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Abstract

The scattering of guided waves through a complex structure is of great importance in predicting vibration energy
transmission and reflection across structures. Multi-scale models based on generalized continuum theory have been
developed recently to investigate the vibration behavior of complex media in the frame of continuum mechanics.
In this study, models based on the second strain gradient theory are employed together with a scattering matrix
method to study the wave transmission and reflection through non-classical coupling regions between two waveguides.
Numerical results are presented for longitudinal and bending waves through 1-D coupling interfaces. Upon which
we discuss the local behavior of the internal heterogeneity in the complex coupling region and its impact on wave
scattering properties at coupling interfaces. The results obtained also show that the proposed approach is of great
potential in the investigation of vibration transmission control by enriching a waveguide’s internal structure.

Keywords: Second strain gradient theory; complex media; wave scattering; elastic waveguide; transmission
coefficient; transmitted energy.

1. Introduction

Wave traveling analysis through engineering waveguide structures has raised significant interest over the past
decade as it provides an efficient way to describe their vibration behavior, especially in the high-frequency domain.
Waveguide structures can be regarded as a combination of individual waveguides connected by different types of
joints, thus the analysis of wave propagation in each waveguide and interaction at each coupling joint plays an im-
portant role in evaluating and optimizing the structural vibration properties. Many approaches have been developed
analytically and numerically for the study of the wave traveling in waveguide structures. Examples of analytical meth-
ods include the dynamic stiffness method [1], wave scattering method [2], spectral element method [3, 4], energy flow
approach [5, 6], among others. With analytical approaches, the studied structure is often assumed to be isotropic and
homogeneous. These assumptions are not true for structures involving complex internal structures such as composites,
architectured media and metamaterials. In these complex media, local behavior of the internal heterogeneity has a
significant influence on their vibration and wave traveling characteristics. For predicting their vibrational behavior,
numerical approaches such as wave finite element methods (WFEM) [7, 8], Spectral Finite Element (SFEM)[9] are
developed to calculate the wave propagation characteristics and wave interaction coefficients at complex interfaces.

Considering that numerical simulation often involves large computational resources, especially when the wave-
length is approaching the length of spatial period of the system, an alternative solution is developed by enriching the
classical continuum theory with the micro-scale behavior explicitly included in the constitutive equation. Accordingly,
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macroscopic constitutive models that capture the local micro-scale properties can be developed by an appropriate def-
inition of non-local parameters. This theory is known as the generalized continuum theory. Generalized continuum
theories were firstly proposed in the 1960s and developed into three different branches in the last few decades: the
higher gradient theory, the higher-order theory, and non-local elasticity theory. The basic idea of the generalized
continuum theory is to establish a relationship between macroscopic mechanical quantities and microscopic physical
quantities within the framework of continuum mechanics.

Generalized continuum theories have been widely utilized in complex media modeling especially in short-wavelength
deformation. Based on generalized continuum theories, multi-scale models are developed in recent studies to investi-
gate vibration features of complex media while considering the local behavior of its internal structures, for example,
the reformulated beam theories using Eringen’s nonlocal differential constitutive relations [10, 11], non-classical
Kirchhoff plate model and Mindlin plate model based on Modified Couple Stress (MCS) [12, 13]. Literature shows
that the generalized theory-based models are capable of capturing the scale effect of the mechanical behavior observed
in the experiments where the specimen characteristic length or the wavelength of the disturbance are comparable to the
lengths of the major heterogeneity in the media. The long-range interaction described in generalized theory has sig-
nificant influences on predicting the non-classical structural characteristics such as deflections, buckling loads, natural
frequencies, vibration responses, etc. Recently, the propagation of waves in complex media or nano-scaled structures
have been investigated based on generalized continuum theories [14, 15]. Specifically, the analysis often relies on the
introduction of a set of characteristic lengths, and it can be observed that the dispersion relation changes substantially
in the studied problems from the given type of geometry and loading. The introduced characteristic length parameters
by the generalized theory are also crucial to predict non-local wave scattering phenomena [16]. The research of Li
et Wei [17, 18] shows the reflection and transmission coefficients at the interface of two dipolar gradient media are
dependent on the microstructure parameters along with the incident angular frequency. Mention can also be made of
the study proposed by Zhu et al. in 2019 [19], the proposed generalized theory-based rod model predicts that extra
evanescent waves are generated along with the dispersive longitudinal wave, and these evanescent waves have a great
impact on wave diffusion at a discontinuity between non-local media.

Very seldom research was conducted on the wave conversion and scattering at coupling regions involving non-
classical waveguides. Wang et al did some research on this issue [20], wave scattering through a couple-stress slab
sandwiched between two elastic half-spaces was investigated based on the couple stress (CS) theory, the reflection and
transmission behaviors are proven to be affected by the couple-stress. Upon this, Liu et al investigated the reflection of
elastic waves through the functionally graded piezoelectric microstructures [21]. The employed generalized theories
are both CS theory because CS theory is more convenient to use as its constitutive relations are clear with only one
additional couple-stress governing the conservation of moment of momentum. However, CS theory is not capable
of reflecting all the non-local interaction acting on the micro-body, which leads to that the scattering of transverse
waves is sensitive through the CS theory media than the longitudinal wave. Therefore, generalized theories that can
capture more complex long-range interaction are more favorable in the wave scattering problem. Furthermore, the
wave conversion situation through the non-local media coupled with the classical ones is still not clear, and how the
non-local media affects the wave conversion and transmission has not been well investigated either.

To fill this gap, in the present paper Mindlin’s Second Strain Gradient (SSG) theory is employed to characterize
the non-local inserts between the classical theory (CT) media. SSG theory is developed by introducing the classical
strain tensor and the high-order displacement derivatives into the strain energy [22], thus it is capable of capturing
more long-distance interactions compared with CS theory and the first strain gradient theory. Despite the complexity
of Mindlin’s SSG theory (i.e. the introduction of 16 new coefficients) and the difficulty in developing a physical
interpretation of these high-order material constants, SSG theory is regarded as the most effective one among the
higher gradient theories. How the introduction of the SSG theory-based inserts in a classical theory (CT) based elastic
waveguide affects wave conversion and for which benefits are the main focus of this paper. SSG theory-based Timo-
shenko beam model has been established by Asghari et al.[23], and SSG theory-based rod model by Zhu et al. [19]
with Hamilton principle to exploit the structural free-vibration behaviors and wave propagation features. The result-
ing non-classical wave dispersion relations are employed in the present paper to investigate the wave reflection and
transmission properties through a non-classical coupling region with the transfer matrix method (TMM). Predicting
the diffusion characteristics of CT - SSG interfaces however requires addressing the coupling between CT and SSG
media, each exhibiting different wave types. There is no existing work relating these high-order material properties
to wave scattering features. Especially, no investigation was done on the scattering effects produced by a coupling
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region with non-local elasticity within a classical elastic structure. In the present paper, an original relationship is
introduced to link the higher-order material properties and non-classical wave scattering characteristics by developing
an equivalence concerning all the generalized displacements and generalized forces based on TMM.

The paper is organized as follows: the SSG theory is reviewed in Section 2. The SSG theory-based wave-scattering
matrix approach for predicting the diffusion properties of the longitudinal wave through a 1-D complex coupling
region between two classical waveguides is presented in Section 3. Section 4 treats the case of bending wave scattering
problem through the complex coupling region. Numerical examples and result discussion are displayed in Section 5,
and conclusions for this work are drawn in Section 6.

2. Review of the SSG theory

‘Second Strain Gradient theory’ (SSG theory) was developed by Mindlin by introducing the second and third
derivatives of displacement into the strain energy density along with the classical strain tensor. For second strain
gradient continua, the strain energy density u is written in a quadratic form as [22],

ū =
1
2
λεiiε j j + µεi jεi j + a1ηi j jηikk + a2ηiikηk j j + a3ηiikη j jk + a4ηi jkηi jk + a5ηi jkηk ji

+ b1ξii j jξkkll + b2ξi jkkξi jll + b3ξii jkξ jkll + b4ξii jkξllk j + b5ξii jkξll jk + b6ξi jklξi jkl

+ b7ξi jklξ jkli + c1εiiξ j jkk + c2εi jξi jkk + c3εi jξkki j + b0εii j j.

(1)

in which λ and µ are the Lame’s constants. εi j, ηi jk and ξi jkl (i, j, k, l = 1, 2, 3) are the components of the classical strain
tensor ε, the first strain gradient tensor η and the second strain gradient tensor ξ

εi j =
1
2

[∇u + u∇]i j =
1
2

(
∂u j

∂xi
+
∂ui

∂x j

)
, ηi jk = [∇∇u]i jk =

∂2uk

∂xi∂x j
,

ξi jkl = [∇∇∇u]i jkl =
∂3ul

∂xi∂x j∂xk
.

(2)

The conjugate classical stress, the first higher-order stress and the second higher-order stress are defined by differen-
tiating the strain energy density u with respect to the corresponding strain components as

σ =
∂u
∂ε
, τ =

∂u
∂η

, π =
∂u
∂ξ
. (3)

It can be seen that SSG theory formulation enriches the field equations of classical elasticity theory by means of
16 additional higher-order spatial derivative components of relevant state variables. These higher-order terms are
accompanied by a set of higher-order material parameters ai, bi and ci. These higher-order material parameters can be
linked to intrinsic length-scale parameters, on which scale the behavior of underlying material micro-structure can be
captured. To be specific, the equation of force equilibrium for the SSG theory-based media in the presence of a body
force f has the following form,

∇ · (σ − ∇ · τ + ∇∇ : π) + f = 0. (4)

The rule for multiple scalar multiplication of dyads is ab : cd = (a ·b)(c ·d). Upon substituting the strain-displacement
relations (2) into the stress-strain relations (3) and the resulting expressions for the stresses into the stress-equation of
equilibrium Eq. (4), the displacement-equation of equilibrium is given as

(λ + 2µ) D2
11D2

12∇∇ · u − µD2
21D2

22∇ × ∇ × u + f = 0, (5)

where
D2

i j = 1 − l2i j∇
2, i = 1, 2; j = 1, 2,

and
2 (λ + 2µ) l21 j = ā − 2c̄ ±

[
(a − 2c)2 − 4b̄ (λ + 2µ)

] 1
2 , j = 1, 2;

2µl22 j = ā′ − c3 ±
[
(ā − c3)2 − 4b̄′µ

] 1
2 , j = 1, 2.
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And
ā = 2 (a1 + a2 + a3 + a4 + a5) ;
b̄ = 2 (b1 + b2 + b3 + b4 + b5 + b6 + b7) ;
c̄ = c1 + c2 + c3; ā′ = 2 (a3 + a4) ; b̄′ = (b5 + b6) .

It can be observed that the displacement equilibrium in Eq. (5) contains terms involving additional material constants
li j having the dimension of length. Therefore li j are known as intrinsic length scales of SSG theory-based continua.
The capability of the SSG theory to capture the size effect is the direct manifestation of involvement of these char-
acteristic lengths [23]. In fact, not only the SSG theory but also all the other types of generalized continuum theory
contain such kind of intrinsic length-scale parameters in theory that allows us to model physical phenomena where the
micro-structure clearly exhibits specific features with particular length scales. Therefore, the response of a material
point not only depends on the strain at that point but also on the strain or history strain of a certain neighborhood
of that point or even of the entire body. This is also the reason why generalized continuum theories can be used to
capture the complex multi-scale behaviors exhibited by complex media. Certainly, the intrinsic length parameters of
the periodic structure and the nano-structure are dependent on their internal structure features, and their length-scale
parameters should be chosen in accordance with their intrinsic length.

Length-scale parameters are generally identified by matching the structural properties, including but not limited to:
the fundamental frequencies, dispersion curves of plane waves resulting from the generalized theory-based analytical
models with those properties calculated by the MD simulations or experiments. For example, in the research of
Kandaz [24], the length-scale parameters Modified Strain Gradient (MSG) theory and MCS theory are identified
from the existing experimental data of load-displacement curves in literature [25] for the first time. In the same
manner, Ansari extracted material length scale parameter by matching the fundamental frequencies obtained from
the continuum models with those calculated by the MD simulations [26]. Metrikine et Askes developed a stable
and dynamic consistent high-order continuum model with two additional material parameters from a 2D lattice by
supposing that the displacement vector of a higher-order continuum should represent an average of the particle-
displacements of the underlying lattice [27]. In the research of Domenico [28, 29], length scale identification is
carried out by ”continualization” a non-local lattice model with both distributed and lumped mass to a three-length-
scale gradient model by employing a higher-order homogenization. In the present work, one direct map operation,
that has been used in research [30], is employed to obtain the continuum equation from a lattice, and the long-range
interaction parameters are identified in the SSG theory model. We should emphasis that focus of this work is not
on the better identification of internal length-scale parameters, more importantly, this paper is focused on the wave
conversion and scattering at coupling regions involving non-classical interfaces which are studied based on the SSG
theory model. This part is developed in the purpose of interpreting how the length-scale parameters work in governing
the global behavior of complex continua and why SSG theory-based model can capture the local behavior by involving
higher-order material constants. The higher-order material constants (reflecting instinct length-scale parameters) in
the numerical calculation are referred to the results that obtained by atomistic approach [31].
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3. Transmission and reflection of a longitudinal wave through a complex rod

Figure 1: Reflection and transmission of a longitudinal wave through a complex rod of length d

Let’s consider two classical rods connected by a complex coupling region as show in Figure 1. Rod 1 and rod 3 are
both homogeneous, namely consisting of micro-structures whose size is much smaller than the external wavelength
(deformation). Rod 1 and 3 are coupled by Rod 2. As the coupling region, rod 2 is complex, namely the size of its
underlying micro-structures is comparable with the external wavelength. Therefore local behavior needs to be cap-
tured for a better description of its global vibro-acoustic behavior. The description of local behavior inevitably reveal
different features in wave propagation in complex vs. classical media. The most significant is the converted waves in
the complex media at wave reflection interfaces. The following analysis is concerned with the wave conversion and
scattering at complex coupling regions based on the SSG theory rod model.

3.1. Wave modes in a complex rod

Wave propagation in complex rod has been studied by Zhu et al [19] by employing SSG theory-based rod model.
Assuming Young’s modulus of rod 2 is E2, mass density ρ2 and circular cross-section area A = πr2. Along with
higher-order material constants are ai (i = 1, 2, ...5), bi (i = 1, 2, ...7), and ci (i = 1, 2, 3), strain energy density of the
complex rod can be expressed with eq.(1), then the governing equation of the enriched model can be deduced based
on Hamilton principle as

E2A
∂2u
∂x2 + (B3 − B1)

∂4u
∂x4 + B2

∂6u
∂x6 + q − m0

∂2u
∂t2 = 0, (6)

where u stands for longitudinal displacement in x direction, m0 = ρ2A and Bi (i = 1, 2, 3) represent the enrichment of
higher-order material components as

B1 = 2A (a1 + a2 + a3 + a4 + a5) ,
B2 = 2A (b1 + b2 + b3 + b4 + b5 + b6 + b7) ,
B3 = 2A (c1 + c2 + c3) .

(7)

The associated boundary conditions at the rod ends are given as

P0 = EA
∂u
∂x

+ (B3 − B1)
∂3u
∂x3 + B2

∂5u
∂x5 or δu = 0,

P1 =

(
B1 −

B3

2

)
∂2u
∂x2 − B2

∂4u
∂x4 or δ

(
∂u
∂x

)
= 0,

P2 =
B3

2
∂u
∂x

+ B2
∂3u
∂x3 or δ

(
∂2u
∂x2

)
= 0.

(8)
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Assuming the external loading q = 0, the dispersion behavior of free wave modes in complex rod can be achieved by
substituting the general exponential form of wave propagation solution into the SSG theory-based governing equation
as

E2Ak2 − (B3 − B1) k4 + B2k6 − m0ω
2 = 0. (9)

According to the form of this dispersion relation, three different modes can be generated in second strain gradient
elastic rod can be generated by the disturbance on the discontinuous interface SA including the non-classical longitu-
dinal wave k1 and two evanescent waves k2 and k3 (as concluded in study [19]). It is predictable that wave scattering
and transmission through complex media should be different from the classical one.

3.2. Wave conversion and transmission through a complex rod

As shown in Fig. 1, longitudinal wave Ui propagates towards +x direction then normally inject on interface SA, a
proportion of the incident energy is reflected and propagates away towards −x as reflected wave Ur, and the remaining
energy is transmitted to the coupling region rod 2. Based on the previous analysis, 3 wave modes can be generated
by the disturbance on the discontinuous interface SA, so the transmitted energy continues propagating towards +x
direction in form of the generated wave group U+

A . Assuming the length of rod 2 is short thus all generated wave
modes can propagate through rod 2 and inject on interface SB at x = d as incident wave group U+

B , part of the incident
energy is transmitted to rod 3 in form of transmitted longitudinal wave Ut, and the other is reflected in form of wave
group U−B . The reflected wave modes propagate along −x direction until reach interface SA and restart a new circular.

To characterize the vibration transmission and reflection features through the coupling rod, the transmission coef-
ficient of the incident wave Ui through rod 2 (complex media) to rod 3 and the reflection coefficient of wave Ui from
rod 2 are derived in this section. Assuming the longitudinal wave that propagates in rod 1 and rod 3 is denoted as kc,
the incident wave propagating along +x direction with unit amplitude can be expressed as

Ui = ei(ωt−kc x). (10)

Due to the micro-structure effect, the state description of the interface for rod 2 requires higher-order kinetic and force
information as in Eq. (8). To clarify the transfer of motion and force from SA to SB, one state vector X is defined with
including all the kinetic parameters and general forces of complex rod based on SSG theory. For interface SA, it is

XA+ =

[
uA+ ,

∂uA+

∂x
,
∂2uA+

∂x2 , P0, P1, P2

]T
∣∣∣∣∣∣∣
S=SA+

. (11)

Assuming the amplitudes of the three positive going wave modes k j ( j = 1, 2, 3) generated on interface SA areA j ( j = 1, 2, 3),
meanwhile the amplitudes of the negative going modes −k j ( j = 1, 2, 3) incident to SA from −x are B j, the displace-
ment on the right hand of the interface SA can be given in form of the wave superposition as (omitting the time
component eiωt)

uA+ =

3∑
j=1

A je−ik j x +

3∑
j=1

B jeik j x = U D+A + U D−B, (12)

in which U =
[

1 1 1
]
, D+ = diag

(
e−ik1 x, e−ik2 x, e−ik3 x

)
, D− = diag

(
eik1 x, eik2 x, eik3 x

)
, A =

[
A1 A2 A3

]T
,

and B =
[
B1 B2 B3

]T
. The first and second derivatives of longitudinal displacement uA+ are given as

∂uA+

∂x
= U HD+A − U HD−B,

∂2uA+

∂x2 = U H2D+A + U H2D−B,
(13)
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in which diagonal matrix H = diag
(
−ik1, −ik2, −ik3

)
consisting of the coefficients in front of each components

caused by first derivative in x direction. With boundary force expressed in eq.(8), one can express the amplitudes of
the axis forces P0, higher-order forces P1, and P2 produced on the right hand of interface SA in the form of

P0|SA
+ = U P0D+A − U P0D−B,

P1|SA
+ = U P1D+A + U P1D−B,

P2|SA
+ = U P2D+A − U P2D−B,

(14)

in which diagonal matrix P0 = diag
(
−iE2Ak j − iB2k j

5 + i (B3 − B1) k j
3
)
, P1 = diag

((
B3
2 − B1

)
k j

2 − B2k j
4
)
, and P2 =

diag
(
− 1

2 iB3k j + iB2k j
3
)

( j = 1, 2, 3).
From equations (11), (12), (13) and (14), the state vector is reformulated in the following form:

XA+ = MAUA+ , (15)

in which UA+ =

[
D+A
D−B

]
, and coefficient matrix MA can be obtained by combining all the above generalized kinetic

variables and the force variables as:

MA =



U U
U H −U H
U H2 U H2

U P0 −U P0
U P1 U P1
U P2 −U P2


.

Similarly, the state vector on the left hand of the studied interface SB can be given as

XB− =

[
uB− ,

∂uB−

∂x
,
∂2uB−

∂x2 , P0, P1, P2

]T
∣∣∣∣∣∣∣
S=SB−

. (16)

Due to the wave propagation distance along x direction, amplitude of each wave mode is changed by e±k jd which
indicates the phase difference caused by propagation distance for mode ±k j. The displacement uB− can be given in
form of the superposition of contribution from all the wave modes as

uB− = U diag
(
e−ik1d, e−ik2d, e−ik3d

)
D+A + U diag

(
eik1d, eik2d, eik3d

)
D−B. (17)

Substituting this displacement form into Eq.(16), one can write the state vector XB− as:

XB
− = MAdiag

(
e−ik1d, e−ik2d, e−ik3d, eik1d, eik2d, eik3d

)
UA+ . (18)

Comparing Eq.(15) and (18), the transfer relation from state vector XA+ to state vector of XB− can be formulated as

XB− = MAdiag
(
e−ik1d, e−ik2d, e−ik3d, eik1d, eik2d, eik3d

)
MA

−1XA
+ = MXA

+, (19)

in which transfer matrix writes

M = MAdiag
(
e−ik1d, e−ik2d, e−ik3d, eik1d, eik2d, eik3d

)
MA

−1.

For certain kinds of complex materials and propagation distance d, transfer matrix M can be explicitly determined.
Assuming the transmission coefficient of the incident wave Ui through rod 2 (complex media) to rod 3 is Ct, and

the reflection coefficient of wave Ui from rod 2 is Cr, transmitted wave Ut in rod 3 and reflected wave Ur in Rod 1
can be expressed as

Ut = Ct · ei(ωt−kc x),

Ur = Cr · ei(ωt+kc x).
(20)
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Then the displacements caused by the classical longitudinal wave on the left hand of interface SA and on the right
hand of interface SB can be expressed as (omitting the time component eiωt),

uA− = e−ikc x + Cr · eikc x;

uB+ = Ct · e−ikc x.
(21)

Subsequently, axis forces produced on the left hand of interface SA and on the right hand of interface SB can be
expressed as (omitting the time component eiωt),

FA− = E1A (−ikc) · e−ikc x + E1A (ikc) Cr · eikc x;

FB+ = CtE1A (−ikc) · e−ikc x.
(22)

in which E1 is Young’s modulus of rod 1 and rod 3. Substitute x = 0 for interface SA and x = d for interface SB into
the expression of displacement (21) and force (22), the state vectors on SA and SB are given as

XA− =

[
uA−

FA−

]
=

[
1 + Cr

−ikcE1A + ikcCrE1A

]
; (23a)

XB+ =

[
uB+

FB+

]
=

[
Cte−ikcd

−ikcCtE1Ae−ikcd

]
. (23b)

Assuming the mass between S = SA
+ and S = S−A is infinitesimal, equilibrium at interface SA can be developed

by establishing displacement continuity and axis force balance. Concerning the higher-order displacements (first
and second derivatives of classical displacement) and higher-order forces (P1, P2) in XA+ , P1 and P2 are set to zero
because the long-range interaction is close zero in classical media as its characteristic length is much shorter than the
deformation wavelength. Meanwhile, the higher-order kinetic components of the classical media are not necessarily
to be zero, thus they are set to be unknown variables u′A− , u′′A− . In consequence, the equilibrium describing the
continuity of state vector XA− and XA+ is expressed as in Eq. (24)[

uA+ ,
∂uA+

∂x ,
∂2uA+

∂x2 , P0, P1, P2

]T∣∣∣∣
S=SA

+
=

[
1 + Cr, u′A− , u′′A− ,−ikcE1A + ikcCrE1A, 0, 0

]∣∣∣∣
S=SA

−
. (24)

The equilibrium condition is the same when it comes to surface SB. The higher-order force components of vector
XB− are set to zero, and the higher-order kinetic component are set to be unknown variables u′B+ and u′′B+ . Then the
continuity of state vector XB− and XB+ gives[

uB− ,
∂uB−

∂x ,
∂2uB−

∂x2 , P0, P1, P2

]∣∣∣∣
S=SB

−
=

[
Cte−ikcd, u′B+ , u′′B+ ,−ikcCtE1Ae−ikcd, 0, 0

]∣∣∣∣
S=SB

+
(25)

Combining of Eq. (24), (25) and (19), the transformation from XA− to XB+ yields:

XB+ = MXA− , (26)

which rewrites: 

Cte−ikcd

u′B+

u′′B+

−ikcCtE1Ae−ikcd

0
0


= M



1 + Cr

u′A−
u′′A−

−ikcE1A + ikcCrE1A
0
0


, (27)

and M = MA diag
(
e−ik1d, e−ik2d, e−ik3d, eik1d, eik2d, eik3d

)
MA

−1 denotes the transfer matrix as in Eq. (19). Matrix MA is
governed by a group of variables including the wavenumber k j, Young’s modulus E2, higher-order material parameters
Bi and cross section area A, and MA can be explicitly determined as long as all the material constants and geometrical
parameters of complex rod 2 is fully defined, then the transfer matrix can be fully obtained combined with length of
the coupling region d. Then the six unknown variables including the Ct and Cr can be achieved with the equilibrium
established in Eq. (27). We can see that wave transmission coefficient Ct and reflection coefficient Cr are significantly
affected by the non-local property of the complex rod along with coupling length d.
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4. Transmission and reflection of a bending wave through a complex Timoshenko beam

The following analysis is distributed to bending wave conversion and scattering at non-classical coupling interface
and transmission through a complex coupling region. The studied system is illustrated in Figure 2. Beams 1 and 3 are
classical homogeneous beams, the size of their micro-structures is much smaller than the external wavelength. Beam
2 is the coupling region which is described by SSG theory-based Timoshenko beam model. The description of long-
range interactions enriches classical continuum theory with local behavior features concerning the wave propagation
in complex media and wave diffusion at wave reflection interfaces.

Figure 2: Reflection and transmission of a bending wave through a complex beam of length d

4.1. Wave modes in a complex Timoshenko beam

Governing equations of the complex Timoshenko beam has been established by Shodja [31] to describe its non-
classical transverse motion w and rotation angle ψ. Assuming Young’s modulus of beam 2 is E2, shear modulus µ2,
mass density ρ2, along with higher-order material constants ai (i = 1, 2, ...5), bi (i = 1, 2, ...7), and ci (i = 1, 2, 3), beam
section area A = b · h, strain energy density of the complex beam can be expressed, then the governing equation of the
complex Timoshenko bean model can be deduced based on Hamilton principle as,

δw : − µ2A
(
∂ψ

∂x

)
−

(B7

2
+ (c3 + c2) A

) (
∂3ψ

∂x3

)
+

B8

2

(
∂5ψ

∂x5

)
+ µ2A

(
∂2w
∂x2

)
+ (c3A − B5)

(
∂4w
∂x4

)
+ B6

(
∂6w
∂x6

)
+ q = m0

(
∂2w
∂t2

)
δψ : − µ2Aψ + (B1 − c3A − 2c2A)

(
∂2ψ

∂x2

)
+ (B4 − B2)

(
∂4ψ

∂x4

)
+ B3

(
∂6ψ

∂x6

)
+ µ2A

(
∂w
∂x

)
+

(B7

2
+ (c3 + c2) A

) (
∂3w
∂x3

)
−

B8

2

(
∂5w
∂x5

)
= m2

(
∂2ψ

∂t2

)
(28)

in which,

B1 = E2I + 2A(a1 + 2a4 + a5),
B2 = 2I(a1 + a2 + a3 + a4 + a5) + 2A(2b2 + b3 + b5 + 3b6 + 2b7),
B3 = 2I(b1 + b2 + b3 + b4 + b5 + b6 + b7),
B4 = 2I(c1 + c2 + c3),
B5 = 2A(a3 + a4), B6 = 2A(b5 + b6),
B7 = −2A(a2 + 2a5), B8 = −2A(b3 + 2b4 + 2b7),
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with the term m0 = rho2A as area of beam section and I =
∫

A z2dA as the area moment of inertia for the beam cross
section around y axis. The associated essential and natural boundary conditions at each end (i.e.x = 0, L) are derived
as

M0 =

(
B1 − A

(
c2 +

c3

2

)) (
∂ψ

∂x

)
+ (B4 − B2)

(
∂3ψ

∂x3

)
+ B3

(
∂5ψ

∂x5

)
+

(B7

2
+ A

(
c2 +

c3

2

)) (
∂2w
∂x2

)
−

B8

2

(
∂4w
∂x4

)
or δψ = 0

M1 =A
(
c2 +

c3

2

)
ψ +

(
B2 −

B4

2

) (
∂2ψ

∂x2

)
− B3

(
∂4ψ

∂x4

)
− A

(c3

2
+ c2

) (
∂w
∂x

)
+

B8

2

(
∂3w
∂x3

)
or δ

(
∂ψ

∂x

)
= 0

M2 =
B4

2

(
∂ψ

∂x

)
+ B3

(
∂3ψ

∂x3

)
or δ

(
∂2ψ

∂x2

)
= 0

V0 = − µAψ −
(B7

2
+ (c3 + c2) A

) (
∂2ψ

∂x2

)
+

B8

2

(
∂4ψ

∂x4

)
+ µA

(
∂w
∂x

)
+ (c3A − B5)

(
∂3w
∂x3

)
+ B6

(
∂5w
∂x5

)
or δw = 0

V1 =

(B7 + c3A
2

) (
∂ψ

∂x

)
−

B8

2

(
∂3ψ

∂x3

)
+

(
B5 −

c3A
2

) (
∂2w
∂x2

)
− B6

(
∂4w
∂x4

)
or δ

(
∂w
∂x

)
= 0

V2 = −
c3A
2
ψ +

B8

2

(
∂2ψ

∂x2

)
+

c3A
2

(
∂w
∂x

)
+ B6

(
∂3w
∂x3

)
or δ

(
∂w
∂x

)
= 0

(29)

Assuming the external loading q = 0, the dispersion behavior of free wave propagation in enriched Timoshenko
beam model can be obtained by substituting the general exponential solution of wave propagation into the governing
equation as,

k12k12 + k10k10 + k8k8 + k6k6 + k4k4 + k2k2 + k0 = 0 (30)

in which,

k12 = −B3B6; k10 =
B8

2

4
− B3B5 + (B4 − B2) B6 + c3AB3;

k8 = B4B5 − B2B5 − B1B6 +
B7B8

2
+ c3A (B2 − B4 + B6 + B8) + 2c2AB6+c2AB8 − µ2AB3;

k6 =
B7

2

4
+ A2c2

2 − B1B5 + c2A (2B5 + B7) + c3A (B1 + B5 + B7)

− Aµ2 (B2 − B4 + B6 − B8) + ω2 (B3m0 + B6m2) ;

k4 = m0ω
2 (B2 − B4) + m2ω

2 (B5 − c3A) − Aµ2 (B5 + B7 + B1) ;

k2 = m0ω
2
(
B1 − 2c2A − c3A +

m2

m0
µ2A

)
; k0 = m0ω

2
(
Aµ2 − m2ω

2
)
.

We can see six wave modes can be generated in the second strain gradient elastic beam by a disturbance on discontin-
uous interface SA. Let’s say they are non-classical bending wave k1, non-classical shear wave k2 and four evanescent
waves k3, k4, k5 and k6. Wave conversion and transmission through a complex beam is significantly different from the
classical one.
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4.2. Wave conversion and transmission through a complex beam
Assuming one bending wave Ui propagates from negative infinity towards +x direction and normally injects on

interface SA at x = 0, a proportion of the incident energy is reflected and propagate away towards −x direction in form
of reflected wave group Ur. The remaining energy is transmitted to the coupling region beam 2. Based on the previous
dispersion relation, 6 wave modes can be generated by the disturbance on the discontinuous interface, therefore the
transmitted energy continues propagating to +x direction in forms of generated wave group U+

A . Assuming the length
of the coupling region is short, all generated wave modes on SA can propagate through the beam 2 and inject on
interface SB at x = d as an incident wave group U+

B . Then part of the incident energy will be transmitted to beam
3 as transmitted wave group Ut, and the other is reflected in form of wave group U−B . The reflected wave group U−B
propagates along −x direction until it reaches interface SA, possible reflection again generates a steady state.

To characterize the vibration transmission and reflection properties for the complex coupling region, transmission
coefficients of the incident bending wave Ui through beam 2 (complex media) to beam 3 and the reflection coefficients
from beam 2 are derived. Denoting kb and ks respective bending and shear waves propagating in beams 1 and 3, the
incident wave propagating along +x direction with unit amplitude can be expressed as follows:

Ui = ei(ωt−kb x). (31)

State description of interface SA in beam 2 should be enriched with higher-order kinetic and force information as in
Eq. (8). To clarify the transfer of motion and forces from interface SA to interface SB, state vector X is defined with
all the kinetic parameters and force components generated on the interface of the complex beam based on SSG theory.
For interface SA, it is described as:

XA+ =
[

w ∂w
∂x

∂2w
∂x2 ψ ∂ψ

∂x
∂2ψ
∂x2 V0 V1 V2 M0 M1 M2

]T∣∣∣∣
S=SA+

. (32)

Assuming the amplitudes of the positive going wave modes k j ( j = 1, 2, ...6) in wave group U+
A are respectively A j,

and the amplitudes of the negative going modes −k j ( j = 1, 2, ...6) in wave group U−A are B j, then the amplitude of
transverse displacement on the right hand of the interface SA can be expressed in wave superposition form (omitting
the time component eiωt) as:

wA+ =

6∑
j=1

A je−ik j x +

6∑
j=1

B jeik j x = W+D+A + W+D−B (33)

in which W+ =
[

1 1 1 1 1 1
]
, D+ = diag

(
e−ik j x

)
and D− = diag

(
eik j x

)
are diagonal matrices ( j = 1, 2, ..., 6),

A =
[
A1 A2 A3 A4 A5 A6

]T
, and B =

[
B1 B2 B3 B4 B5 B6

]T
. The first and second deriva-

tives of transverse displacement wA+ can also be deduced as:

∂wA+

∂x
= W+HD+A −W+HD−B,

∂2wA+

∂x2 = W+H2D+A + W+H2D−B,
(34)

in which diagonal matrix H = diag
(
−ik j

)
( j = 1, 2, ..., 6), consisting of the coefficients in front of each mode compo-

nent caused to express the first derivative in x direction.
Similarly, the amplitude of rotation angle on the right-hand of the interface SA can be expressed as

ψA+ = W+α+D+A −W+α+D−B. (35)

in which α+ is one diagonal matrix consisting of elements α j as jth diagonal elements to express the amplitude ratio
in eigenvector corresponding to wave mode +k j.

α j =
−2i

(
−B6k j

6 + c3Ak j
4 − B5k j

4 − µ2Ak j
2 + m0ω

2
)

k j

(
B8k j

4 + 2c2Ak j
2 + 2c3Ak j

2 + B7k j
2 − 2µ2A

) ; ( j = 1, 2...6) (36)
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Then the first and the second derivatives of rotation angle are written:

∂ψA+

∂x
= W+Hα+D+A + W+Hα+D−B,

∂2ψA+

∂x2 = W+H2α+D+A −W+H2α+D−B.
(37)

With the expressions provided before, amplitudes of the shear forces V0 and moment M0, higher-order forces V1, V2
and moments M1 and M2 produced on the right interface SA are derived and rewritten as follows:

M0|SA
+ = W+M0D+A + W+M0D−B, V0|SA

+ = W+V0D+A −W+V0D−B,
M1|SA

+ = W+M1D+A −W+M1D−B, V1|SA
+ = W+V1D+A + W+V1D−B,

M2|SA
+ = W+M2D+A + W+M2D−B, V2|SA

+ = W+V2D+A −W+V2D−B,
(38)

From equations (32)-(38), the state vector at interface SA in the complex media 2 can be reformulated as

XA+ = MAUA+ (39)

in which UA+ =

[
D+A
D−B

]
, and coefficient matrix MA can be obtained by combining all the above generalized kinetic

variables as well as the force and moment variables as

MA =



W+ W+

W+H −W+H
W+H2 W+H2

W+α+ −W+α+

W+Hα+ W+Hα+

W+H2α+ −W+H2α+

W+M0 W+M0
W+M1 −W+M1
W+M2 W+M2
W+V0 −W+V0
W+V1 W+V1
W+V2 −W+V2


Due to the wave propagation distance d along x direction, the amplitude of each wave mode is changed by e±k jd

indicating the phase difference caused by propagation distance for wave mode ±k j. The state vector on the left hand
of interface SB writes:

XB− = MADUA+ (40)

where
D = diag

(
e−ik1d, e−ik2d, e−ik3d, e−ik4d, e−ik5d, e−ik6d, eik1d, eik2d, eik3d, eik4d, eik5d, eik6d

)
.

Comparing equations (39) and (40), the transfer relation between state vector XA+ for section SA and state vector of
XB− for section SB can be formulated as

XB− = MADMA
−1XA

+ = MXA
+ (41)

in which the transfer matrix is M = MADMA
−1.

Assuming the transmission coefficients of the bending wave, given an incident bending wave mode Ui through
beam 2 (complex media) to beam 3, are tb and ts, and the reflection coefficients are rb and rs, then the amplitudes of
transverse displacements and rotation angles on the left hand of interface SA and on the right hand of interface SB can
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be expressed as (omitting the time component eiωt),

wA− = e−ikb x + rb · eikb x + rs · eiks x;

ψA− = αkb e−ikb x − αkb rb · eikb x − αks rs · eiks x;

wB+ = tb · e−ikb x + ts · e−iks x;

ψB+ = αkb tb · e−ikb x + αks ts · e−iks x;

(42)

in which

αk j = −
κµ1AIk j

E1Ik j
2 − ρIω2 + κµ1A

,

E1, µ1 are Young’s modulus and shear modulus of beam 2, ρ1 is the mass density, and κ is the Timoshenko shear
coefficient, depends on the geometry. Normally, κ = 5/6 for a rectangular section. With the predefined material
constants, amplitudes of the shear forces and bending moments produced on the left hand of interface SA and on the
right hand of interface SB can be calculated as:

VA− = E1I
∂ψA−

∂x
; MA− = µ1A

(
∂wA−

∂x
− ψA−

)
;

VB+ = E1I
∂ψB+

∂x
; MB+ = µ1A

(
∂wB+

∂x
− ψB+

)
.

(43)

Substitute x = 0 for interface SA and x = d for interface SB into the component expressions of state vector, the state
vectors on SA and SB can be reformulated as

XA− =


wA−

ψA−

VA−

MA−

 =


1 + rb + rs

αkb − αkb rb − αks rs

−ikbαkb E1I(1 + rb) − iksαks rsE1I;
µ1A(rb − 1)(ikb + αkb ) + µ1Ars(iks + αks )

 (44a)

XB+ =


wB+

ψB+

VB+

MB+

 =


tbe−ikbd + tse−iksd

αkb tbe−ikbd + αks tse−iksd

−E1I
(
ikbαkb tbe−ikbd + iksαks tse−iksd

)
−µ1A

[
tbe−ikbd(ikb + αkb ) + tse−iksd(iks + αks )

]
 . (44b)

Assuming the interface SA, SB does not dissipate energy and the mass between the interfaces is infinitesimal, the
equality between the state vectors XA− and XA+ , then XB− and XB+ can be developed. Regarding the higher-order
force and moment elements, M1, M2 and V1, V2 are set to be zero as the long-range interaction is approaching zero
in classical media at the interface, meanwhile the higher-order kinetic component of the classical media are set to
be unknown variables w′A− ,w′′A− and ψ′A− , ψ

′′
A− . In consequence, the equilibrium describing the continuity between

state vector XA− is expressed as

XA+ =



w
∂w
∂x
∂2w
∂x2

ψ
∂ψ
∂x
∂2ψ
∂x2

V0
V1
V2
M0
M1
M2


S=SA+

= XA− =



1 + rb + rs

w′A−
w′′A−

αkb − αkb rb − αks rs

ψ′A−
ψ′′A−

−ikbαkb E1I(1 + rb) − iksαks rsE1I
0
0

µ1A(rb − 1)(ikb + αkb ) + µ1Ars(iks + αks )
0
0



. (45)
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Meanwhile, the equilibrium describing the relation between state vector XB− and XB+ is expressed as

XB− =



w
∂w
∂x
∂2w
∂x2

ψ
∂ψ
∂x
∂2ψ
∂x2

V0
V1
V2
M0
M1
M2


S=SB−

= XB+ =



tbe−ikbd + tse−iksd

w′B+

w′′B+

αkb tbe−ikbd + αks tse−iksd

ψ′B+

ψ′′B+

−E1I
(
ikbαkb tbe−ikbd + iksαks tse−iksd

)
0
0

−µ1A
[
tbe−ikbd(ikb + αkb ) + tse−iksd(iks + αks )

]
0
0



. (46)

Combination of Eq.(41), (45), and (46) yields:

XB+ = M XA− , (47)

which rewrites:

tbe−ikbd + tse−iksd

w′B+

w′′B+

αkb tbe−ikbd + αks tse−iksd

ψ′B+

ψ′′B+

−E1I
(
ikbαkb tbe−ikbd + iksαks tse−iksd

)
0
0

−µ1A
[
tbe−ikbd(ikb + αkb ) + tse−iksd(iks + αks )

]
0
0



= M



1 + rb + rs
w′A−
w′′A−

αkb − αkb rb − αks rs
ψ′A−
ψ′′A−

−ikbαkb E1I(1 + rb) − iksαks rsE1I
0
0

µ1A(rb − 1)(ikb + αkb ) + µ1Ars(iks + αks )
0
0



, (48)

in which M denotes the same transfer matrix in Eq. (41) with M = MADMA
−1. From the previous formulation,

we know that the transfer matrix M is governed by the not only the classical material properties (E2, mu2, ρ2) and
geometrical parameters (A, I) of beam 2 but also higher-order material parameters (ai,bi,ci). Along with wave prop-
agation distance d, transfer matrix M can be explicitly determined. Furthermore, we can see that wave transmission
and diffusion are significantly affected by the non-local properties of the coupling region.

5. Numerical calculation of vibration transmission and reflection through a complex region

5.1. Method verification
The SSG theory-based model is characterized by the higher-order material components along with the classical

Lame parameters, and it is degenerated into the classical elastic model by setting the higher-order material parameters
to zero. Since there is no reference on the results of the SSG theory-based model concerning its scattering properties,
the reflection and transmission coefficients through a classical theory-based media can be regarded as the reference
result. If the proposed formulation is validated, the wave scattering properties through a non-classical media with
very small higher-order material constants tends to degenerate into the classical results. In the numerical verification,
wave modes in the CT-based rod model and Timoshenko beam theory are deduced, upon which the wave scattering
features of longitudinal wave and bending wave through classical theory-based media are calculated with TMM

Firstly, concerning the formulation of longitudinal wave scattering, one numerical case is calculated for the method
verification. Consider the system shown in Figure 1, the radius of the rod section r = 3a0 and the length of rod
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Table 1: High-order material constants for aluminum(Shodja et al.,2012).

a1

(
eV/

o
A
)

0.1407

a2

(
eV/

o
A
)

0.0027

a3

(
eV/

o
A
)

−0.0083

a4

(
eV/

o
A
)

0.0966

a5

(
eV/

o
A
)

0.2584

b1

(
eV ·

o
A
)

0.7927

b2

(
eV ·

o
A
)

0.0644

b3

(
eV ·

o
A
)

−0.1943

b4

(
eV ·

o
A
)

−0.0009

b5

(
eV ·

o
A
)

−0.0009

b6

(
eV ·

o
A
)

16.1566

b7

(
eV ·

o
A
)

48.5291

c1

(
eV/

o
A
)

0.5041

c2

(
eV/

o
A
)

0.3569

c3

(
eV/

o
A
)

0.1782

Table 2: High-order material constants for copper(Shodja et al.,2012).

a1

(
eV/

o
A
)

0.1833

a2

(
eV/

o
A
)

0.0103

a3

(
eV/

o
A
)

0.0010

a4

(
eV/

o
A
)

0.0717

a5

(
eV/

o
A
)

0.1891

b1

(
eV/

o
A
)

0.6612

b2

(
eV/

o
A
)

0.0663

b3

(
eV/

o
A
)

−0.2062

b4

(
eV/

o
A
)

−0.0015

b5

(
eV/

o
A
)

−0.0015

b6

(
eV/

o
A
)

12.6254

b7

(
eV/

o
A
)

37.9402

c1

(
eV/

o
A
)

0.8448

c2

(
eV/

o
A
)

0.5732

c3

(
eV/

o
A
)

0.3465

2 d = 4r. Material of the rod 1 and rod 3 is aluminum with Young’s modulus E1 = 52Gpa and mass density
ρ1 = 2700kg/m3. For the reference CT-based result, the material of rod 2 sandwiched by rod 1 and rod 3 is copper
with Young’s modulus E2 = 80Gpa and mass density ρ2 = 8920kg/m3. For the SSG-theory based result, the material
of rod 2 is having the same Young’s modulus and mass density but also higher-order material constants which are
assigned to be only one percent of the experimental values as in Table 2.
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Figure 3: Transmission and reflection coefficients of a longitudinal wave through the classical media (solid lines), and non-classical media with
small higher-order material constants (dashed lines)

A good agreement between the SSG theory result and the classical result is seen in Figure 3. When the non-local
effects are small, the convergence of the proposed SSG theory-based formulation to the classical result is verified.

Concerning the formulation verification of bending wave scattering, another numerical case is implemented. For
the system shown in Figure 2, the height of the rectangular interface h = 5a0 and width b = h, the normalization
parameter for length is set to be the length d of beam 2. Material of beam 1 and beam 3 is aluminum with shear
Modulus µ = 26Gpa. For the reference CT-based result, the material of beam 2 is copper with shear modulus
µ2 = 40Gpa and mass density ρ2 = 8920kg/m3. For the SSG-based result, the material of beam 2 is having the same
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shear modulus and mass density but also higher-order material constants which are in the value of only one percent of
the experimental values as in Table 2.
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Figure 4: Transmission and reflection coefficients of the bending wave through the classical media (solid lines), and non-classical media with small
higher-order material constants (dashed lines)

When the higher-order material constants are very small, non-local effects described by the SSG theory-based
model can be neglected, therefor we can see a good agreement between the SSG theory result and the classical result
in Figure 3, The convergence from the SSG theory-based formulation to the classical result can be verified. To be
noted, the normalization parameter for frequency ωk is the second order natural frequency of beam 2 calculated by
classical Timoshenko beam model, and the non-smooth shape around ω̄ = 2 is caused by the cut-on frequency of the
shear wave.

Meanwhile, although there is very seldom literature contributing to the wave scattering through the non-classical
media, we can still find some interesting results to compare with, for example, the reflection and transmission coef-
ficients through a couple-stress elastic slab changing with the incident wave angle and the dimensional thickness in
[20], the reflection of elastic waves in the functionally graded piezoelectric microstructures based on modified CS
theory [21]. Some of these results can be used to compared qualitatively, for example in Figure 6 [21] when the inci-
dent wave angle is 0 the results are in a similar form with the results in section 5.1, and the feature that reflection and
transmission coefficients are affected by the dimensionless thickness can also be confirmed in later numerical results.

5.2. Longitudinal wave transmission and reflection through a complex rod

In the numerical study, reflection coefficient Cr and transmission coefficient Ct through the non-local coupling
region are calculated for the system shown in Figure 1. The radius of the section interface r = 3a0, and the normaliza-
tion parameter for length is the length of the non-classical rod d. Material of the classical rod 1 and rod 3 is aluminum.
Rod 2 is of complex media with its higher-order material constants illustrated in table 1 and table 2. In the following
numerical cases, the coupling region is set to have different materials and different lengths, then the influences of
non-local material properties and coupling region length on the Cr and Ct can be evaluated.

First of all, if rod 2 is homogeneous and its material is the same as rod 1, the incident wave will be fully transmitted
without any reflection, in this case, the transmission coefficient is 1 and the reflection coefficient is 0 in the whole
frequency range. If the coupling region is complex media and its material is also set to be aluminum, namely having
the same Young’s modulus and mass density as rod 1 but with higher-order constants, the wave transmission situation
will be different. The resulting Ct and Cr are illustrated in Figure 5
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Figure 5: Transmission and reflection coefficients of a longitudinal wave through a complex rod made by Al

We can see Ct is not constantly equal to 1 anymore. In fact, the non-classical Ct is less than ‘1’ while Cr is far
from ‘0’, and they both display frequency-dependent character. The frequency-dependency reflects that influence of
local behavior caused by long-range interaction can be captured by the proposed model and the influence of local
behavior differs as external deformation wavelength changes. On some specific frequencies, Ct regresses to 1 and
Cr to 0 as the phase change by wave propagation distance d is approaching to ”0” or π by coincidence. In this
numerical case, rod 2 can be regarded as one kind of architectured media with Young’s modulus and mass density
the same as the aluminum, and the non-local behavior of this media is significant under the studied frequency band.
Meanwhile, the non-local behavior of rod 1 and rod 3 is rather inconspicuous, then the impedance mismatch arises
on the coupling interface of these two media from the non-local behaviors description. As the complex coupling
length d increases from 2r to 8r, the frequency gap between neighboring specific frequencies narrows down and the
amplitude of Cr becomes lower, the result tends to regress to classical theory results. When the length of rod 2 is
increased, the structure is under a relatively longer deformation wavelength, the effect of non-local behavior caused
by the underlying micro-structure interaction becomes weak, and the resulting impedance mismatch becomes less
obvious and eventually disappears in global behavior description under a relatively longer deformation wavelength.
Therefore, Ct and Cr are both degenerating to classical theory results, which are Ct = 1 and Cr = 0.
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Figure 6: Transmission and reflection coefficients of a longitudinal wave through a complex rod made by Cu

Figure 6 illustrates transmission coefficient Ct and reflection coefficient Cr of a longitudinal wave through a com-
plex coupling region made of copper. As can be seen, Ct and Cr resulting from SSG theory formulation match well
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with classical theory result in the low-frequency range, but their difference becomes more distinct as the frequency
goes up, namely, the deformation wavelength becomes short and comparable to the characteristic length of internal
heterogeneity. Meanwhile, as length d increases from 2r to 6r, Ct and Cr is observed approaching to classical theory
result. The non-local effects on scattering proprieties of the longitudinal wave become more significant in higher
frequency and for a short coupling region. To be noted, the classical results, namely the final form that SSG the-
ory model is degenerated to in frequency domain, is different from the case shown in Figure 5, that’s because the
impedance mismatch comes from not only the higher-order enrichment introduced by the SSG theory model but also
different classical material parameters such as Young’s modulus and mass density. Both cases are degenerating to
classical theory result, but the impedance mismatch in this case will not disappear.

To better illustrate the regressing process of non-classical wave scattering properties to the classical theory results,
the transmitted power ratio in form of |Ct |

2 and reflected power ratio |Ct |
2 varying with the dimensionless length of the

coupling region d/r are plotted as in Figure 7.
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Figure 7: Transmission and reflection coefficients of a longitudinal wave through a complex region with its dimensionless length

The dimension-dependent characteristic of the transmitted power implies that the impact of local behavior caused
by long-range interaction varies with the dimension of the structure. Meanwhile, on three different frequencies, as
the length of the coupling region increase, the transmitted power ratios are approaching ”1” and the reflected power
ratios are close to ”0”. This phenomenon can also be interpreted combined with Figure 3. As the resulting classical
transmission coefficients are all ”1” and reflection coefficient are all ”0” on these three specific frequencies ω = 2, 3, 4,
the changing trend of transmitted and reflected power ratios of the enriched model is theoretically consistent with the
degenerated form that it is expected to be.

5.3. Control of vibration transmission through a complex rod

From the previous two cases, we can conclude that longitudinal wave transmission through a complex coupling
region is different from a classical one. Wave scattering is indeed affected by the local behavior of the complex media,
and the influence also varies with the coupling length d. However, what is the underlying physical interpretation of
this phenomenon? and how can we exploit some applications on this basis? To answer these questions, one lattice
model which can physically describe the long-range interactions in the SSG theory-based model is required.

Non-local continuum theory is based on the assumption that the forces between material points are long-range,
thus the lattice model for the SSG theory should be capable of reflecting the long-range nature of inter-atomic forces.
In the following, a new lattice model is developed to have a discrete micro-structural basis for the SSG theory-based
continuum model.

For the studied 1D SSG theory-based rod, the lattice equation of motion is proposed with coupling particles
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describing the long-range interactions as

M
∂2un (t)
∂t2 = g2 (un+1 − 2un + un−1) + g4 (un+2 − 2un + un−2) + g6 (un+3 − 2un + un−3) + F (n) (49)

where un(t) are the displacements from the equilibrium. g2, g4 and g6 represent coupling constants for the three
different types of interaction: the nearest-neighbor, the next-nearest-neighbor and the next-next nearest-neighbor in-
teractions. Fn indicates the external force applied on the particles. One discrete mass-spring system corresponding to
the suggested lattice model is given in Figure 8.

Figure 8: lattice model with nearest-neighbor and next-nearest-neighbor and next-next-nearest-neighbor interactions for SSG theory-based rod

In the lattice model, all the particles have the same mass M, and the infinite lattice has a cross-section area A, and
the inter-particle distance l. The three types of interactions between particles are separately modeled by springs with
stiffness coefficients k2 = g2, k4 = g4 and k6 = g6.

To achieve a continuum equation from the suggested lattice model, a series is utilized that transforms the equations
of motion for un(t) of lattice model into continuum equation for u(x, t) that describes one-dimensional displacement
field [30]. The map operation is introduced in detail in Appendix 1. In the end, the continuum equation can be
achieved as

∂2u (x, t)
∂t2 = G2

∂2u (x, t)
∂x2 + G4

∂4u (x, t)
∂x4 + G6

∂6u (x, t)
∂x6 + F (x) , (50)

where

G2 =
(g2 + 4g4 + 9g6) l2

M
,G4 =

(g2 + 16g4 + 81g6) l4

12M
,G6 =

(g2 + 64g4 + 729g6) l6

360M
The 1-D continuous model based on SSG theory has been established based on Hamilton principle in previous work
as,

∂2u (x, t)
∂t2 =

E2

ρ2

∂2u (x, t)
∂x2 +

B3 − B1

ρ2A
∂4u (x, t)
∂x4 +

B2

ρ2A
∂6u (x, t)
∂x6 + F (x) , (51)

where ρ2 =
M
Al

denotes mass density. Identifying the coefficients from both equations, we obtain the following
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identities:

G2 =
(g2 + 4g4 + 9g6) l2

M
=

E2

ρ2
,

G4 =
(g2 + 16g4 + 81g6) l4

12M
=

B3 − B1

ρ2A
,

G6 =
(g2 + 64g4 + 729g6) l6

360M
=

B2

ρ2A
.

(52)

The stiffness coefficients of the three types of interactions between particles are connected with the material’s classical
and higher-order parameters as:

g2 =
3E2Al4 + 13 (B1 − B3) l2 + 30B2

2l5

g4 = −
3E2Al4 + 40 (B1 − B3) l2 + 120B2

20l5

g6 =
E2Al4 + 15 (B1 − B3) l2 + 90B2

90l5

(53)

we can see that the proposed 1D lattice model can be transformed into SSG theory-based continuous model. Young’s
modulus E2 and higher-order material parameters B1, B2, B3 are directly connected with the stiffness of general force
interactions (short-range and long-range ) along with the inner-particle length l and cross section’s area A. Therefore
the local behavior caused by the complex long-range interactions of internal structures can be captured by the SSG
theory-based model. In other words, g2, g4 and g6, these three type coupling interactions together with inner-particle
length l and cross section’s area A determine the material parameters (E2, B1, B2, B3) in SSG theory-based rod model.

The higher-order material constants used in the presented work in table 1 and 2 refer to the research by Shodja
et al. (2012) [31]. As interpreted above, higher-order material constants are related to long-range interaction and
inner-particle length l. In Shodja’s research, the crystal lattice of the considered metal is periodically distributed in a
nano-scale. Therefore these higher-order material constants, calculated with an atomistic approach, can reflect prop-
erties of complex media that have internal structures periodically distributed at nano-scale. Analogically, for any kind
of complex media consisting of periodic cells or internal structures, the long-range interaction between non-adjacent
internal structures will play an important role in the global structural behavior when the deformation wavelength is
comparable to the internal length of micro-structures. The SSG theory-based model as well as other generalized
continuum elasticity theories also apply in this case. The higher-order material constants should be determined cor-
responding to the long-range interaction stiffness. These results indicate that wave transmission through a complex
rod can be controlled by adjusting the higher-order material constants, which corresponds to the internal stiffness.
In the following, numerical cases are implemented to study the influence of higher-order material constants on wave
transmission, with the purpose of obtaining the minimum possible energy transmission.

Figure 9 shows the transmission and reflection coefficients evolving with material constants respectively when d =

r and d = 0.5r (E1,ρ1,Bi are the material parameters for aluminum with Bi being calculated with atomistic approach
in [31]). As we can see, for complex rod 2 of different length d, with some predefined Young’s modulus, mass density,
and higher-order material parameters, reflection coefficient Cr can highly approach ‘1’ in some frequency ranges. In
this frequency range, all of the input energy is reflected and the transmitted energy is close to zero. Thus the predefined
complex rod would show great isolation performance in a potential seismic application. This phenomenon could also
be used for enriching the inner micro-structure with the utilization of the SSG theory model to achieve better structural
performance in acoustics.
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Figure 9: Transmission and reflection coefficients of a longitudinal wave through a complex rod of different length

Based on these two cases, We can conclude that the vibration transmission and reflection property of the complex
coupling region is affected by its length d and all the material constants in the SSG theory model (including the
E2 and ρ2 and higher-order material parameters Bi). Combined with the lattice model proposed above, the force
interaction coefficient g2 and the long-range force interaction coefficients g4, g6 can be also determined by these
material constants. Therefore the long-range interaction terms represent the underlying reason that local behaviors
caused by inner heterogeneous structure arise. We can say that the structural-acoustic behavior can be designed
by adjusting the force interactions between inner structures, which can also be considered as adjusting the material
constants as these two groups of variables are equivalence under some conditions. Analogously, wave transmission
characteristics through any complex system with internal microstructure can be controlled by adjusting its equivalent
force interactions between inner structures.

5.4. Bending wave transmission and reflection through a complex beam
In the numerical study, the transmission coefficients tb and ts and reflection coefficients rb and rs are calculated

for the system shown in Figure 2. Assuming the height of the rectangular interface h = 5a0 and width b = h, the
normalization parameter for length is set to be the length d of beam 2. The material of the classical media beam 1 and
beam 3 is aluminum. In the following analysis, reflection and transmission coefficients through the coupling region
are calculated in cases when beam 2 are of different material and different length.

Firstly, if beam 2 is homogeneous and its material is the same as beam 1, the incident bending wave will be
transmitted through beam 2 without any reflection nor diffusion. The transmission coefficient of bending wave tb = 1
and reflection coefficient rb = 0, while the reflection and transmission coefficients of the converted shear wave ts = 0

21



and rs = 0 in the whole frequency range. If beam 2 is complex media, and its material is also aluminum, namely
having the same shear modulus and mass density as beam 1 but with higher-order material constants, wave scattering
behavior through beam 2 will be different. The resulting reflection coefficients and transmission coefficients of the
bending wave are illustrated in Figure 10
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Figure 10: Reflection and transmission coefficients of bending wave and shear wave through a complex beam made of Al

As shown in Figure 10, tb and rb are not constant anymore, instead, these two coefficients are both frequency-
dependent. The frequency-dependency indicates that the influence of local behavior in the complex coupling region
can be captured by the proposed higher gradient-based wave-scattering formulation, and the local behavior becomes
more significant under a short wavelength. At certain frequencies, rb is close to 0 and tb to 1. On these specific
frequencies, energy transmitted in beam 2 is totally reflected back by the interface SB. As d increases from h to 3h,
the frequency gap between neighboring specific frequencies shows differences, and the amplitude of rb also becomes
lower. These phenomena are caused not only by the longer coupling distances, but also the different wave propagation
behavior in the coupling region. As the length d increased from h to 3h, beam 2 is under a longer dimensionless
deformation wavelength, then the long-range interaction becomes less important in global beam behavior description.
The impedance mismatch caused by the non-local effect becomes negelectalbe, therefore non-classical bending wave
k1 tends to approach rb = 0, and rb is returning to classical theory result zero.

22



0 2 4 6 8 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a)

0 2 4 6 8 10

10
-4

10
-3

10
-2

10
-1

10
0

10
1

(b)

0 2 4 6 8 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c)

0 2 4 6 8 10
10

-4

10
-3

10
-2

10
-1

10
0

10
1

(d)

Figure 11: Transmission and reflection coefficients of bending wave through a complex beam made of Cu

Figure 11 illustrates the transmission and reflection coefficient of bending wave (tb, rb) and shear wave (ts, rs)
through a complex beam made of copper with the length d = h and d = 2h. Noticeably, the scattering coefficients
resulting from complex coupling region and the classical coupling region match well in the low-frequency range, but
their difference becomes significant as frequency goes up, especially above the cut-on frequency of the shear wave.
By comparing subfigure 11(a) and 11(b) with subfigure 11(c) and 11(d), we can see that wave transmission behavior
changes significantly for both bending and shear wave as the coupling length d increases from h to 2h. The wave
transmission behavior is affected by the dimension of the coupling region, and that is because the degree of non-
local effect introduced by the higher-order material constants is dependent on the relative deformation wavelength
(compared to the material characteristic length). The proposed higher gradient-based wave-scattering formulation is
capable of capturing the local behavior caused by long-range interactions. The influence becomes more significant in
the short wave limit.

5.5. Control of vibration transmission through a complex beam

For any kind of complex media which can be composites, architectured media, or metamaterials, when the defor-
mation wavelength is comparable to the internal length scale, the long-range interaction between non-adjacent internal
structures will play an important role in governing the structural global behavior. Similar to the investigation of the
complex rod coupling region, the proposed SSG theory-based bending wave scattering formulation can be used in
the application of wave transmission control through a complex beam by adjusting its higher-order material constants,
which are equivalent to the stiffnesses of the short interaction and the long-range interactions. In the following, several
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numerical cases are implemented to study the influence of material parameters on bending wave transmission, with
the purpose of obtaining the minimum possible energy reflection.
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Figure 12: Transmission and reflection coefficients of bending wave through a complex beam in three cases (case 1:
× , case 2: · , case 3: ◦ )

Figure 12 shows the transmission and reflection coefficients of bending wave (tb rb) changing with different ma-
terial parameters in three cases (µ1, ρ1, a j, b j, c j are the material parameters for aluminum). As we can see, for
complex bean of length d = h, tb and rb change significantly in these three cases. In case 3, tb highly approach ‘0’ in
higher frequency range, which means with some predefined shear modulus, mass density, and higher-order material
parameters, the energy transmission by bending can approach to zero.
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Figure 13: Transmission and reflection coefficients of the converted shear wave through a complex beam in three cases (case 1: × , case 2: · , case
3: ◦ )

Then we check the reflection and transmission of the converted shear waves. As shown in Figure 13, reflection
and transmission of the shear wave are much weak than the bending wave. As the reflection of bending wave increase
much and transmission decrease from case 1 to case 3, the reflection of the shear wave only increases a little and the
transmission rarely change. The impact of the non-local effect is less great for the shear wave than that of the bending
wave.
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Figure 14: Transmitted and reflected energy through a complex beam in three cases (case 1: × , case 2: · , case 3: ◦ )

To check the energy transmitted situation, Figure 14 is plotted. It can be observed that energy transmission in case
3 is lower than 0.2 in frequency band ω ∈ [3.2, 5.2]. In this frequency range, the complex beam in the coupling region
shows great vibration isolation performance with the predefined material parameters, which are equivalent to the short-
range and long-range interactions between inner structures of periodic composite. The proposed formulation can be
used for optimizing the inner micro structure of composites to achieve better structural performance in acoustics.

6. Conclusions

In this research, wave scattering characteristics of an enriched 1-D model are investigated based on SSG the-
ory. The formulation is derived to achieve the Transmission and reflection coefficients of the longitudinal wave and
bending wave through a complex rod and a complex Timoshenko beam, respectivly. An equivalent lattice model is
proposed to study the underlying physical interpretation of higher-order material constants and to exploit the SSG
theory formulation for potential applications to vibration transmission control.

(1) Wave transmission characteristics of a 1-D enriched model are different from the classical ones. They show
frequency dependence for both rod and beam cases, especially at higher frequencies. The influence of local behavior
caused by long-range interaction can be captured by the proposed model, and the non-local effects plays a major role
in governing structural vibro-acoustic features under short wavelength deformation.

(2) As the length of the coupling region increase, SSG theory-based results are degenerating into classical results
for both rod and beam cases. This phenomenon is caused not only by the longer propagation distance but also by
the different wave propagation behaviors in the complex region. The non-local effect, which reflects the long-range
interactions between the internal heterogeneity, becomes weak under a relatively longer deformation wavelength, and
the resulting impedance mismatch becomes less obvious in global behavior description.

(3) The proposed lattice model is capable of describing the long-range interactions between the internal structures
in complex media. With this lattice, higher-order material constants in SSG theory are directly connected with the
stiffness of long-range interactions between the internal structures. Vibration transmission through complex regions
can be controlled by optimizing its length and its inner micro-structure. Therefore SSG theory-based wave-scattering
matrix model can be employed in optimizing the vibration transmission through complex media by adjusting its high-
order material constants.
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Appendix 1

To obtain the continuum equation from a lattice equation, a series of equation transformations is used here based
on the map operation in [30]. Firstly, un(t) are defined as Fourier coefficients of function û (k, t) on [−K0/2,K0/2] by
the equation

û (k, t) =

+∞∑
n=−∞

un (t) e−ikxn = F∆ {un (t)} , (54)

where xn = nl and l = 2π/K0 is the distance between equilibrium positions of the lattice particles. The inverse Fourier
series transform is defined by

un (t) =
1

K0

∫ K0/2

−K0/2
dk û (k, t) eikxn =F∆

−1
{û (k, t)} . (55)

Equations (54) and (55) are the basis for the Fourier transform, which is obtained by transforming from lattice variable
to a continuum one in the limit l → 0 (K0 = 2π

l → ∞). The Fourier transform are derived from (54) and (55) with
limit l→ 0. We replace the lattice function un (t) = 2π

K0
u (xn, t) with continuous u(x, t) while letting xn = nl = 2πn

K0
→ x.

Then the sum in Eq. (54) can be changed to an integral with (l→ 0), and Eq. (54), (55) become

ũ (k, t) =

∫ +∞

−∞

dx e−ikxu (x, t) = F {u (x, t)} , (56a)

u (x, t) =
1

2π

∫ +∞

−∞

dk eikxũ (k, t) = F −1 {ũ (k, t)} . (56b)

We assume that ũ (k, t) = lim û (k, t) , where limit denotes the passage to the limit l → 0 (K0 = 2π
l → ∞). As we can

see, ũ (k, t) is a Fourier transform of the field u (x, t), and û (k, t) is a Fourier series transform of un (t), where we can
use un (t) = 2π

K0
u (nl, t), and the function ũ (x, t) can be derived from û (k, t) in the limit l → 0. As a result, the map

operation from a lattice model into a continuum model is defined by the following steps [32]
(1) The Fourier series transform:

F∆ : un (t)→ F∆ {un (t)} = û (k, t)

(2) The passage to the limit l→ 0:

Limit : û (k, t)→ lim {û (k, t)} = ũ (k, t)

(3)The inverse Fourier transform:

F −1 : ũ (k, t)→ F −1 {ũ (k, t)} = u (x, t)

The similar transformations can be performed for different systems to map the lattice equation into an equation
for the elastic continuum. In the following, the transformations is proceeded based on the introduced map operation.
The first step is transforming the discrete lattice equation of motion un (t) to the field û (k, t). We multiply Eq. (49) by
e−iknl, and summing over n from −∞ to +∞. Then

M
+∞∑

n=−∞

e−iknl d2un

dt2 =g2 ·

+∞∑
n=−∞

e−iknl (un+1 − 2un + un−1)

+ g4 ·

+∞∑
n=−∞

e−iknl (un+2 − 2un + un−2)

+ g6 ·

+∞∑
n=−∞

e−iknl (un+3 − 2un + un−3) +

+∞∑
n=−∞

e−iknlF (n).

(57)
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The first three terms on the right-hand of Eq. (57) equals

=g2 ·

eikl
+∞∑

m=−∞

e−ikmlum − 2
+∞∑

n=−∞

e−iknlun + e−ikl
+∞∑

j=−∞

e−ik jlu j


+ g4 ·

e2ikl
+∞∑

m=−∞

e−ikmlum − 2
+∞∑

n=−∞

e−iknlun + e−2ikl
+∞∑

j=−∞

e−ik jlu j


+ g6 ·

e3ikl
+∞∑

m=−∞

e−ikmlum − 2
+∞∑

n=−∞

e−iknlun + e−3ikl
+∞∑

j=−∞

e−ik jlu j

 .
(58)

Using the definition of û (k, t), Eq. (58) gives

g2 ·
(
eiklû (k, t) − 2û (k, t) + e−iklû (k, t)

)
+ g4 ·

(
e2iklû (k, t) − 2û (k, t) + e−2iklû (k, t)

)
+ g6 ·

(
e3iklû (k, t) − 2û (k, t) + e−3iklû (k, t)

)
= 2 (g2 · (cos (kl) − 1) + g4 · (cos (2kl) − 1) + g6 · (cos (3kl) − 1)) û (k, t) .

(59)

To further simplify Eq. (59), we have

cos (kl) − 1 = − 2sin2
(

kl
2

)
; cos (2kl) − 1 = −8sin2

(
kl
2

)
+ 8sin4

(
kl
2

)
;

cos (3kl) − 1 = − 32sin6
(

kl
2

)
− 18sin2

(
kl
2

)
+ 48sin4

(
kl
2

)
.

(60)

Substitution of Eq. (60) into Eq. (59) gives

= − 4 (g2 + 4g4 + 9g6) sin2
(

kl
2

)
û (k, t) + 16 (g4 + 6g6) sin4

(
kl
2

)
û (k, t) − 64g6sin6

(
kl
2

)
û (k, t) . (61)

With the obtained first three-terms equation and using the definition of û (k, t) for the other two terms, (57) becomes

M
∂2û (k, t)
∂t2 = − 4 (g2 + 4g4 + 9g6) sin2

(
kl
2

)
û (k, t) + 16 (g4 + 6g6) sin4

(
kl
2

)
û (k, t)

− 64g6sin6
(

kl
2

)
û (k, t) + F {F (n)} .

(62)

Using the asymptotic behavior of the sine in the form

sin
(

kl
2

)
=

kl
2
−

1
6

(
kl
2

)3

+
1
5!

(
kl
2

)5

+ O
(
(kl)7

)
,

and replacing the terms of sin2
(

kl
2

)
, sin4

(
kl
2

)
and sin6

(
kl
2

)
in Eq. (61) gives

= −4 (g2 + 4g4 + 9g6) (kl)2 +
1
12

(g2 + 16g4 + 81g6) (kl)4 −
1

360
(g2 + 64g4 + 729g6) (kl)6. (63)

The transition to the limit d → 0 in Eq. (61) gives

∂2ũ (k, t)
∂t2 = −G2k2ũ (k, t) + G4k4ũ (k, t) −G6k6ũ (k, t) + F {F (x)} , (64)

where

G2 =
(g2 + 4g4 + 9g6) l2

M
,G4 =

(g2 + 16g4 + 81g6) l4

12M
,G6 =

(g2 + 64g4 + 729g6) l6

360M
.
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The inverse Fourier transform F −1 of Eq. (64) has the form

∂2F −1 {ũ (k, t)}
∂t2 = −G2F

−1
{
k2ũ (k, t)

}
+ G4F

−1
{
k4ũ (k, t)

}
−G6F

−1
{
k6ũ (k, t)

}
+

1
ρ

f (x) . (65)

Then we can use the relation F −1 {ũ (k, t)} = u(x, t) and the connection between the derivatives and its Fourier trans-
forms as

F−1
{
k2ũ (k, t)

}
= −

∂2u (x, t)
∂x2 , F−1

{
k4ũ (k, t)

}
= +

∂4u (x, t)
∂x4 , F−1

{
k6ũ (k, t)

}
= −

∂6u (x, t)
∂x6 .

Then the continuum equation can be achieved as

∂2u (x, t)
∂t2 = G2

∂2u (x, t)
∂x2 + G4

∂4u (x, t)
∂x4 + G6

∂6u (x, t)
∂x6 + F (x) , (66)
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