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S U M M A R Y
The nutation of the Celestial Intermediate Pole can be considered as a retrograde diurnal
polar motion. As the common polar motion, it presents a resonance, but with period TPM

and quality factor QPM differing from the ones characterizing the Chandler wobble (TCW =
430.2−431.6 d, QCW in the interval (56 255) according to Nastula & Gross): according to
the nutation analysis presented in a separate paper, this period is about TPM = 380 d and the
quality factor becomes −10. In this study, we aim to revisit the geophysical interpretation of
this result. Two complementary factors account for the observed values: the non-equilibrium
response of the ocean to the pole tide potential in the diurnal band, and the resonance of the
solid Earth tide at the free core nutation period. This leads to a resonance of TPM in the vicinity
of the free core nutation period, confirmed by estimates derived from nutation analysis.

Key words: Elasticity and anelasticity; Core; Structure of the Earth; Earth rotation variations;
Sea level change; Rheology: mantle.

1 I N T RO D U C T I O N

For a rigid Earth, of dynamic flattening e equal to the one of the real
Earth, the terrestrial motion of the rotation pole, the so-called po-
lar motion (PM), presents a free counterclockwise oscillation—the
Euler wobble—with frequency e�, where � is mean Earth angu-
lar velocity. The corresponding period is 304 d. But the observed
polar motion presents a dominant broad band peak at the Chandler
period Tc = 430−432 d. This lengthening from 304 to 432 d is com-
monly interpreted as the non rigid Earth response to the centrifugal
potential variation caused by polar motion. The corresponding hy-
drostatic sea level change and elastic mantle deformation result in
an inertia moment variation linearly dependent on the pole coordi-
nates, modifying in turn the resonance frequency (Smith & Dahlen
1981). Moreover, dissipation in mantle accounts for a damping at
this resonant period described by the quality factor QCW ∼ 56−255
(Nastula & Gross 2015). If we reasonably assume that the linear co-
efficients linking feedback inertia moments to polar displacement
mostly rely on the static properties of the Earth, the resonance pa-
rameters should be the same at any timescales. As the excitation
at stake is a random process in the spectral band surrounding TCW,
the Chandler wobble does not result from a single harmonic and its
maximum can occur at a period slightly differing from the resonance
frequency TCW.

Meanwhile, in the decades 1960–1980 preceding the results ob-
tained by the astrogeodetic VLBI, the achievement of the nutation
theory for a quasi-elastic oceanless solid Earth containing a fluid
core, led to formulate the effect of an additional resonance on the
retrograde diurnal polar motion, reflecting the nutation terms in the
non-rotating system: the free core nutation (FCN) resonance with

the frequency σ FCN = −1.005 cycle/mean solar day (cpd). As the
oceans were discarded from the theory, the common PM resonance
appeared with the shortened period of TPM = 401 d whatever the
earth model (Sasao & Wahr 1981, or 0.995 d for the corresponding
retrograde diurnal nutation in the non-rotating frame). The exten-
sion of the Earth nutation theory to an axisymmetric three-layered
Earth (considering the solid inner core) yielded a similar value (TPM

= 396 d), and led to two additional free modes, the free inner core
nutation (FICN) and the inner core wobble (ICW), the observability
of which is still an open issue (Mathews et al. 1991).

Since 2000, the shortening of TPM in the diurnal band has been
supported by the nutation observations. Indeed the lunisolar nu-
tation terms, as estimated from VLBI processing, are related to
the theoretical nutation terms for a rigid earth model through a fre-
quency transfer function, determined by σ FCN and the PM resonance
complex frequency

σ̃PM = 2π/TPM

(
1 + i

2QPM

)
= σPM + iαPM . (1)

In the celestial system this angular frequency becomes σ̃ ′
PM =

σ̃PM + �, where � = 7.292 115 × 10−5 rad s–1 is the mean Earth
angular velocity. As lunisolar nutation components slightly resonate
at σ PM, the PM resonance parameters can be extracted from a set
of observed and theoretical lunisolar nutation terms. The first esti-
mates of this kind was done by Mathews et al. (2002) for the period
1980–2002, and they obtained TPM = 383.5 ± 1.5 d, 1/(2TPMQPM)
= −0.0001361489(28) cycle/sidereal day according to table 3(a) of
their paper. Equivalently the quality factor is QPM = −9.5 ± 0.1.
Here QPM or the complex part αPM of σ̃PM does not characterize any
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dissipative processes, as in the case of the seasonal band: its nega-
tive value reflects the dynamic effect in the induced pole tide as it
will be explained further, and does not have the common significa-
tion of a relative energy dissipation per cycle anyhow. Based upon
a recent adjustment from VLBI observations covering the period
1984–2018 Nurul Huda et al. (2019) determined very close values:
TPM = 382 ± 2 d, QPM = −10 ± 1.

This hints a frequency dependence of the resonance period TPM.
In the retrograde diurnal band, the lengthening of TPM should be
mitigated by the response of the Earth. Mathews et al. (2002) advo-
cated the dynamic ocean response to polar motion. An equilibrium
pole tide tends to compensate the dynamic Earth ellipticity, making
it more spherical, and lengthening subsequently TPM by about 30 d.
However, at diurnal frequency, the dynamic processes in the ocean
take precedence, so that the induced pole tide is strongly phase-
shifted with respect to the polar motion. In turn, the compensation
of the Earth ellipticity is strongly mitigated, and TPM gets closer to
the Euler period of 303.4 d for a rigid Earth.

More generally, the frequency dependence of the Earth rheologi-
cal properties has to be considered for modelling the polar motion in
light of the precision wherewith it is determined. Chen et al. (2013a)
had highlighted how the transfer function from the geophysical forc-
ing to the common polar motion (periods beyond 2 d) is impacted by
frequency dependence of the solid Earth anelasticity. In a comple-
mentary paper they concluded that such a modified transfer function
could improve the reconstruction of the polar motion from the fluid
layer excitation (Chen et al. 2013b). However, their modelling is still
based upon fixed polar motion resonance parameters (TCW, QCW).
In contrast, our paper points out the modification that these param-
eters undergo at diurnal timescale. It provides a detailed account
of this modification starting from the contemporaneous knowledge
of the ocean response to the gravimetric diurnal tide. Then the free
core nutation is shown to induce a strong frequency dependence of
σ̃PM even within the retrograde diurnal band. Finally, we discussed
to which extent our theoretical estimates are confirmed by recent
nutation determination of Nurul Huda et al. (2019).

2 R E S O NA N T P E R I O D O F T H E
C O M M O N P O L A R M O T I O N

Let C be the Earth axial principal moment of inertia, A and Am

the equatorial principal moments of inertia of the Earth and of the
mantle, respectively, e = (C − A)/A ≈ 1/304.5 the Earth dynamic
flattening and σ e = e� the Euler frequency. The Earth rotation
theory leads to the constant resonant angular frequency (Dehant &
Mathews 2015)

σPM = σe
A

Am

[
1 − k̃

ks
+ O(e)

]
, (2)

where ks = 0.938 is the secular Love number, and k̃ ≈ 0.355 a
coefficient accounting for Earth response to the pole tide potential.
Note that many studies favor the compliance κ = ek̃/ks instead of
k̃. In the resonance frequency it clearly quantifies the compensation
of the permanent rotational response—namely the ellipticity, e—by
the variable instantaneous Earth rotational response :

σPM = A

Am
�

[
e − κ + O(e2)

]
. (3)

Actually k̃ is composed of two parts:

k̃ = k̃2 + k̃o . (4)

Here k̃2 is the body Love number of degree 2 accounting for the
solid Earth response to the pole tide potential, and k̃o is the oceanic
Love number describing the ocean response to the same potential.
They determine the variation of off-diagonal moment of inertia c̃ =
c13 + ic23 resulting from the ocean and solid pole tide deformation:
c = k̃/ks(C − A)m, where m means the complex coordinate of the
polar motion.

For the common polar motion, which unfolds beyond 2 d,
the ocean response is considered at equilibrium. This leads to
k̃o = 0.0477. The solid Earth response is assumed quasi-elastic,
described by the body Love number k̃2 = 0.307 − i 0.0035 (Petit
& Luzum 2010). These values determine the resonance parame-
ters (TPM = 433.6, QPM = 85), which are in conformity with the
estimates obtained by fitting the observed polar motion to the hydro-
atmospheric excitation. One of the most recent estimation of this
kind is the one of (Nastula & Gross 2015), mentioned above, and
yielding the 95 per cent confidence intervals (430 432) d for TPM

and (56 255) for QPM. Such a loose constraint for the quality factor
stems from the uncertainty affecting the excitation in the seasonal
band.

3 C O N T R I B U T I O N O F T H E DY NA M I C
O C E A N R E S P O N S E

The possibility of dynamic effects in ocean pole tide was con-
sidered in the late 1980s in Dickman (1990) and Dickman (1988).
This author concluded that the dynamic effects at seasonal scales
lengthens the Chandler period by 1 d. Equivalently the oceanic Love
number is increased by about 0.0014. Moreover, the dynamic pro-
cesses slightly delay the ocean tide response: with a time damping
of about 500–700 yr, much longer than the Chandler relaxation
time (30 yr), the damping introduced an imaginary part in the Love
number of about −2 × 10−4. So, the hydrostatic pole tide remains
an excellent approximation when considering the common polar
motion. However, below 10 d, many studies have shown that the
ocean response to an atmospheric pressure variation strongly de-
parts from the equilibrium, so the hydrostatic pole tide is not sound
and ko should change accordingly. In the diurnal band, this issue
can be solved in light of the diurnal ocean tides. For, as the pole tide
potential has the same form than the lunisolar tesseral potential and
is relevant to the same frequency band, the Earth response should
be formally the same. It is well known that the diurnal ocean tides
are strongly affected by dynamic processes. Currents are generated,
and in turn a relative angular momentum. Meanwhile, the observed
diurnal ocean tide height is smaller than the theoretical equilibrium
tide produced by the tesseral lunisolar potential, and strongly out-
of-phased with respect to it. Tidal component at frequency σ causes
the equatorial oceanic angular momentum

l H (t) = H1 cos(θ (σ ) + χ − 	1) + i H2 cos(θ (σ ) + χ − 	2)

h(t) = h1 cos(θ (σ ) + χ − φ1) + i h2 cos(θ (σ ) + χ − φ2),

(5)

where θ (σ ) is the tidal argument, H(t) and associated coefficients
H1, H2, 	1, 	2 hold for the matter term and h(t), and associated
coefficients h1, h2, φ1, φ2 describe the current term. According to
the FES 2012 ocean tidal model, the main diurnal constituents are
for tesseral tides J1, K1, P1, O1, Q1. The corresponding coefficients
calculated in Madzak (2016) are provided in Table 1. An ancient
ocean tide model going back to 1996 yielded close estimates, as
reported in Chao et al. (1996). For a given tidal constituent, the
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Figure 1. Resonance parameters of the polar motion in the diurnal retrograde band for an anelastic solid Earth covered by oceans. The blue points correspond
to the five discrete tidal lines for which ko values is deduced from FES 2012 ocean tidal model, as reported in Table 1. The continuous red line is associated
with the ko values obtained by a degree 2 polynomial fit.

Table 1. Main terms of the oceanic angular momentum generated by tesseral diurnal gravitational tides according to FES 2012, as reported in table 5.4 of
Madzak (2016). Reported coefficient correspond to expression (5). The amplitudes H1, H2, h1, h2 are expressed in unit of 1025 kg m2 s–1, and γ = GMST + π .

Tidal argument, θ χ H1 	1 H2 	2 h1 φ1 h2 φ2

(◦) (◦) (◦) (◦) (◦)

Q1 γ − l − 2F − 2N −90 0.116 340.4 0.264 215.4 0.058 307.8 0.075 217.1
O1 γ − 2F − 2N −90 0.476 330.1 1.178 221.9 0.291 299.7 0.442 206.1
P1 γ − 2F + 2D − 2N −90 0.169 310.6 0.450 223.2 0.183 287.4 0.255 192.8
K1 γ +90 0.462 308.3 1.377 224.2 0.557 288.8 0.774 192.1
J1 γ + l +90 0.026 294.0 0.076 228.8 0.036 292.0 0.055 186.7

Table 2. Oceanic Love number in the diurnal band computed from FES
2012 ocean tidal model and tide generating potential according to (11).

Q1 −0.037 + i 0.039
O1 −0.030 + i 0.038
P1 −0.023 + i 0.042
K1 −0.023 + i 0.042
J1 −0.022 + i 0.047

retrograde term is

H−(t) = (H− + h−)e−i(θ+χ ) (6)

with

H− =
(

H1 cos(	1) − H2 sin(	2)

2
+ i

H1 sin(	1) + H2 cos(	2)

2

)

h− =
(

h1 cos(φ1) − h2 sin(φ2)

2
+ i

h1 sin(φ1) + h2 cos(φ2)

2

)
.

(7)

From (A4) and (A5), the corresponding tesseral lunisolar potential
is −�2 R2

e /3Re
(
φ̃(t)Y−1

2

)
, with

φ̃(t) = 3gN 1
2

�2 R2
e

ξσ e−i(θσ −π/2) , (8)

where ξσ is the equilibrium tidal height. Accounting for the defor-
mation effect of the tidal loading, the retrograde effective angular
momentum function caused by φ̃(t) is

χo(t) = H−(t)(1 + k ′
2) + h−(t)

(C − A)�

= H−(1 + k ′
2) + h−

(C − A)�
e−i(θ+χ ) . (9)

In the tidal potential W, expressed through (A4), φ̃(t) is formally
equivalent to m(t) in pole tide potential. So, χ o(t) is proportional to
φ̃(t), as the rotational excitation is proportional to m(t):

χo = k̃o

ks
φ̃ , (10)

where ko is the oceanic Love number. Then, we obtain

k̃o = ks
H−(t)(1 + k ′

2) + h−(t)

(C − A)�	̃

= −ks
H−(1 + k ′

2) + h−

C − A

�R2
e

3gN 1
2 ξσ

. (11)

Then we can estimate k̃o for the tidal components here-above by
considering the ξσ values reported in Table A1 of the Appendix.
The resonance of the loading love number k ′

2 at FCN frequency
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Figure 2. Resonance parameters of the polar motion in the diurnal retrograde band for an anelastic Earth covered by oceans and containing a fluid core. Green
crosses specify the values obtained from nutation inversion over the restricted frequency bands III1 ( ν1,OO1), III2 (	1, �1), III3 (K1) and III4 (S1,P1,O1,Q1):
the horizontal bar extension gives the frequency band, and the vertical bar the uncertainty of the estimated value.

Table 3. Parameters of the polar motion resonance as determined from observed nutation inversion over different frequency bands (Nurul Huda et al. 2019).

Band Frequency (cpd) PPM QPM

I (−� − 1/6.86 ≤ σ ≤ −� + 1/6.86) 382.0 ± 1.3 −10.4 ± 0.5
II1 (−� − 1/6.86 ≤ σ ≤ −� − 1/386) 418.5 ± 7.2 −8.24 ± 1.7
II2 (−� − 1/1095.18 ≤ σ ≤ −� + 1/6.86) 381.8 ± 1.2 −10.4 ± 0.5
III1 (−� − 1/6.86 ≤ σ ≤ −� − 1/31.81) 415.1 ± 3.3 −7.7 ± 0.7
III2 (−� − 1/121.75 ≤ σ ≤ −� − 1/386) 486.8 ± 58.4 13.4 ± 30.7
III3 (−� − 1/1095.18 ≤ σ ≤ −� +

1/1095.18)
381.7 ± 7.6 −10.2 ± 2.9

III4 (−� + 1/386 ≤ σ ≤ −� + 1/6.86) 381.8 ± 1.3 −10.4 ± 0.5

does not impact significantly k̃o in the retrograde diurnal band. For
k ′

2 = −0.3075, the obtained values are given in Table 2. They differ
strikingly from the oceanic Love number ko = 0.0477 estimated
for an equilibrium pole tide. These results can be compared with
the estimate of Mathews et al. (2002) for K1 tide. In term of com-
pliance we have κ̃o = k̃oe/ks = (−7.9 + i 14.6) 10−5 in agreement
with (−6.9 + i 11.5) 10−5, as estimated in appendix D of Mathews
et al. (2002). The values of Table 2 allow to model ko(σ ) through a
degree 2 polynomial of the frequency:

ko( f ) = (−0.716 + i 0.721) f 2 + (−1.483 + i 1.337) f

+(−0.791 + i 0.658) , (12)

where f is in cpd. This expression of ko only holds for the diurnal
domain. Then we see that the resonance frequency (2) becomes
frequency dependent:

σP M (σ ) = σe
A

Am

k̃2 + k̃o(σ )

ks
, (13)

where k̃2 is taken as the Love number of an anelastic Earth. It
slightly varies with frequency. In the diurnal domain we have k̃2 =
0.299 − i 0.00144 in the diurnal band according to Petit & Luzum
(2010). The associated period and quality factor, namely

TPM(σ ) = 2π

Re(σPM)
, QPM(σ ) = Re(σPM)

2 Im(σPM)
, (14)

are displayed in Fig. 1. So, in the frequency band [−1.15 cpd,
−0.85 cpd], the dynamic ocean response leads to the resonance
parameters lying in the intervals (374 d < TPM ≤ 382.5 d , −5
≤ QPM ≤ −10). These theoretical estimates are confirmed by the
analysis of lunisolar nutation components done in Nurul Huda et al.
(2019). The fit based upon the 42 principal nutation terms between
7 d and 18.6 yr (i.e. between frequencies −1.14 cpd and −0.85 cpd
in the Earth) yields TPM = 382.0 ± 1.3 d and QPM = −10.4 ± 0.5.

4 I N F LU E N C E O F T H E F LU I D C O R E

In the diurnal band, close to the free core nutation diurnal period, the
solid Earth tide departs from the one of a quasi-elastic Earth. Indeed,
the induced tilt of the core with respect to the mantle modifies the
Earth mass distribution and in turn surface gravity. Modelled in
the 1960s, this phenomenon has been confirmed from the 1990s
through the superconducting gravimeter measurements (Crossley
1997). Other perturbations, of much lesser amplitude (100 times
less), occur because of the free inner core nutation (FICN) mode at
σ FICN ∼ 1.0017 cpd in the TRF, and because of the Polar motion
resonance appearing at the period of about 380 d, as justified in the
former section.

From IERS Conventions 2010 (Petit & Luzum 2010, table 6.4,
eqs 6.9 and 6.10), the perturbation of diurnal tide on geopotential

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/220/2/753/5634286 by guest on 17 M

arch 2023



Frequency dependence of the polar motion resonance 757

can be described through the ‘diurnal’ Love number

k2(σ ) = 0.29954 − i 0.1412 × 10−2 − LPM

σ − σPM
− LFCN

σ − σFCN

− LFICN

σ − σFICN
, (15)

with the quantities

LPM = (−0.77896 × 10−3 − i 0.3711 × 10−4)k

σPM = 0.0026081 − i 0.0001365

LFCN = (0.90963 × 10−4 − i 0.2963 × 10−5)k

σFCN = −(1.0050624 − i 2.5 × 10−5)

LFICN = (−0.11416 × 10−5 + i 0.5325 × 10−7)k

σFICN = −(1.0017612 − i 0.0007821) . (16)

expressed in cycle per solar day. Here k = 1.002737811 is the factor
for converting solar day in sidereal day, and σ PM ≈ 1/383 cpd.

Replacing in (13) the pure anelastic value of k2 by its resonant
version (15), we get

σPM(σ ) = σe
A

Am

k̃2(σ ) + k̃o(σ )

ks
. (17)

The resonance parameters deduced from (14) are plotted in Fig. 2
over the frequency band [−1.15 cpd,−0.85 cpd] (denoted band I).
This theoretical curve is compared with the estimated values from
different sets of dominant lunisolar nutation terms, as reported in
Nurul Huda et al. (2019). In average, far from the resonance at
σ FCN = −1.005 cpd, the theoretical curve grossly corresponds to
the estimated value obtained for the whole band I (TPM = 382 ± 1.3
d, QPM = −10 ± 1, see Table 3).

The resonance produced by the free core nutation strongly affects
the tidal lines surrounding K1—pertaining to the precession and
the long period nutation terms (6798 d, 1095 d, 3399 d) in the
CRF (band III3)—and tidal lines close to �1—retrograde nutation
terms in 365.25 d, 386 d in the CRF (band III2). Can we detect
this modification? Estimated value of TPM from the nutation terms
in the band III2 (TPM = 487 ± 58 d) confirms the enhancement
of the resonance period around �1 (theoretical value of 470 d at
�1). As well, the nutation inversion in the band III3 partly supports
the theoretical decrease around K1 (estimated value TPM = 382 ±
8 d versus modelled value TPM ∼ 360 d). Meanwhile, the nutation
inversion allows to get the modelled quality factor of the band K1

(−10 versus −8.5). For the band �1 the interval of the estimated
value (QPM = 13 ± 31) is too loose for confirming the modelled
value (−5), but it can include the modelled quality factor at the side
frequency σ FCN = 1.005 cpd (∼0).

Outside the narrow band of the free core nutation frequency,
far from K1 and �1, the resonance parameters rejoin the curves
obtained for an anelastic Earth covered by oceans. At the right part
of the spectrum corresponding to band III4, covering tidal lines S1

and O1, the estimates (TPM = 381.8 ± 1.3 d, QPM = −10.4 ± 0.5)
slightly differ from the modelled parameters. For the opposite band
(III1), the estimated period increases up to 415 d, as expected from
the resonance.

Whereas TPM strikingly varies in the narrow band of the FCN,
even sweeping retrograde diurnal periods, this does not produce any
significant resonant effect. Indeed at σ FCN the quality factor of the
PM resonance is close to 0, associated with a very strong damping.

5 C O N C LU S I O N

This frequency dependence of the Earth rheology leads to striking
modification of polar motion resonance parameters in the retrograde
diurnal band. The dynamic response of the oceans to the pole tide
potential is the main factor reducing the polar motion period to
about 380 d. The associated quality factor of about −10 reflects
the strong phase-shift of this response with respect to the pole tide.
These estimates confirm the crude modelling proposed in Mathews
et al. (2002), who restrict their consideration to the K1 band (asso-
ciated with a lower bound for TPM according to our study). Due to
the free core nutation resonance, the body Love number strongly
deviates from its mean value of 0.3 in vicinity of the FCN frequency
(σ FCN = −1.0050 cpd). In turn, in the band [−1.15 cpd, −0.85 cpd]
as observed from the Earth, the resonance period of the polar mo-
tion increases above 400 d for frequencies smaller than σ FCN, and
remains below this threshold for the band above σ FCN. Moreover, in
the band close to �1 tidal line, the Earth response presents an even
stronger phase-shift, given a quality factor getting closer to 0. This
should impact the transfer function between the rigid Earth nutation
terms and the real ones, as determined from VLBI observations.

In contrast to common polar motion, the excitation at stake,
namely the diurnal tidal torque through rigid Earth nutation terms,
is almost perfectly known. Despite the remoteness of the polar res-
onance period from the retrograde diurnal nutation terms in the
terrestrial frame, the confrontation of observed nutation terms to
those of a rigid Earth, as carried out in Nurul Huda et al. (2019),
amazingly confirms the modelled frequency dependence and FCN
resonance of the body Love number. So, the lunisolar nutations de-
termined by VLBI reflect the dynamic behavior of the ocean and
the influence of the fluid core on solid Earth deformation in the ret-
rograde diurnal band. Inversely it can be used to better constrain our
knowledge of the Earth deformation at this timescale. Future inves-
tigations have to extend the frequency profile of the polar motion
resonance to prograde diurnal, semi-diurnal and rapid variations
of the polar motion, for which dynamics of the oceans cannot be
discarded.
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A P P E N D I X : T E S S E R A L T I DA L
P O T E N T I A L

The material of this appendix is inspired from Dehant & Mathews
(2015, section 5.5). Consider a point of the Earth at distance r
from the geocentre of latitude φ and longitude λ. At this place the
tesseral part of the tidal potential generated by a celestial body of
mass M—located in the true equatorial frame by its right ascension
α, declination δ, and distance d from the geocentre—is given by

W = G M

d5

1

3
d2 P1

2 (sin δ)r 2 P1
2 (sin φ) cos(λ − α) . (A1)

Here the polar motion effect on the tidal potential is neglected: as-
tronomical and geographic latitudes are merged, as well as the node
of prime meridian with the Terrestrial International Origin (Petit
& Luzum 2010). Introducing the terrestrial Cartesian coordinates
(x, y, z) and (dx, dy, dz) of the location and of the celestial body
respectively, we can easily derive

W = 3G M

d5
zdz Re

[
(dx + idy)(x − iy)

]
, (A2)

Then, noting that r 2Y−1
2 = 3(xz − iyz), where Y−1

2 =
3 sin θ cos θe−iλ is the complex conjugate of the non-normalized

spherical harmonic function of degree 2 and order 1, we obtain

W = G M

d5
dzr

2 Re
[
(dx + idy)Y−1

2

]
. (A3)

It is useful to put the W into the form of the pole tide potential

�U (r ) = −�2r 2

3
Re

[
m(t)Y−1

2

]
:

W = −�2r 2

3
Re

[
φ̃(t)Y−1

2

]
, with φ̃(t) = −3G M

�2d5
dz(dx + idy).

(A4)

Then, φ̃(t), directly comparable to the polar motion m, presents the
Cartwright–Taylor like expansion

φ̃(t) = 3gN 1
2

�2 R2
e

∑
σ≥0

ξσ e−i(θσ (t)−π/2) , (A5)

where θσ is the tidal argument and σ the corresponding frequency.
In Table A1, we report the coefficients of the tesseral lunisolar tides

Table A1. Coefficients of the lunisolar tides used in this paper, as reported
in Dehant & Mathews (2015).

σ θσ (t) ξσ

(cpd) (m)

Q1 G M ST + π − l − 2F − 2N −0.05021
O1 0.9295 G M ST + π − 2F − 2N −0.26223
P1 G M ST + π − 2F + 2D − 2N −0.12199
K1 1.00273 GMST + π 0.36864
J1 GMST + π + l 0.02062

that are considered in this paper. For a given tidal component, the
numerical application yields

φ̃σ (t) = 3.51 10−5 [m−1] ξσ [m]e−i(θσ (t)−π/2) . (A6)
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