follows that ∑

Λi{k ,j }⊂m

1

C i{k ,j }
ū i{k ,j } −

∑
Λi{k ,j }⊂m

1

C i{k ,j }
û i{k ,j }

=
∑

Λi{k ,j }⊂m∩¤r
+

1

C i{k ,j }
ū i{k ,j } −

∑
Λi{k ,j }⊂m∩¤r

+

1

C i{k ,j }
û i{k ,j }

≤
∑

Λi{k ,j }⊂m∩¤r
+

d st

C i{k ,j }
ȳ ¤p

≤
∑

Λi{k ,j }⊂m∩¤r
+

min
{
d st

Ci j
,
d st

Ci k

}
ȳ ¤p

≤
∑

(i ,j )⊂m∩r

d st

Ci j
ȳ ¤p ,

(42)

the second inequality follows from (12) and the third inequality follows from an enlarged index set.
We check the left hand side of clique capacity constraint for each m:

∑
st∈D

∑
p∈ϕst

∑
(i ,j )∈p∩m

d st

Ci j
ŷp −

∑
Λi{k ,j }⊂m

1

C i{k ,j }
û i{k ,j }

=
∑
st∈D

∑
p∈ϕst

∑
(i ,j )∈p∩m

d st

Ci j
ȳp −

∑
(i ,j )∈m∩r

d st

Ci j
ȳ ¤p −

∑
Λi{k ,j }⊂m

1

C i{k ,j }
û i{k ,j }

≤
∑
st∈D

∑
p∈ϕst

∑
(i ,j )∈p∩m

d st

Ci j
ȳp −

∑
Λi{k ,j }⊂m

1

C i{k ,j }
ū i{k ,j }

≤1,

(43)

The first equation follows from the difference between ȳ and ŷ on the cycle ¤r , and the first inequality follows from
(42), and the last inequality follows from the fact that ȳ is feasible. Indeed, the left hand side of the clique capacity
constraint under the new solution ( ŷ , û) is decreased.

Since the st−flow on cycle ¤r decreases by ȳ ¤p , and coding variables decrease accordingly, it follows that
z− ( ŷ , û) − z− ( ȳ , ū)

= −
∑
(i ,j )∈ ¤r

βi j d
st ȳ ¤p −

∑
Λi{k ,j }⊂ ¤r

+∩E

τ i{k ,j }

(
û i{k ,j } − ū

i
{k ,j }

)
≤ −

∑
(i ,j )∈ ¤r

βi j d
st ȳ ¤p +

∑
Λi{k ,j }⊂ ¤r

+∩E

τ i{k ,j }d
st ȳ ¤p

= −
∑

(i ,j )∈ ¤r :@k ,Λi{k ,j }⊂ ¤r+∩E
βi j d

st ȳ ¤p +
∑

(i ,j )∈ ¤r :\k ,Λi{k ,j }⊂ ¤r+∩E
(−βi j + τ i{k ,j })d

st ȳ ¤p

≤ −
∑

(i ,j )∈ ¤r :@k ,Λi{k ,j }⊂ ¤r+∩E
βi j d

st ȳ ¤p

≤0,

(44)
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The first equation follows from the difference of objective values on cycle ¤r , the first inequality follows from (40),

and the second equation follows from partition of edges in ¤r , and the second inequality follows from (17).
Therefore, z− ( ŷ , û) ≤ z− ( ȳ , ū) .
The reduced cost RCst (π−1 (p∗)) is less or equal to the minimum reduced cost among all paths in ϕst according

to (36). We conclude that
Theorem 8 π−1 (p∗) is a simple path in G .

Proof By the definition of the minimum reduced cost, among all path variables which admit zero values in RMP,
assume a positive perturbation the path variable associated to π−1 (p∗) , such perturbation decreases the objective
function.

If π−1 (p∗) is not simple, by Lemma (7), there are two cases:
• if deleting p∗’s cycles decreases the objective value, it would contradict with the minimum reduced cost of

π−1 (p∗) ;
• otherwise, deleting cycles produces a solution of the same objective value, i.e.„, the reduced cost of the new

simple path is the same as that of π−1 (p∗) . But according to the Bellman-Ford algorithm, among paths of the
same shortest cost, only the shortest length one, i.e.„, the new acyclic path would be the output of the algorithm,
which contradicts our assumption.

Therefore, π−1 (p∗) must be simple.
Therefore, there is no need to check whether an inverse optimal path is simple. To summarize, pricing algorithm

constructs extended graph EG , for each st ∈ D , finds the shortest path inϕst (Bellman-Ford Algorithm), and adds the
inverse path in σst . If no path is found, the master problem is optimal.

4.2 | Farkas pricing

The Farkas pricing improves the feasibility when the LP relaxation of the RMP problem is infeasible.
(31.2) is the sole constraint that differentiates the dual RMPproblem from the dualmaster problem (Dual-wUMCFC-

P (31)), for which the quantifier ϕst is replaced by its active subset σst .
According to Farkas’ lemma, the RMP problem is infeasible if and only if the dual RMP problem is unbounded.
The dual RMP problem is unbounded if and only if there exists an improving ray (∆(η),∆(γ),∆(ζ)) (Farkas certifi-

cate) of the dual RMP problem along which the objective function can be improved infinitely.
The dual simplex algorithm could detect this improving ray. (∆(η),∆(γ),∆(ζ)) is an improving ray for the dual
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RMP problem if and only if it satisfies the following conditions:



−
∑
m∈M

∆(ζ)m −
∑
st∈D

∆(η)st > 0, (45.0)

∆(γ)k i j + ∆(γ)j i k −
∑

m∈M :Λi{k ,j }⊂m
∆(ζ)m
C i{k ,j }

= 0, [Λi{k ,j } ⊂ E , (45.1)

FCst (p) ≥ 0, [st ∈ D , [p ∈ σst , (45.2)
∆(ζ)m ∈ Ò+, [m ∈ M , (45.3)
∆(γ)k i j ,∆(γ)j i k ∈ Ò+, [Λi{k ,j } ⊂ E , (45.4)
∆(η)st ∈ Ò, [st ∈ D . (45.5)

(45)

where the Farkas coefficient is defined as:
FCst (p) := ∑

(k ,i ) ,(i ,j )∈p
−d st∆(γ)k i j +

∑
m∈M

∑
(i ,j )∈p∩m

d st
∆(ζ)m
Ci j

+ ∆(η)st . (46)

If(∆(η),∆(γ),∆(ζ)) is an improving ray for the dual RMP, it might violate the constraints of (45.2) for some st ∈
D , p ∈ ϕst \ σst .

The pricing algorithm finds, for each demand st ∈ D , a path with the minimum Farkas coefficient.
Each path with negative Farkas coefficient is added to σst . Adding the corresponding cut repairs unbounded-

ness of the RMP dual problem, and equivalently, adding the corresponding column in the RMP problem repairs its
infeasibility.

If the Farkas pricing does not find any path, then (∆(η),∆(γ),∆(ζ)) certifies that the dual master problem is readily
unbounded, so we can conclude that the primal master problem is infeasible.

The left-hand side value of the clique capacity constraint, of a solution with a non-zero cyclic path, is always
greater than that value of another solution with cycles deleted. Therefore, the simple path improves feasibility. Thus,
like the reduced cost pricing, the inverse of the optimal path is also simple.

In summary, we have the following corollary for the correctness of the pricing algorithm.
Corollary 9 The pricing algorithm finds a simple path to improve the RMP in polynomial time.

Since the pricing problem is solved for several iterations, at each node of the branch-and-bound tree, the above
corollary explains the efficiency of our approach.

5 | BRANCHING RULE

B&P is a branch-and-bound method in which at each node of the search tree, columns may be added to the LP relax-
ation. The search tree (B&P tree) implicitly enumerates the candidates and explores the nodes whose LP relaxations
are at most the incumbent value.

The path-based formulation wUMCFC-P (29) contains binary path variables. Hence, at every node of the B&P
tree, if the column generation converges to a fractional LP solution, then the branching rules enforce the integrality
of path variables.

Two branching strategies can be applied: branching on edges or branching on paths.
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F IGURE 5 Paths diverge at i and k

Branching on paths is a natural way to set binary path variables to 0 or 1. If the variable is fixed to 1, there is no
issue. If the variable is fixed to 0, the pricing algorithm might regenerate it. In the worst case, the solver generates a
column, fixes it to zero and regenerates it again, and therefore never terminates.

The edge branching method proposed in [8] forbids flows to use certain edges.
For st ∈ D , we say an edge e ∈ E is st−forbidden at a sub-B&P tree if e is forbidden to transmit any st−flow in

any nodes of the sub-search tree. To forbid an edge e , one can set to zero the existing columns of the paths containing
e at the branching node, and forbid to generate any st−paths containing e in its sub-search tree. Every node of B&P
tree records a set F st of forbidden edges for each st−flow.

We choose the branching rule by edges. To be compatible with the proposed pricing algorithm, we can simply
delete edges in F st from the original G , and generate the extended graph EG from this subgraph of G . In this way, no
st−path through a forbidden edge would be generated.

Note that all the properties of the pricing algorithm still hold for the subgraph of G , and all the paths generated
are simple in the subgraph and G as well.

Let χ st = {p | yp > 0, p ∈ ϕst } be the set of st−path variables with non-zero values in the LP relaxation. Let T
be the sub-graph of G supporting χ st . In T , the in-degree of s is zero, the out-degree of t is zero, and the in-degree
and the out-degree of the rest nodes in T are identical. If an st flow variable is not binary, i.e.„, |χ st | > 1, let the first
divergence node ofT be i .

For example, in Figure (5) there are 4 st−paths, 2 divergence nodes i and k , and i is the first divergence node.
In our implementation (1), we choose the flow st = argmaxst∈D :|χst |>1 d st . In this way, the branching rule has a

strong impact on the dual bound, and branching at the first divergence node fixes more active paths than branching
at other divergence nodes.

Denote by N st
i
= {(i , j ) | (i , j ) ∈ T } the set of out edges at node i inT , by O st

i
= {(i , j ) | (i , j ) ∈ E } \ (F st ∪ N st

i
)

the set of non-forbidden out edges of E \T at node i , notice that N st
i
∩ O st

i
= ∅. Since the flow st should be binary,

it must take at most one edge of N st
i
∪O st

i
in its unique path, this forms a disjunction for binary branch.

We partition N st
i

and O st
i

equally into F st1 and F st2 which are st−forbidden edge subsets for two child nodes.
Firstly, N st

i
is divided into two parts according to st−flow values on its edges, such that the current st−flow is

partitioned into the two child nodes in a balanced way. Secondly, the partition of O st
i

is just a random choice.
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Algorithm 1: Branching rule
Data:
G : the original graph representing the network, G = (V , E )
χ : the set of path variables with non-zero values for each demand.
F : the set of forbidden edge sets at the current B&P node.
Result: Updated forbidden edge sets for two child nodes
st ←− argmaxst∈D :|χst |>1 d st
Construct the sub-graphT supporting χ st
Find the first divergence node i ofT
N st
i
←− {(i , j ) | (i , j ) ∈ T }

O st
i
←− {(i , j ) | (i , j ) ∈ E } \ (F st ∪ N st

i
)

Compute values of st−flow on the edges of N st
i

according to χ st
Sort N st

i
in decreasing order by flow values on the edges

F st1 , F
st
2 ←− ∅

for (i , j ) ∈ N st
i

do
if |F st1 | < |F

st
2 | then

F st1 ←− F
st
1 ∪ {(i , j ) }

else
F st2 ←− F

st
2 ∪ {(i , j ) }

for (i , j ) ∈ O st
i
do

if |F st1 | < |F
st
2 | then

F st1 ←− F
st
1 ∪ {(i , j ) }

else
F st2 ←− F

st
2 ∪ {(i , j ) }

return F st1 , F
st
2

6 | COMPUTATIONAL RESULTS

In this Section, we describe our test instances and evaluate the performance of our algorithms. The first experiments
compare the performance of the B&P algorithm, for the path-based formulation wUMCFC-P (29), to CPLEX solver
for the compact edge balance formulation wUMCFC-EB.

Recall that wUMCF and wUMCFC differ whether the model includes network coding-related variables and con-
straints. The wUMCF model is obtained by setting u = 0 and deleting coding opportunity constraints from wUMCFC.
The second experiment solves wUMCF and wUMCFC problems by the B&P algorithm to observe the impact of net-
work coding.

We generate 40 instances and divide them into two classes, low-demand, and high-demand testbeds. Each in-
stance describes the graphG of a wireless network, the costs β of its edges, the capacitiesC of its edges, the demands
D , and the clique set M .

For each testbed, there are 10 sub-classes, and each sub-class contains 2 instances with the same number of
nodes and demands. The number of nodes |V | of a wireless network ranges from 30 to 120 by a step of 10, and
each testbed contains instances of these 10 distinct sizes. The number of demands, |D |, equals 0.4 |V | and 0.8 |V | for
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low-demand and high-demand testbeds, respectively.

Given the number of nodes and demands, the generation procedure follows as:
1. Generate a random bi-directed geometric graph G = (V , E ) of a given number of nodes in the unit square, where

the Euclidean radius for linking two nodes is proportional to √
1
n .

2. For each i ∈ V , sample the node cost βi from the truncated standard normal distribution s.t 0.8 ≤ βi ≤ 1.2.
3. For each (i , j ) ∈ E , sample the capacity Ci j uniformly from {1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6}, and set the cost βi j = βi

Ci j
.

4. For each demand st ∈ D , choose a pair of nodes as the source s and the target t randomly, and sample the
demand d st from a normal distribution with a mean proportional to 1

|D | .
5. Construct the conflict graph Gc of G according to 2-dist interference model in Section 2.2.
6. Find the set M of maximal cliques in Gc using Networkx’s recursive backtracking algorithm [31].

Note that finding all maximal cliques of a graph is an NP− complete problem. But since the generated geomet-
ric graphs are sparse, the number of maximal cliques is not very large and the enumeration of Networkx’s recursive
backtracking algorithm is efficient.

Therefore, using the M clique set computed by the Networkx’s algorithm, we generate all the clique capacity
constraints of our models.

For each coding opportunity set Λi{k ,j } ⊂ E , the parameters τ i{k ,j } (for energy saving) and C i{k ,j } (for capacityincreasing) are computed based on Section 2.3.
We only generate feasible and non-trivial instances. An instance is feasible if it has a solution, and an instance is

trivial if its root node LP relaxation is already mixed-integer feasible. For each input, we repeat the above procedure,
by adjusting factors of the proportions of steps 1 and 4, until the instance is feasible and non-trivial.

The generated test instances are described in the first column of Table (3) and the first column of Table (4). The
first letter indicates whether it belongs to the low or high-demand testbed (L or H), and the following V.E.D indicates
the numbers of nodes, edges, and demands, respectively.

The B&P algorithm is implemented using SCIP (version 7.0.2) [23] with CPLEX (version 12.10.0) as LP solver.
We use CPLEX in the single-thread mode (without parallelism) to solve the compact edge balance formulation. The
computing environment has an Intel Core i7-6700K CPU at 4.00GHz and 16GB of RAM under Ubuntu 20.04 system.
The time limit is set to 3600 CPU seconds. The relative duality gap tolerance is set to 1e-4.

6.1 | Numerical comparisons of formulations

In this part, we perform the numerical comparison between the path-based formulation wUMCFC-P and the compact
edge balance formulation wUMCFC-EB. We evaluate performance metrics of the B&P algorithm, for the path-based
formulation, and CPLEX for the compact edge balance formulation.

We implement the pricing algorithm and branching rules for the B&P by SCIP, initial columns are the shortest cost
path for each demand.

Tables (3) and (4) report statistics for low and high-demand data sets respectively.
We report the primal bound z ∗−, the relative duality gap in percentage, the run time t in CPU seconds, the number

of variables, the number of constraints, and the number of nodes. Besides, we also record the pricing time tP in CPU
seconds, the number of pricing calls, and the number of generated paths for the B&P.

Among all 40 instances, the B&P algorithm solves 13 instances to optimality, and finds primal feasible solutions
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for all 40 instances; CPLEX solves 10 instances to optimality and finds primal feasible solutions for 23 instances. This
result can be explained by the fact that the size of the edge-based formulation is significantly larger than the size of
the path-based formulation, especially for large networks and high-demand instances. In the edge-based formulation,
the number of constraints grows linearly to the number of demands and the size of the network. While the number
of major constraints of the path-based formulation mainly depends on the size of the network. Both the edge-based
formulation and the path-based formulation need auxiliary continuous variables to model the coding opportunities,
but the edge-based formulation has additional variables q on incident edges. The number of variables of the edge-
based formulation is O ( |E |2 |D |) , and the number of variables of the path-based formulation is O ( |E |2) in addition to
the path variables.

Even with the generated columns (paths), the size of the path-based formulation is still smaller than the size of
the edge-based formulation. Moreover, for each demand, a small part of the path variables are non-zero and active.
Columns generated, at one node in the search tree, are not necessarily included in the LP relaxation of a different
node. Even at the same node or at a descendant node, SCIP can remove columns of non-active paths from the LP if
they are 0 in the LP relaxation. Therefore, column generation selects columns of active path variables in a smaller size
than the generated paths set. Experiments show that the size of the path-based formulation is much smaller than the
size of the edge-based formulation.

To compare the speeds of B&P to CPLEX, we compute the shifted geometric means (by 10s) of run times for
low-demand, high-demand testbeds, and all instances respectively. The rum time of unsolved instances is taken as
the time limit (3600 seconds). As for the B&P algorithm, the mean times for low-demand, high-demand testbeds and
all instances are 588.3 seconds, 1365.2 seconds, and 897.1 seconds, respectively. As for CPLEX, the mean times
for low-demand, high-demand testbeds and all instances are 1005.9 seconds, 1798.3 seconds, and 1345.4 seconds,
respectively. Therefore, B&P is 0.71, 0.31, and 0.5 times faster than CPLEX on low-demand, high-demand testbeds
and all instances respectively.

This conclusion is conservative because for the CPLEX side there are many instances with 100% duality gap. We
also compare the average duality gaps for instances of which feasible solutions are found by CPLEX. The average
duality gap for B&P is 0.62%, and the average duality gap for CPLEX is 1.04%. In summary, B&P outperforms CPLEX
in the speed and the quality of solutions.

The two tables show that the pricing time of B&P occupies a significant part of the total running time. Let tpt be
the ratio of the pricing time over total run time. On average, the ratio is 26%, and it increases with the size of the
network and the number of demands. Therefore, a fast shortest path algorithm could speed up B&P.
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TABLE 3 low-demand experiments
Instance SCIP’s B&P for wUMCFC-P CPLEX for wUMCFC-EB

z ∗− Gap(%) t tp #calls #paths #vars #cons #nodes z ∗− Gap(%) t #vars #cons #nodes
L30.152.12 2.72 0.0 1.1 0.1 499 1156 1532 755 95 2.72 0.01 8.08 10909 4562 41
L30.166.12 2.18 0.0 4.8 1.1 1242 2673 3139 940 226 2.18 0.01 2.28 13444 5078 5
L40.240.16 2.26 0.0 3.5 0.5 486 1839 2563 1487 29 2.26 0.01 16.27 28197 9719 0
L40.260.16 2.37 0.0 43.5 9.6 1724 6307 7234 1924 150 2.37 0.01 156.58 34576 10739 46
L50.308.20 3.06 0.01 25.9 6.2 1766 5422 6391 1975 131 3.06 0.0 246.16 47400 15461 40
L50.334.20 2.67 0.0 30.9 7.7 1480 5802 7071 2595 64 2.67 0.01 76.34 59215 16857 6
L60.394.24 4.39 4.85 3600.1 1931.0 23524 70034 71426 2841 1735 4.59 9.92 3600.03 80568 23468 89
L60.342.24 3.87 1.0 3600.2 2296.7 33058 55133 56101 2015 7586 3.84 0.27 3600.02 58671 20109 1119
L70.446.28 4.09 0.57 3600.0 2214.9 30522 74835 76320 3002 2648 4.09 0.57 3600.03 102021 30482 298
L70.380.28 3.96 0.01 478.6 195.9 9299 24732 25769 2136 1610 - - 3600.02 74036 26123 155
L80.482.32 3.77 0.01 72.8 19.0 2587 8362 9903 3145 187 3.78 0.32 3600.08 123478 37761 90
L80.672.32 2.51 0.52 3600.2 1127.5 5111 31152 34772 7781 131 2.57 3.59 3600.2 263385 54060 0
L90.544.36 6.44 1.83 3600.1 1311.4 25327 43417 45040 3376 5685 6.4 0.58 3600.07 149607 47719 8
L90.552.36 5.97 0.69 3600.1 1682.6 27540 60768 62509 3549 3476 5.97 0.82 3600.05 156861 48240 10
L100.716.40 4.16 1.68 3600.2 1171.6 15791 68773 71573 5681 1065 - - 3600.08 270651 68860 0
L100.568.40 6.18 1.46 3600.2 1332.3 19217 52610 54258 3463 3327 6.21 1.57 3600.15 167922 54855 0
L110.710.44 5.98 2.02 3600.0 714.6 24847 39220 41461 4623 10531 - - 3600.18 248479 74770 0
L110.710.44 6.11 1.6 3600.0 942.9 17980 60739 63001 4625 2486 6.26 4.07 3600.12 251989 74860 0
L120.708.48 4.95 0.34 3600.0 946.6 41914 45198 47283 4221 19147 - - 3600.07 256114 81248 35
L120.698.48 6.28 0.45 3600.1 1144.6 35174 49818 51782 3994 12351 6.27 0.22 3600.08 245289 80517 3



Xu and Vanier. 29
TABLE 4 high-demand experiments

Instance SCIP’s B&P for wUMCFC-P CPLEX for wUMCFC-EB
z ∗− Gap(%) t tp #calls #paths #vars #cons #nodes z ∗− Gap(%) t #vars #cons #nodes

H30.146.24 2.56 0.0 0.8 0.1 301 880 1222 688 56 2.56 0.01 29.78 20150 8371 16
H30.132.24 3.12 0.01 0.3 0.1 195 580 859 560 45 3.12 0.01 8.22 16700 7564 7
H40.220.32 3.56 0.01 123.6 50.2 5330 12931 13545 1261 962 3.56 0.01 599.12 47152 16505 193
H40.226.32 2.69 0.01 195.3 42.7 8675 14541 15195 1306 3453 2.69 0.01 370.43 49522 16680 284
H50.224.40 4.81 0.13 3600.0 1040.3 126298 25862 26444 1165 110427 4.81 0.21 3600.01 58325 23213 2302
H50.282.40 4.15 0.0 821.7 316.9 15530 37497 38313 1642 3607 - - 3600.02 78667 26351 146
H60.394.48 4.61 0.69 3600.0 1708.4 27550 52328 53725 2815 6622 - - 3600.04 158063 43869 23
H60.362.48 3.45 1.25 3600.0 1574.0 16715 52420 53635 2525 2411 - - 3600.05 137815 40112 3
H70.452.56 4.91 7.53 3600.0 839.7 7596 54355 56049 3543 432 - - 3600.08 223788 58485 0
H70.464.56 4.02 0.47 3600.0 1593.2 15744 55929 57557 3354 2450 4.02 0.69 3600.15 217070 60690 0
H80.552.64 4.42 2.11 3600.1 931.8 19115 56330 58030 3458 4560 - - 3600.16 264689 77730 0
H80.484.64 4.54 5.04 3600.0 692.5 21358 39771 41294 3127 7455 - - 3600.12 236580 71154 0
H90.552.72 5.52 0.86 3600.0 710.7 26380 40918 42670 3523 12196 - - 3600.12 308703 92601 0
H90.504.72 4.91 0.74 3600.0 777.9 31117 39608 41038 2894 15619 4.92 1.1 3600.12 257387 84783 7
H100.594.80 4.71 1.26 3600.1 1090.4 22752 55539 57394 3747 6329 - - 3600.1 366192 111618 0
H100.598.80 4.59 1.67 3600.2 1069.0 18056 47139 48945 3741 4337 - - 3600.14 359387 112133 0
H110.772.88 5.61 3.51 3600.0 815.8 8290 53669 56688 6143 470 - - 3600.26 630648 156050 0
H110.630.88 7.01 2.57 3600.0 885.1 22104 38323 40105 3619 5209 - - 3600.13 397273 130245 0
H120.720.96 7.18 2.13 3600.0 586.0 21033 40337 42621 4601 7588 - - 3600.21 542513 161613 0
H120.740.96 6.25 1.56 3600.0 429.2 13977 38935 41304 4821 4206 - - 3600.48 562586 165990 0

6.2 | Effects of network coding

According to Section 2.3, network coding has two effects: capacity increasing and energy saving.
The first effect enables more feasible routes. It depends on networks’ bottlenecks, capacities and demand values.

Thus, it is more useful for large instances where demands are large and capacities are limited.
The second effect yields fewer data transmission in the network. Recall that the saved energy equals the CSC zc .

This effect reduces the energy cost of every feasible route, which depends on the costs of edges.
Recall that wUMCFC is the UMCFmodel integrating clique capacity constraints and network coding, andwUMCF

is the UMCF only with clique capacity constraints.
Since in the previous experiments, B&P algorithm for the path-based formulation outperforms CPLEX for the

edge balance formulation, we compare wUMCF and wUMCFC by solving their path-based formulations. The path-
based formulation of wUMCF, i.e.„, wUMCF-P, is obtained by removing coding constraints and coding variables from
wUMCFC-P (29). In our starting experiment, following instances have solutions under wUMCFC model but have no
solutions under wUMCF model:
• low-demand: L30.166.12, L50.308.20, L110.710.44, L120.708.48 and L120.698.48.
• high-demand: H30.132.24, H40.226.32, H50.224.40, H50.282.40, H90.552.72, H90.504.72 and H110.630.88.
Demands of these instances exceed the capacity of the networks, but network coding could increase the capacity. As
a result, more feasible routes are possible, and these instances have solutions under the wUMCFC model. These in-
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stances demonstrate the first effect of network coding, i.e.„, the increased capacities, which improves QoS of wireless
networks.

Evaluating the energy cost on feasible instances is needed. A binary search method is used to find feasible de-
mands for each of these infeasible instances. Revised instances have a suffix ’R’ appended to their labels, and we
replace original instances with revised instances in new testbeds. We still set the time limit to 3600 seconds. Al-
though B&P might produce primal solutions with non-zero duality gaps at the end of the time limit, the subsequent
experiment shows that network coding reduces the energy cost significantly even with the error induced by the un-
closed duality gap.

Recall that the objective function of wUMCF model (denoted by z ) is the first term of the objective function of
wUMCFC model (denoted by z−), and their difference zc = ∑

Λi{k ,j }⊂E

τ i{k ,j }u
i
{k ,j } is the energy cost explicitly saved by

network coding (CSC). For each instance, we report the incumbent value z ∗ of wUMCF model (resp. z ∗− of wUMCFC),
the relative duality gap in percentage, the run time t in CPU seconds, the number of variables and the number of
constraints. For wUMCFC, we also record CSC z ∗c of the incumbent solution. The results are reported in Tables (5)
and (6) for low and high-demand testbeds respectively.

Let z ∗ and z ∗− be the optimal values of wUMCF and wUMCFC respectively, B&P could compute them with unlim-
ited time and memory. Define by f = z∗−z∗−

z∗ = 1 − z∗−
z∗ the relative energy saved by network coding, and f̂ = 1 − z∗−

z∗
is

the estimator of f .
Given the relative duality gap and the primal bound (incumbent value), we can compute the dual lower bound of

the optimal objective value.
Let z ∗ be the lower bound of UMCFC, the error of the estimator follows that

f − f̂ = z ∗ z ∗− − z ∗ z ∗−
z ∗ z ∗

≥
z ∗ z ∗− − z ∗ z ∗−

z ∗ z ∗
:= ê, (47)

for which ê gives a lower bound of the error.
The average of relative energy saving is 18.35%, and the average of error lower bound is −0.04%. Therefore, the

non-closed duality gap just induces a negligible estimation error of relative energy saving. The network coding saves
energy cost significantly.

Capacity increasing could lead to a larger feasible route set, hence the optimal objective value is decreased. Indeed,
the CSC contributes to the main part of the energy saving. For each instance, we compute the first term of the
objective function of wUMCFC, i.e., z̃ ∗− = z ∗− + z ∗c , which is energy cost without saving by network coding of the given
incumbent routing. Among 62.5% instances, z̃ ∗− > z ∗, so only can the second effect (CSC) contribute to energy saving
in these instances. Among other 37.5% instances, z ∗ ≥ z̃ ∗− > 0.973z ∗, the energy cost without saving (z̃ ∗−) is close to
the energy cost of wUMCFC (z ∗), so the first effect (capacity increasing) still has a minor contribution to energy saving.
z∗c
z̃∗−

is the ratio of CSC over unreduced energy cost, its average value among all instances is 19.16%. Therefore, we
can conclude that CSC has a major contribution to energy saving.

However, there is no free lunch for using network coding, as the numbers of variables and constraints of wUMCFC
are much larger than those of wUMCF. As a result, both the solving time and the duality gap of wUMCFC increase.
To achieve better performance, wUMCFC requires a faster algorithm, so a tailored B&P algorithm is developed in this
work.
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TABLE 5 low-demand testbed
Instance wUMCF wUMCFC

z ∗ t Gap (%) #vars #cons z ∗− z ∗c t Gap (%) #vars #cons
L30.152.12 3.0 0.0 0.0 33 27 2.72 0.37 1.1 0.0 1487 755
L30.166.12.R 2.42 0.0 0.01 32 32 1.76 0.34 0.1 0.0 620 940
L40.240.16 2.37 0.0 0.0 55 71 2.26 0.2 3.3 0.0 2445 1487
L40.260.16 2.64 0.2 0.0 175 102 2.37 0.36 42.9 0.01 7101 1924
L50.308.20.R 2.86 0.2 0.0 155 77 2.47 0.3 39.5 0.0 7214 1975
L50.334.20 3.0 0.1 0.0 77 97 2.67 0.41 40.1 0.0 7818 2595
L60.394.24 5.33 51.1 0.01 1856 105 4.39 1.35 3600.0 4.92 66727 2841
L60.342.24 4.69 0.9 0.01 347 127 3.87 0.77 3600.2 1.02 52664 2015
L70.446.28 4.59 0.2 0.01 121 88 4.09 0.6 3600.0 0.58 71244 3002
L70.380.28 4.62 2.9 0.01 481 118 3.96 0.77 502.7 0.01 25769 2136
L80.482.32 4.08 10.2 0.01 869 127 3.77 0.3 74.7 0.01 9903 3145
L80.672.32 2.83 0.0 0.0 32 605 2.51 0.54 3600.5 0.52 34712 7781
L90.544.36 7.57 2.4 0.01 282 202 6.44 1.6 3600.0 1.89 36228 3376
L90.552.36 7.77 3600.0 0.46 5773 139 5.97 1.9 3600.0 0.78 49755 3549
L100.716.40 5.07 1.2 0.0 229 161 4.17 0.98 3600.1 1.99 68123 5681
L100.568.40 7.02 0.8 0.0 186 247 6.18 1.12 3600.0 1.47 51570 3463
L110.710.44.R 8.15 3600.0 0.91 10055 229 5.51 1.98 3600.1 1.59 40143 4623
L110.710.44 7.56 88.9 0.01 718 189 6.11 1.73 3600.0 1.6 61856 4625
L120.708.48.R 5.18 0.6 0.01 220 147 4.13 1.11 3600.0 0.13 31142 4221
L120.698.48.R 6.47 3600.1 0.06 484 162 5.17 1.23 3600.0 0.32 39410 3994
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TABLE 6 high-demand testbed

Instance wUMCF wUMCFC
z ∗ t Gap (%) #vars #cons z ∗− z ∗c t Gap (%) #vars #cons

H30.146.24 3.36 0.0 0.0 97 52 2.56 0.79 0.7 0.0 1258 688
H30.132.24.R 2.84 0.6 0.0 223 50 2.51 0.32 0.3 0.01 745 560
H40.220.32 4.01 0.1 0.01 118 97 3.56 0.48 132.8 0.01 14000 1261
H40.226.32.R 2.45 0.2 0.01 101 62 2.1 0.34 34.8 0.01 6671 1306
H50.224.40.R 5.37 102.3 0.01 1332 81 4.51 0.92 1563.0 0.01 15351 1165
H50.282.40.R 5.44 3600.0 0.4 3866 90 3.97 1.01 233.7 0.01 19707 1642
H60.394.48 5.32 33.0 0.01 1511 117 4.61 0.7 3600.0 0.64 59957 2815
H60.362.48 4.04 2.0 0.01 442 191 3.45 0.85 3600.0 1.3 51053 2525
H70.452.56 5.94 3600.0 0.07 1979 267 4.91 1.35 3600.0 7.53 54468 3543
H70.464.56 4.66 0.5 0.01 192 210 4.02 0.71 3600.0 0.48 56404 3354
H80.552.64 5.72 0.6 0.01 271 186 4.42 1.54 3600.2 2.12 56716 3458
H80.484.64 6.24 3600.0 0.31 1933 209 4.54 1.63 3600.0 5.08 36467 3127
H90.552.72.R 6.07 3600.1 0.03 929 163 4.5 1.47 3600.0 0.38 27090 3523
H90.504.72.R 6.68 3600.1 0.17 674 178 4.66 1.94 3600.0 0.84 35466 2894
H100.594.80 5.93 1.1 0.01 235 197 4.71 1.29 3600.0 1.26 56155 3747
H100.598.80 6.09 3.5 0.01 539 289 4.59 1.64 3600.1 1.67 48364 3741
H110.772.88 7.4 2.0 0.01 289 281 5.61 1.78 3600.0 3.51 56031 6143
H110.630.88.R 7.47 1.3 0.01 329 231 5.33 2.36 3600.0 2.08 40768 3619
H120.720.96 9.95 996.2 0.01 1935 225 7.18 2.88 3600.0 2.13 42412 4601
H120.740.96 8.25 1.9 0.01 290 275 6.25 2.26 3600.0 1.56 41935 4821

7 | CONCLUSION

In this article, we propose a mathematical programming approach to address the problem of optimizing the energy
cost of data transmission in wireless multi-hop networks. We propose new formulations of the problem that take
into account specific technical constraints of wireless communication, such as unsplittable routing, interference and
network coding.

A column generation approach is developed as well as a branch&price framework to solve this NP-hard and chal-
lenging problem. The numerical experiments show that the proposed branch&price algorithm outperforms the CPLEX
solver both in terms of running time and duality gap. We show also that, for all the instances, network coding reduces
energy cost significantly. For hard instances, it enables more feasible routes with lower objective function values. The
computational efficiency of the branch&price algorithm is improved by adapted branching rules and solution tracking
mechanisms.
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In the future, we plan to integrate more complex coding schemes and optimize the number of devices turned

on in the network see [50]. This integration may increase the complexity of the problem and introduces more binary
decision variables in themodels. We aim to develop a polyhedral study of this problem, generate new valid inequalities
and develop branch&price&cut algorithms to solve it.

We also plan to extend this work, from general wireless networks to the special cases of Internet-Of-Things (IoT)
deployments. Connecting IoT devices through wireless networks require specific technologies. These technologies
induce more technical constraints on routing, resource management and network coding protocols. We are interested
in extending our models to integrate the specific constraints of the IoT deployment on multi-hop wireless networks.

The further study of such optimization problems and the development of corresponding decision-support tools
will help to offer new services with increased quality of service requirements in future wireless networks deployments.
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