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Abstract –The Ca index is a time-integrated geomagnetic index that correlates well with the dynamics of
high-energy electron fluxes in the outer radiation belts. Therefore, Ca can be used as an indicator for the
state of filling of the radiation belts for those electrons. Ca also has the advantage of being a ground-based
measurement with extensive historical records. In this work, we propose a data-driven model to forecast Ca
up to 24 h in advance from near-Earth solar wind parameters. Our model relies mainly on a recurrent neural
network architecture called Long Short Term Memory that has shown good performances in forecasting
other geomagnetic indices in previous papers. Most implementation choices in this study were arbitrated
from the point of view of a space system operator, including the data selection and split, the definition
of a binary classification threshold, and the evaluation methodology. We evaluate our model (against a
linear baseline) using both classical and novel (in the space weather field) measures. In particular, we
use the Temporal Distortion Mix (TDM) to assess the propensity of two time series to exhibit time lags.
We also evaluate the ability of our model to detect storm onsets during quiet periods. It is shown that our
model has high overall accuracy, with evaluation measures deteriorating in a smooth and slow trend over
time. However, using the TDM and binary classification forecast evaluation metrics, we show that the
forecasts lose some of their usefulness in an operational context even for time horizons shorter than
6 h. This behaviour was not observable when evaluating the model only with metrics such as the root-
mean-square error or the Pearson linear correlation. Considering the physics of the problem, this result
is not surprising and suggests that the use of more spatially remote data (such as solar imaging) could
improve space weather forecasts.

Keywords: Space weather / Forecasting / Radiation belts / Machine learning / Solar wind

1 Introduction

One of the current main topics of interest in the space
weather field is forecasting geomagnetic indices based on
machine learning methods. Machine learning has allowed for
a great improvement in short-term forecasts of geomagnetic
indices such as the global index Kp (Wintoft et al., 2017;
Tan et al., 2018; Chakraborty & Morley, 2020) or Dst index
(Gruet et al., 2018; Lethy et al., 2018). Space weather-induced
events can have heavy-to-extreme consequences on human-
made infrastructures, as for instance, space-borne hardware or
even ground-based facilities (Riley et al., 2017). That is why
the reliable forecast of geomagnetic indices and other space-
weather relevant physical quantities (e.g., relativistic electron
or proton fluxes in the radiation belts) is of paramount
importance.

The extent of the effects of the space radiative environment
on satellites ranges from single events caused by high energy
charged particles from cosmic rays or solar energetic particles
(SEP) to internal charging, surface charging, or total ionising dose
(Horne et al., 2013). Therefore, being able to accurately and reli-
ably forecast the fluxes of high-energy electrons (from dozens of
kiloelectronvolts to a few megaelectronvolts) in the radiation
belts would represent a great leap towards better mitigation of
the radiation-induced risks in space. Extensive efforts have
already been conducted to forecast such electron fluxes. A con-
siderable review of the methods used to forecast these electron
fluxes was recently proposed by Camporeale (2019), where it
is detailed that feed-forward neural networks and recurrent neural
networks (RNNs) are used to obtain forecasts up to a few hours or
a few days ahead (see e.g., Ling et al., 2010; Wei et al., 2018).

However, Camporeale (2019) notes that although many
approaches have been tested, it remains difficult to predict these
fluxes due to certain physical phenomena that are difficult to*Corresponding author: guillerme.bernoux@onera.fr
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consider for a “black-box” type model. Thus, many more recent
models based on machine learning methods do not perform
better than older models. In addition, using data-driven
approaches to predict radiation belt dynamics with in-situ data
is challenging since it is important to have large databases that
are properly calibrated (which is more complicated when using
space-borne instruments rather than ground-based ones).

Recently, Bernoux & Maget (2020) have proposed a new
time-integrated geomagnetic index that aims to represent the
state of filling the Earth’s radiation belts. This so-called Ca
index is a time-integrated index based on the better-known aa
index. As we will see in detail in Section 2, Ca was created
to take into account the intensification of trapped electrons in
the radiation belts. Ca is, therefore, a complementary index to
other indices such as Kp or Dst. Thus in this study we focus
on the prediction of the radiation belts dynamics represented
by the Ca index. To do so, we will use deep learning methods
(i.e., machine learning approaches based on deep neural net-
works) that have already been successfully tested with other
geomagnetic indices. However, and in contrast to other studies,
we concentrate on evaluating our models by taking into account
the point of view of a spacecraft operator. Therefore we use
evaluation methods other than the classical metrics such as
the root-mean-square error and the linear correlation, which
can only account for global behaviour and are consequently lar-
gely insufficient to quantify other phenomena such as time
shifts.

In this work, we design a neural network-based model to
forecast the Ca index up to 24 h in advance. Then we evaluate
the model using both classical metrics and a method to detect
the systematic existence of time shifts in our predictions. We
also transform the regression problem into a binary classifica-
tion problem aimed at predicting danger periods in terms of
surface charging, and we evaluate it accordingly. In Section 2,
we present the data sets used in our models, and we explain
why they were chosen and how they were pre-processed. In
Section 3, we present the models and their dedicated evaluation
methods. In Section 4, we present and discuss the results before
concluding in Section 5.

2 Data analysis

This section describes and analyses the data sets used in this
paper. Firstly we list the solar wind parameters and geomagnetic
indices used here and explain where and how they can be
obtained. Then we focus on the geomagnetic index Ca and
explain its relevance to our purposes. Finally, we explain how
the time periods used for the training and the evaluation of
the different models were selected.

2.1 Data sets

It is now well known that the geomagnetic indices represent-
ing the state of the magnetosphere are predominantly driven by
solar wind dynamics (Akasofu, 1981; Baker et al., 1981). That
is why, as in many other studies (e.g., Lundstedt & Wintoft,
1994; Wu & Lundstedt, 1997; Wing et al., 2005; Chandorkar
et al., 2017; Chakraborty & Morley, 2020), we use solar wind
parameters available in the OMNIweb database (King &
Papitashvili, 2005) as inputs to our geomagnetic index forecast

models. The OMNIweb database (https://omniweb.gsfc.nasa.
gov/) grants access to hourly spacecraft-interspersed near-Earth
measurements of solar wind parameters. The earliest solar wind
parameters have been available since late 1963. In particular, we
select the plasma bulk velocity Vsw, the ion density q, the south-
ward component of the interplanetary magnetic field (IMF) Bz,
and the plasma temperature T as the inputs to our models. It is
now well known that these parameters correlate well with
geomagnetic indices and with the dynamics of electron fluxes
in the radiation belts (Burton et al., 1975; Wing et al., 2016).
A thorough study based on information-theoretical tools could
help us to find an even better set of input parameters, but this
is out of the scope of our study and could be the topic of future
work.

The geomagnetic index studied here is the Ca index, which
was first introduced by Bernoux & Maget (2020) based on a
previous study by Rochel et al. (2016). Therefore the following
paragraphs rephrase some information on the purpose and rele-
vance of this index that was contained in these papers.

The Ca index is an index derived from the well-known aa
index. The aa index is a 3-h K-based index first introduced by
Mayaud (1971) and computed from data provided by two
subauroral antipodal observatories. aa index is the geomagnetic
index having the longest available track record with data avail-
able since 1868. This gives us more than 150 years of homoge-
neous (Mayaud, 1980) and exploitable geomagnetic data with a
time cadence of 3 h. This is particularly useful when dealing
with topics, such as statistical analysis, which requires a great
amount of data. In particular, aa index covers a time range
equivalent to 14 solar cycles. Nowadays, the aa index is made
available by the International Service of Geomagnetic Indices
(ISGI) and can be downloaded from their website (http://isgi.
unistra.fr/data_download.php).

As stated in Bernoux & Maget (2020), the Ca index has
been designed to quantify the geoeffectiveness of solar wind
structures impacting the magnetosphere from the radiation belts
perspective. The relaxation characteristic time in the radiation
belt’s for high-energy electrons after a strong magnetospheric
disturbance is of the order of 4 days (Meredith et al., 2006;
Rochel et al., 2016). Therefore, the Ca index is defined as
follows:

CaðtÞ ¼ 1
s

Z 1

0
aaðt � t0Þe�t0

s dt0 ð1Þ

with s = 4 days being the relaxation characteristic time and aa
representing the geomagnetic activity. Being directly derived
from aa index, the Ca index shares the same qualities and
properties. Further details on the interest and relevance of
using the Ca index are provided in Section 2.2.

2.2 Why study and forecast the index?

Numerous studies have already been conducted on the topic
of the nowcasting and forecasting of geomagnetic indices.
Many of them focus on the Kp index or the Dst index, which
are two very well-known indices that have been thoroughly
studied for decades. However, it should be reminded that all
geomagnetic indices are not interchangeable and have physical
meanings. For instance, Borovsky & Shprits (2017) make clear
that the Dst index is unable to capture all types of geomagnetic
storms behaviour and is, in reality, a very poor index when
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studying space-weather-relevant phenomena such as the dynam-
ics of the electrons in the outer radiation belts induced by long-
duration Corotating Interaction Regions (CIR)-driven storms.
This is why it is important not to direct the research effort solely
to the problem of forecasting the Kp and Dst indices but to
diversify the indices studied in order to include a greater diver-
sity of space-weather-relevant phenomena.

The Ca index was created to account for geomagnetic
storms during which intensification of relativistic electrons
trapped in the radiation belts is observed. It was shown in
Rochel et al. (2016) and Bernoux & Maget (2020) that this
index correlates well with electron fluxes (E > 30 keV) in the
radiation belts and can take into account phenomena such as
energy accumulation due to long-duration Stream Interaction
Region (SIR)-driven storms, but also due to multiple successive
Interplanetary Coronal Mass Ejection (ICME)-driven events.
Figure 1 displays examples of the typical behaviour of the Ca
index during ICME- and SIR-driven storms. During ICME-
driven storms, the aa index tends to reach higher values (in this
example, aa reaches 228 nT) quickly, but it also decreases
rapidly, whereas during SIR-driven storms, the disturbance lasts
longer even though the aa index usually does not reach such
high values (in this example it only reaches 81 nT). Therefore
the Ca index reaches its peak value much faster during the
ICME-driven storm. However, the value of the peak is similar
during both these events as Ca accounts better for energy
accumulation (48.6 nT during the ICME-driven storm against
42.4 nT during the SIR-driven storm).

It was also stated in those papers that by changing the value
of the parameter s, it is possible to easily create an index that
accounts better for a given specific orbit (but then less for the
others). It is interesting to note that the Ca index is not the only

attempt to create an index with such properties, and another
approach was proposed by Borovsky & Yakymenko (2017).

From an operational perspective, the prediction of the Ca
index could serve as a basis for an alert service for the accumu-
lation of high-energy electrons in the radiation belts. In such a
context, the Ca index would act as a proxy for relativistic elec-
tron fluxes, monitored from ground-based magnetometers. As
stated in Section 1, using a data set that already has decades
of cross-calibrated samples is also a great asset when dealing
with data-driven approaches that require lots of data to be effi-
cient. Besides, it may also be more reliable in terms of continu-
ity of service to rely on ground-based instruments rather than
onboard instruments that are subject to the risks associated with
their being in space, at least as a backup. Thus, the prediction of
the Ca index is of immediate interest to the operators of space-
borne systems.

2.3 Establishing the training, validation, and test sets

2.3.1 Splitting the data sets

In this subsection, we briefly analyse the time series
supplied by the OMNIweb database to detect any important data
gaps (that would be prejudicial for the training of a machine
learning algorithm) and carefully choose the time periods used
to train, validate and evaluate our models. Dividing a data set
into training, validation, and test sets is a very common practice
in machine learning applications. If needed, the reader is
referred to Carè & Camporeale (2018) for more details.

Before the availability of the Wind/Solar Wind Experiment
(Wind/SWE) and the Advanced Composition Explorer magne-
tometer and Solar Wind Electron, Proton, and Alpha Monitor

Fig. 1. From bottom to top: evolution of the geomagnetic indices Dst, aa, and Ca, and of the flux of electrons in the radiation belts for the
E � 300 keV energy range, measured by the SEM instrument aboard the POES-15 spacecraft a) from 24 September to 8 October 1998 during a
period that displayed an ICME-induced disturbance starting on 25 September 1998, and b) from 7 October to 21 October 1999 during a period
that displayed a SIR-induced disturbance starting on 9 October 1999.
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(ACE/MAG and ACE/SWEPAM) data starting in 1995 and
1998, the OMNIweb database has a high percentage of missing
data. Therefore in our study, we only use data from 1995
onward. For the 1995–2019 period, there was on average
2.41% of missing data per year. Even if most of the gaps are
very short ones, some gaps larger than three or four days require
proper handling. That is why we decided to fill the data gaps
with the method introduced in Kondrashov et al. (2010). This
method is based on Singular Spectrum Analysis, a data-adaptive
spectral estimation method designed to provide information on
the underlying dynamics of a (multivariate) time-series (Ghil
et al., 2002). In the context of space physics, SSA has already
been used to fill the gaps in the OMNIweb database, which
improved the accuracy of empirical magnetic field models com-
pared to another simpler method based on linear interpolations
(Kondrashov et al., 2014). Appendix provides more information
on the practical gap-filling of the time series used in this paper
with a dedicated toolkit (Vautard et al., 1992).

The choice of the data used to train, validate and test the
neural network is of critical importance. This includes the
appropriate choice of how the data set is temporally subdivided
into training, validation, and test data sets (Lazzús et al., 2017).
In order to correctly train a machine learning algorithm, the
training data set should be comprised of a representative period
during which all kinds of space weather phenomena, including
extreme events, were observed. The testing (and the validation)
period should also be comprised of both quiet and agitated peri-
ods. Eventually, we have chosen the following periods, high-
lighted in Figure 2:

– Training set: 2003-01-01 – 2018-12-31.
– Validation set: 1995-01-01 – 1996-12-31.
– Test set: 1997-01-01 – 2002-12-31.

The train set comprises 16 continuous years, including the
declining phase of one cycle and a full second cycle. The train

set includes several extreme and even most extreme events,
including the “Halloween storm” of November 2003 that
reached a maximum value of Ca of 147.6 nT and was found
to be the only 1-in-100 year event (in terms of Ca index)
witnessed since the beginning of the Space Era (Bernoux &
Maget, 2020). The validation set is composed of a 2-year
long period during a solar minimum. The test set comprises
6 continuous years, including the ascending phase, the maxi-
mum, and the beginning of the descending phase of a solar
cycle. The test set includes intense and even extreme storms
(� 67 nT), which is a good step towards a fair evaluation of
our model. The chosen split should ensure that our sets are
representative enough of the space weather phenomena
observed through Ca.

To evaluate our model in an even more detailed way, we
divide the test set into subparts corresponding to periods of dis-
turbances induced on the one hand by ICMEs and on the other
hand by Stream Interaction Regions (SIRs), including CIRs. For
this purpose, we use the ICME database provided by Chi et al.
(2016) and the SIR database provided by Chi et al. (2018).
These databases include the time of beginning and time of
ending for several ICME- and SIR-induced geomagnetic distur-
bances between 1995 and 2015 (2016 for SIRs). According to
these databases, 212 SIRs and 204 ICMEs were observed in
the near-Earth environment between 1997 and 2002 included.
In our study, we define an ICME- (respectively SIR-) induced
disturbance period as the time period during which an ICME-
(respectively SIR-) induced geomagnetic disturbance has an
influence on the dynamics of the Ca index. The beginning of
the disturbance period is given by the beginning of the storm,
as indicated in the database. The ending of the disturbance per-
iod is given by adding s = 4 days to the ending of the storm as
indicated in the database. We can hence evaluate our models
using only the ICME- or SIR-induced disturbance periods and
be able to better understand the accuracy of our forecasts.
Table 1 summarises the number of data samples in each set

Fig. 2. Plot of the values taken by the Ca index between 1995 and 2018 included (black thin line). The training (green area), validation (yellow
area), and test (red area) sets are highlighted. The 13-month smoothed Sunspot Number is also plotted as an indicator for the solar cycle (red
thick line).
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and details the number of samples belonging to the disturbance
periods.

The lists of SIR and ICME events we used end respectively
in 2015 and 2016. Therefore, the number of samples in each
disturbance period for the training set and the full set is actually
greater than the ones reported in this table. This has no conse-
quence in this study since we only split the test set according to
the nature of the disturbance in order to evaluate the models.

2.3.2 Preprocessing the data

Before being fed into the neural network-based model, the
data are processed as follows:

– We interpolate the values of the Ca index in order to have
hourly values instead of a value every 3 h (this is meaning-
ful since Ca is a very smooth time-integrated index and
thus doing this interpolation changes neither the physics
nor the statistics of the problem).

– Missing values in the other data sets are filled using SSA.
– Inputs are rescaled so that their mean is 0 and their standard

deviation is 1. Outputs are rescaled to fit in the [0, 1] inter-
val. The weights for performing the transformations are
calculated only from the training data set to avoid bias
for validation and testing. This procedure is standard when
working with recurrent networks.

3 Models and evaluation methods

In this section, we present the models used to predict the Ca
index as well as the machine learning algorithms used in these
models. We also describe the methods and measures used to
evaluate the model.

3.1 Model description

The model developed in this study receives as input the past
values of four solar wind parameters listed in Section 2.1,
namely the plasma bulk velocity (Vsw), the ion density (q),
the southward component of the interplanetary magnetic field
(IMF) Bz and the plasma temperature (T ). Unlike other studies,
we choose not to include the past values of the geomagnetic
index as an input to the models because we position ourselves
in an operational-like context. Indeed, even though the ISGI
provides quick-look aa index values, reliance on two different
data sources always presents a higher risk of data unavailability
from one source, which is prejudicial when establishing a
near-real-time forecasting service. Ideally, for such a service,

one would have both models (with and without historical
geomagnetic indices as inputs), but this is out of the scope of
this study, and for clarity, we only study one model in this
paper. Here we use the 30 last days for each input (i.e., the
720 last hourly values). The inputs/outputs link can be sum-
marised as follows:

V swðt � 719Þ ::: V swðt � 1Þ V swðtÞ
qðt � 719Þ ::: qðt � 1Þ qðtÞ
Bzðt � 719Þ ::: Bzðt � 1Þ BzðtÞ
T ðt � 719Þ ::: T ðt � 1Þ T ðtÞ

0
BBB@

1
CCCA !

Caðt þ 1Þ
Caðt þ 2Þ

:::

Caðt þ nÞ

0
BBB@

1
CCCA;

where n is the forecast horizon.
In Section 4, we will analyse the results for a model trained

and tested with a forecast horizon n = 24 h.
Our main model is a neural network-based model. It

consists of a single layer Long-Short Term Memory network
(LSTM) combined with a linear fully-connected feed-forward
(FCFF-NN) layer. LSTMs are a type of recurrent neural net-
work first introduced in Hochreiter & Schmidhuber (1997).
LSTMs were created to address problems involving sequen-
tially-structured data such as time series or natural language.
In particular, LSTMs possess two internal memory states that
are designed to help address the gradient vanishing issue that
occurs when handling long sequences (Hochreiter, 1998). For
an in-depth understanding of deep learning methods, including
recurrent and LSTM networks, the reader is referred to the
papers mentioned above as well as to reference textbooks such
as Goodfellow et al. (2016).

Our model is summarised in Figure 3.
Let us summarise the functioning of the LSTM network

here. For each sample corresponding to a time step t � p, the
LSTM cell is fed with our solar wind parameters xt�p and the
two memory states computed at the previous time step: the hid-
den state ht�p and the cell state ct�p. The LSTM cell processes
and transforms the input and updates its hidden state and cell
state (now ht�p+1 and ct�p+1) using three “gates”: the input gate,
the output gate, and the forget gate. To put it in simple words,
the LSTM cell decides which information from the past is
“worth” being kept, forgotten, or updated according to the last
input. The latest memory states are again fed to the LSTM
cell along with the solar wind parameters at the next time
step xt�p+1. After all time steps have been given to the network,
the LSTM layer outputs the final hidden state ht that serves as
the input to the FCFF-NN layer, which itself outputs the t + 1
to t + n next values of Ca, n being the forecast horizon.

Let us note that LSTMs have already demonstrated a good
efficiency on geomagnetic index prediction problems (see, e.g.,
Gruet et al., 2018; Chakraborty & Morley, 2020; Laperre et al.,
2020).

Table 1. Number of data samples in each set, including the number of samples belonging to a disturbance period.

Data set Total number of samples Number of samples in a disturbance period

SIR-induced ICME-induced SIR- and ICME-induced

Training 139,512 >77,710 >28,047 >4219
Validation 16,801 10,794 2,251 888
Test 51,841 27,776 24,058 5,407
Full 208,154 >116,280 >54,356 >10,514
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Since this is the first study that focuses on the forecast of the
Ca index, there is no immediate baseline for us to compare our
model to. The usual baseline used in such a situation is the “per-
sistence model” (also known as the “naive model”), which sim-
ply consists in assuming that the predicted value is the same as
the last observed value. However, that baseline cannot be perti-
nently used here as we do not include the past values of the Ca
index among the inputs to our model. That is why we have also
trained a simple linear regression model to forecast the Ca index
from the same solar wind parameters as with the neural net-
work-based model, with the notable exception that the baseline
linear model only uses the last value for each solar wind param-
eter as input (and not several past values as with the neural net-
work-based model).

3.2 Training and parameters of the model

Our model was trained using the classical backpropagation
method (Rumelhart et al., 1986). The optimisation method used
is the Adam algorithm (Kingma & Ba, 2017). We have used a
learning rate lr = 1 � 10�4 that is halved a first time after epoch
15 and a second time after epoch 50. The loss function is the
mean-square error (MSE). The parameters of the model were
hand-picked using cross-validation and iteration. We list below
the main parameters of our model and some implementation
choices so that the replicability of our results is made easier.
Let the reader be advised that even after changing some of these
parameters (e.g., to reduce the computational cost) it is possible
to obtain very similar results.

– The LSTM cell state has dimension 256.
– The LSTM layer is mono-directional.
– We use L2-regularisation with weight 1 � 10�5. L2-regu-

larisation consists of adding the squared sum of the net-
work’s weights (with a multiplicative constant) to the
loss function to avoid overfitting.

– Size of each mini-batch: 256.
– The training is done with 120 epochs and with early stop-

ping. Early stopping consists in stopping the training of the
network as soon as clear signs of overfitting are observed.

The model was developed using the PyTorch (v1.9) library for
Python (Paszke et al., 2019).

3.3 Detection of events

Our models, as described above, offer predictions in the
form of a regression problem. However, it is often more useful
for an end-user in a decision-making context to benefit from a
predictive alert system. Such a (binary) predictive alert system
can be built from our (regression) models with the following
method: if we predict that Ca will exceed a given threshold
value during the next t hours, then we issue an alert (class 1),
if we predict that we stay below this threshold then we issue
no alert (class 0). The only difficulty lies in the choice of a suit-
able threshold.

In our example, we will choose a threshold value based as
much as possible on operational criteria. The threshold must
be meaningful to the end-user, i.e. the triggering of an alert must
correspond to a situation for which the operator is expected to
make a decision or take action. As the Ca index represents
the filling state of radiation belts with high-energy electrons,
we will choose a Ca threshold associated with a non-negligible
risk of damage due to surface charging.

Figure 4 in Bernoux & Maget (2020) shows that the
Ca index has a quite high correlation coefficient (R� 0.83) with
the dynamics of the integrated E � 30 keV electron flux at
L* � 6. Moreover, Matéo-Vélez et al. (2018) shows that the
risk of damage due to surface charging for a spacecraft in
geostationary orbit (i.e. at L* � 6) is well correlated with
the 10 � E� 50 keV electron flux when the latter is greater
than 1 � 108 cm�2 s�1 sr�1. A day during which the
10 � E � 50 keV electron flux always stayed above this value
has a minimum daily fluence of 8:64� 1012 cm�2sr�1. From
this value, we define a fluence threshold equals
8� 1012 cm�2sr�1.

We then tried and found a Ca threshold that gives the high-
est correlation between the monthly exceedances of the electron
fluence and the monthly exceedances of the Ca threshold (using
the daily Ca maximum). For the daily fluences, we have taken
data provided by the Magnetospheric Plasma Analyzer (MPA)
instrument onboard the Geosynchronous Equatorial Orbit
(GEO) LANL 1991–80 spacecraft between 1997 and 2006
for the energy range 35–46 keV McComas et al., 1993.
It was found that the number of monthly fluence exceedances
is best correlated with the monthly Ca exceedances when the

Fig. 3. Simple scheme representing the LSTM-based model to forecast the values of the Ca index up to n hours in advance. The mechanism
inside the LSTM cell was voluntarily not detailed.
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Ca threshold is Cathreshold = 38 nT. This is also illustrated in
Figure 4.

It should be noted in hindsight that the Ca value of 38 nT
corresponds approximately to the 0.95 percentile of all Ca val-
ues, which seems statistically satisfactory. Indeed, it is a value
that is therefore rare enough to make a credible and useful alert
threshold (an operator would probably not want to receive an
alert when the Ca value only exceeds the median, for example).
But it is also a value that is not too high, which allows better
learning for the neural network (indeed, the higher the threshold,
the fewer samples we have to train and evaluate the model). Let
us also insist on the fact that this threshold value used to define
our binary classes in our study is only an example, and that
depending on the effect considered (internal charging, surface
charging, singular events, etc.), the orbit considered, or even
the satellite considered (and thus its structure) it would be more
interesting to use other thresholds, and probably to increase the
number of classes.

3.4 Model evaluation

In this subsection, we describe the measures used to evalu-
ate the forecast performance of our models.

3.4.1 Regression metrics

Since our problem is designed as a regression problem, we
first evaluate our model using two very common regression
metrics: the root-mean-square error (RMSE) and the Pearson
(linear) correlation coefficient (R). Let us define yi the real
observed values and �yi the values forecast by a model for
i 2 1,. . .,N, N being the number of samples.

– The RMSE is a measure of the global accuracy of the model,
with more emphasis put on higher values (e.g., here, the

emphasis is on periods of more intense geomagnetic activity).
A lower RMSE means a more accurate forecast. The RMSE is
given by:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

ð�yi � yiÞ2
vuut : ð2Þ

– The Pearson correlation indicates if the forecast values glob-
ally follow the same trends as the real values. The Pearson
correlation ranges between 0 and 1 (higher is better). It is
given by:

R ¼ Covð�yi; yiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varð�yiÞ � VarðyiÞ

p : ð3Þ

We also use a normalised version of the RMSE (NRMSE),
which allows for a better comparison of data sets with different
scales. The NRMSE is obtained by dividing the RMSE by the
mean value of the observed yi. It is given by:

NRMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

PN
i¼1

ð�yi � yiÞ2
s

1
N

PN
i¼1

yi

: ð4Þ

Both RMSE and Pearson correlation are widely used in the
geomagnetic indices forecasting literature (e.g., in Lazzús
et al., 2017; Tan et al., 2018; Gruet et al., 2018; Sexton et al.,
2019). However, these metrics do not capture the full perfor-
mance of a model in all situations. Indeed, these metrics indicate
overall trends. Most of the time, geomagnetic activity is fairly
quiet, so quiet periods will weigh much more heavily on the

Fig. 4. Count of days per month for which LANL 1991-80/MPA instrument measured a daily 10 � E � 50 keV electron fluence above
8� 1012 cm�2sr�1 along with the count of days per month for which the daily Ca max was above 38 nT.
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evaluation metrics than periods of high activity, thus creating a
bias. While it is very interesting for a satellite operator to
accurately predict quiet periods, it is also very important to
accurately predict periods of geomagnetic disturbance. This
type of bias can be partially counterbalanced by taking adapted
test sets, as we have done in Section 2.3. In the following
subsections, we describe two other methods for evaluating the
predictions that allow us to better capture other types of
behaviours.

3.4.2 Measuring time lags

Some studies, such as Wintoft & Wik (2018) and Laperre
et al. (2020), highlight the fact that some forecasting models,
that display a great RMSE or Pearson correlation actually
fail to reliably forecast high disturbance periods in advance.
Laperre et al. (2020) show that some prediction models exhibit
systematic time lags between the observed time series and the
predicted time series. This systematic time lag would most often
be of the order of magnitude of the model’s prediction horizon.
This would indicate that the model, in reality, would fail to
predict a disturbance before it has actually been observed, which
is of very limited interest to an operator.

To quantify this behaviour, Laperre et al. (2020) use the
Dynamic Time Warping (DTW) algorithm, which measures
the time difference between two-time series (Berndt & Clifford,
1994). By applying this algorithm to the observed series and
the predicted series shifted successively by several consecutive
time steps, the authors are able to determine the extent of the
systematic lag. Nonetheless, in our study, we do not use the
exact same approach but a very similar one. Indeed, the main
drawback of the DTW method is that for a given prediction
horizon n, it requires circa n2 iterations of the DTW algorithm
with different time shifts to accurately assess the systematic
time lag. Besides, the computational complexity of the DTW
algorithm is high even with now modern methods to fasten
the computation of the DTW measure (e.g., Gold & Sharir,
2018). This is why we use the Temporal Distortion Mix
(TDM) instead.

The Temporal Distortion Mix is a metric proposed by
Vallance et al. (2017) to characterise the propensity of a time
series to be late or early relative to a reference series. This metric
is also based on the DTW algorithm. Based on this algorithm,
Frías-Paredes et al. (2016) propose the Temporal Distortion
Index (TDI), which indicates to what extent the two-time series
are systematically (or not) late (or early). Unlike the approach
proposed by Laperre et al. (2020), the TDI does not indicate
the value of a possible systematic time lag, but whether the
two-time series exhibit this type of behaviour and to which
extent. In return, there is no need for several computations of
the DTW measure as only one (per forecast horizon) is suffi-
cient to get the TDI. Guen & Thome (2019) have even sug-
gested that the TDI could be used as a part of the loss
function when training a neural network, but this is out of the
scope of our paper.

To obtain the TDM, the TDI is decomposed into two com-
ponents, which characterise the lateness and the advance, so that
TDI = TDIadv + TDIlate. The TDM is then given by:

TDM ¼ 1� 2� TDIadv
TDI

: ð5Þ

The TDM is hence a normalised version of the TDI. It ranges
between �1 and 1. Let s1 and s2 be two-time series.

– if TDMðs1; s2Þ ¼ �1 then s1 is systematically in advance
compared to s2;

– if TDMðs1; s2Þ ¼ 1 then s1 is systematically late compared
to s2;

– if TDMðs1; s2Þ ¼ 0 then both time series are temporally
aligned.

For instance, the TDM between a given time series and its
corresponding naive forecast is always 1. A good forecast is
hence a forecast that has a TDM close to 0. The TDM is a very
interesting evaluation measure since it only requires one run of
the DTW algorithm and it is possible to compare the TDM
between several forecasts (e.g., several forecast horizons). The
TDM was first introduced in a study dealing with the topic of
solar irradiance forecasting, which is also a time series forecast-
ing problem that shares structural similarities with ours.

3.4.3 Evaluation of the classification-based alert system

As we have already established, in an operational context in
space weather, it is important not only to have regression-type
predictions but also to have warning systems based on class pre-
dictions. In Section 3.3, we discussed how to transform our
regression problem into a binary classification problem (with
a threshold of Cathreshold = 38 nT). In order to evaluate this
derived alert system, we use several metrics and measures.
TP, FP, FN, and TN are the true positive, false positive, false
negative, and true negative counts.

– the precision: it is the ratio of issued alerts that match a true
threshold excess. It gives an indication of how relevant
the issued alerts are. It ranges between 0 and 1. Higher is
better. It is given by:

Precision ¼ TP

TPþ FP
ð6Þ

– the recall: it is the ratio of true threshold exceedances that
match an issued alert. It gives an indication of the ability to
issue relevant alerts. It ranges between 0 and 1. Higher is
better. It is given by:

Recall ¼ TP

TPþ FN
ð7Þ

– the Fscore: it is the Harmonic mean of precision and recall.
It ranges between 0 and 1. Higher is better. It is given by:

F score ¼ precision� recall

precisionþ recall
ð8Þ

– the False Alarm Rate (FAR): it is the ratio of nonevents for
which an alert was issued. It gives an indication of the ten-
dency to issue irrelevant alerts. It ranges between 0 and 1.
Lower is better. It is given by:

FAR ¼ FP

FPþ TN
ð9Þ
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– the threat score (TS): it gives an indication of how well true
threshold exceedances were forecast, penalising both false
alarms and false negatives. It ranges between 0 and 1.
Higher is better. It is given by:

TS ¼ TP

TPþ FNþ FP
ð10Þ

– the Heidke skill score (HSS): it could be seen as a gener-
alised skill score, giving the overall accuracy of the model
against that of a random model. It ranges between �1
and 1. Higher is better, 0 denotes no skill. It is given by:

HSS ¼ 2� ðTP� TN� FP� FNÞ
ðTPþ FNÞðFNþ TNÞ þ ðTPþ FPÞðFPþ TNÞ

ð11Þ

– The percentage of threshold-exceedance periods for which
the model actually issues an alert before the threshold was
exceeded (i.e., the number of active periods that were fore-
cast before they started and not only forecast after the
threshold was exceeded for the first time). This is not a
classical metric, but perhaps one of the most useful ones
here, since this gives an indication of how well the model
is able to forecast disturbance periods before they hap-
pened, not including the performance of the model once
the disturbance period has already started. Let us note that
there are 42 disturbance onsets (above the threshold
Ca = 38 nT) in the test set.

4 Results and discussion

4.1 Regression results

The regression results obtained with the baseline model and
the LSTM-NN model are presented in Table 2. Firstly, we can
see that the classical metrics (RMSE, R) give much better values
with the LSTM-NN model than the linear baseline. For a time
horizon of 3 h, the RMSE with the LSTM-NN is about 3.1 times
lower than with the baseline (2.62 instead of 8.13), and for a
time horizon of 24 h, this ratio is 2.0 (4.17 instead of 8.16). This
is an additional indication of the fact that LSTM-NN networks

are efficient for understanding the solar wind-magnetosphere
coupling. The RMSE values should be put into perspective with
the statistical distribution of the Ca index, which over the test
period has a variance of 8.9 nT and an interquartile range of
10.5 nT. This comparison allows us to state that the RMSE
values are satisfactory, especially for a model that does not
include the Ca index among its inputs. We also find that the
Pearson correlation values are quite high (�0.9 for all test sets
up to a time horizon of 18 h, instead of �0.65 with the base-
line), which is very satisfactory.

The TDM gives values �0.2 for a time horizon of 3 h and
up to 6 h, for test sets based on periods of disturbance. This indi-
cates that up to about 6 h, our forecasts are well aligned in time
with the target values. Beyond that, the TDM value increases up
to 0.60 for a 24 h time horizon with the full test set, indicating
that there is an almost systematic delay between the predicted
values and the target values.

Unsurprisingly, the values of the conventional metrics all
degrade as the time horizon increases. This degradation
(increase for RMSE and TDM, decrease for the Pearson corre-
lation) appears to be slow and smooth, as shown in Figure 5.
However, for this reason, it becomes difficult to tell from these
metrics alone from which time horizon the model is no longer
operationally valid.

We also observe that, in general, the LSTM-NN model
performs better during periods of SIR-induced disturbances than
during periods of ICME-induced disturbances. For a time hori-
zon of 3 h, the RMSE is 1.4 times higher for the ICME-induced
period than for the SIR-induced period, which is far from
negligible. Figure 6 shows several examples of forecasts for
two geomagnetic storms: one induced by an ICME and the
other by a SIR, the same storms already shown in Figure 1. This
figure shows the forecast values for 4 different time horizons
(3, 6, 12, and 24 h) made with both the LSTM-NN model
and the linear baseline model. We also indicate the TDM values
calculated corresponding to each forecast (the values for the
baseline are in brackets). It is clear from this figure that the neu-
ral network-based model outperforms the linear model, as
already indicated by the evaluation measures for the regression
problem. In these examples, the dynamics of the storm appear to
be well captured, and the forecast values are indeed close to the
observed values, as indicated by the RMSE. Furthermore, it
becomes apparent that the negative TDM values measured with
the linear model are due to the fact that the model has difficulty

Table 2. Evaluation of the NN-based and the baseline models in the context of the regression problem. The model was evaluated with the full
test set and also with the SIR-induced test set and the ICME-induced test set.

Time
horizon (h)

RMSE (nT) R TDM

Full SIR ICME Full SIR ICME Full SIR ICME

3 2.62 (8.13) 2.42 (6.37) 3.43 (11.18) 0.96 (0.63) 0.95 (0.64) 0.95 (0.64) 0.13 (�0.42) 0.07 (�0.30) 0.08 (�0.55)
6 2.75 (8.08) 2.52 (6.37) 3.57 (11.10) 0.95 (0.64) 0.94 (0.64) 0.95 (0.65) 0.21 (�0.37) 0.14 (�0.25) 0.16 (�0.51)
9 2.95 (8.05) 2.67 (6.39) 3.79 (11.05) 0.95 (0.64) 0.93 (0.64) 0.94 (0.65) 0.39 (�0.32) 0.21 (�0.21) 0.25 (�0.49)
12 3.17 (8.05) 2.85 (6.43) 4.03 (11.01) 0.94 (0.64) 0.92 (0.64) 0.93 (0.65) 0.39 (�0.28) 0.28 (�0.16) 0.35 (�0.46)
15 3.42 (8.05) 3.04 (6.48) 4.29 (10.97) 0.93 (0.64) 0.91 (0.63) 0.92 (0.64) 0.46 (�0.23) 0.35 (�0.12) 0.43 (�0.41)
18 3.66 (8.08) 3.24 (6.54) 4.53 (10.94) 0.91 (0.63) 0.90 (0.63) 0.91 (0.64) 0.52 (�0.17) 0.40 (�0.06) 0.48 (�0.35)
21 3.92 (8.11) 3.43 (6.59) 4.78 (10.92) 0.90 (0.62) 0.89 (0.62) 0.90 (0.63) 0.56 (�0.13) 0.45 (�0.02) 0.52 (�0.30)
24 4.17 (8.16) 3.62 (6.65) 5.03 (10.90) 0.89 (0.62) 0.88 (0.61) 0.89 (0.63) 0.60 (�0.10) 0.49 (0.03) 0.58 (�0.29)

Notes. The results obtained with the NN-based model are given in bold. The results obtained with the baseline are given in brackets.
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correctly modeling the decay phase of a storm, which decreases
too fast and hence appears “ahead” in comparison to the true
series.

Besides, the fact that the predicted (with the LSTM-NN
model) and observed time series show a time delay as the time
horizon increases is evident in these examples. It would appear
that this time shift is more pronounced during the beginning of
the disturbance period than during the decay phase of the storm,
which in the SIR-induced storm example remains well predicted
even 24 h in advance. We should be able to better quantify this
behaviour using the measures for the evaluation of the classifi-
cation problem.

The difference of performance between ICME-induced and
SIR-induced storms could hence at least partly be explained by
the fact that Ca increases more rapidly during ICME-induced
disturbances. As indicated by the TDM values (and as we will
see below with the classification measures), the LSTM-NN
model seems to be under-performing during the initial phase
of a disturbance. Since during SIR-induced disturbances, the ini-
tial increase is slower than during ICME-induced disturbances,
the RMSE during the beginning of the disturbance period
should be lower in the first case, which contributes to the overall
RMSE being lower for the SIR-induced test set than for the
ICME-induced test set.

Fig. 5. Evaluation of the LSTM-NN model with three measures (RMSE, R and TDM) for values of time horizon ranging from 1 h to 24 h.
Three evaluation sets (full test set, SIR-induced set and ICME-induced set) were used.
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Figure 7 shows the Normalised RMSE (NRMSE) and the
Pearson correlation for forecasts with a time horizon of 3 h, after
binning the target values into quarters containing more-or-less
the same number of items. Here we use the NRMSE since
we are comparing the forecasts for different scales of Ca values,
thus using the RMSE for the comparison would be like compar-
ing apples and oranges. It appears that the LSTM-NN model

gives stable NRMSE values when Ca increases, which shows
that the model is performing similarly not only when Ca is
low but also when it reaches higher values, unlike the baseline.
The Pearson Correlation for both models decreases when Ca is
between the first and the third quartile. This is most probably
due to the choice of bins matching the quartiles of Ca. Indeed,
the range of Ca values in these bins is less than 6 nT, i.e. of the

Fig. 6. Example of forecasts obtained with the LSTM-NN model and the linear model during two geomagnetic storms, the first one (left-hand
side) being an ICME-driven storm and the second one being a SIR-driven storm (right-hand side). Four different forecast horizons were used (3,
6, 12 and 24 h). The value of Ca used for the binary classification is the blue dotted line, given as a landmark. For each prediction, the
corresponding TDM value is given (the TDM values for the baseline forecasts are given in brackets).
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order of only twice the RMSE. Therefore, it is not surprising
that the spread of predicted values over such a small range of
observed values makes the linear correlation in these bins
weaker. To summarise, this figure shows us that the model gives
stable results and is still a much better model than the linear
model for the whole distribution of Ca values, with a notable
improvement for high values of Ca.

4.2 Classification results

The classification results are given in Table 3 and Figure 8.
For a time horizon of 3 h, nearly 85% of the alerts issued were
true positives, while 84% of the threshold exceedances were
detected. For a time horizon of 24 h, these numbers rise and fall
respectively to 87% and 73%. The fact that the precision
increases with the time horizon is due to the definition of our
binary classes. Indeed, we are trying to forecast if the threshold
will be exceeded at any given time in the next t hours (and not at
a precise given time). In our case, as the threshold increases, the
model forecasts less often false positives and more false nega-
tives. That is why the precision increases somewhat counter-
intuitively. This highlights the need for several evaluation meth-
ods in order to obtain a more exhaustive idea of the true perfor-
mance of the model. Let us note that the Fscore, which is the

harmonic mean of precision and recall, decreases from 0.84
(for a time horizon of 3 h) to 0.80 (for a time horizon of
24 h), further indicating that the model performs better for
shorter time horizons.

It is difficult to argue at what percentage of precision and
recall the model becomes satisfactory. In absolute terms, cor-
rectly predicting more than two out of three periods of distur-
bance while making only �25% false positives might seem to
be a satisfactory target. However, depending on the economic
constraints due to spacecraft operation, this could be largely
insufficient. Here we cannot definitively conclude about the
absolute quality of our model but only about criteria that would
be defined by an operator and that depend on each space
mission or on the targeted objective. It should be noted, how-
ever, that the score values are also quite high, especially for
the HSS. In absolute terms, these values are rather difficult to
interpret and should serve above all as a point of comparison
for possible future studies focusing on the forecast of similar
physical quantities.

A result that is easier to interpret and that gives user-friendly
information is the percentage of disturbance periods forecast in
advance, given in Figure 8. To obtain this figure we calculated
the percentage of times and how long before the model was able
to correctly answer the question: “Will the threshold be

Fig. 7. Normalised RMSE and Pearson correlation of the 3-h ahead predicted values versus binned observed values. Each bin contains a
quarter of the total observations in the test set.

Table 3. Evaluation of the NN-based and the baseline models in the context of the classification problem.

Time horizon (h) Precision Recall Fscore FAR Threat score Heidke Skill Score

3 0.85 (0.64) 0.84 (0.07) 0.84 (0.12) 0.010 (0.002) 0.73 (0.06) 0.83 (0.11)
6 0.85 (0.66) 0.83 (0.07) 0.84 (0.12) 0.010 (0.002) 0.73 (0.07) 0.83 (0.11)
9 0.86 (0.67) 0.82 (0.07) 0.84 (0.12) 0.009 (0.002) 0.72 (0.07) 0.83 (0.11)
12 0.87 (0.68) 0.80 (0.07) 0.83 (0.13) 0.009 (0.002) 0.71 (0.07) 0.82 (0.12)
15 0.87 (0.69) 0.79 (0.07) 0.83 (0.13) 0.009 (0.002) 0.70 (0.07) 0.81 (0.12)
18 0.87 (0.69) 0.77 (0.07) 0.82 (0.13) 0.009 (0.002) 0.69 (0.07) 0.80 (0.12)
21 0.87 (0.70) 0.75 (0.07) 0.81 (0.13) 0.009 (0.002) 0.68 (0.07) 0.79 (0.12)
24 0.87 (0.69) 0.73 (0.07) 0.80 (0.13) 0.009 (0.002) 0.66 (0.07) 0.78 (0.12)

Notes. The results obtained with the NN-based model are given in bold. The results obtained with the baseline are given in brackets.
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exceeded during the next 24 h?” Therefore here, we are only
interested in the model’s ability to predict the beginning of a
period of disturbance (without taking into account the continu-
ation of such a period). It appears that the model is able to
answer this question correctly slightly less than 80% of the time
1 h before the threshold is exceeded. This percentage remains
above 50% up to 5 h before the threshold is exceeded. Between
6 and 9 h prior to a threshold exceedance, around 40% of the
disturbance periods were correctly forecasted. Less than 25%
of the threshold exceedances were forecast at least 15 h in
advance. This shows that even though 73% of the total excee-
dances were detected somewhere between 1 h and 24 h before
they happened, only less than one out of two disturbance
periods were detected 6 h before they happened, and less than
one out of four were detected 24 h before they happened. This
is a much more significant measure of the operational nature of
our model and confirms the point we made earlier about the
difficulty of predicting the onset of a geomagnetic storm.

4.3 Discussion

In fact, the above-mentioned results are not very surprising
since our models rely on solar wind parameters measured close
to the Earth. Consequently, the temporal hindsight to predict the
dynamics of radiation belts is small. This is reflected in the
TDM measurements, which indicate that the forecasts are
globally very well temporally aligned with the observations
for forecast horizon values shorter than 6 h, which corresponds
approximately to the reaction time of the geomagnetosphere
interacting with a disturbance arriving near Earth. We can there-
fore deduce on the one hand that our model seems to be in
agreement with the physics of the problem. But on the other
hand, if we do not change the nature of our inputs, the same
physics stops us from having good operational performances
for greater prediction horizons.

Moreover, it seems delicate to find a limit to the prediction
horizon for our model, beyond which it is possible to state

definitively that the model is no longer operational. As
mentioned above, this depends on the needs of an operator.
In the absence of threshold values that could serve as landmarks
for metrics such as precision or recall, we can only guess.
One way to do this would be to consider the percentage of
storms predicted in advance. If we take a threshold of 50%, then
the operational prediction horizon limit of our model is 5 h.
With a threshold of 75%, then our operational prediction
horizon limit is only 1 h. Another method would be to take into
account the TDM. With an arbitrary threshold of 0.2, the predic-
tion horizon limit of our model is 6 h, whereas with a threshold
of 0.1, the horizon limit is only 1 h for the full test set, but 4 h
during SIR-induced disturbance periods and 3 h during
ICME-induced disturbance periods.

A limit of 6 h was found in other papers dealing with the
forecasting of the Dst index (Lazzús et al., 2017; Gruet et al.,
2018). Some studies that aim at forecasting the Kp index, such
as Alaya Solares et al. (2016); Sexton et al. (2019), claim to be
able to forecast the Kp index up to 24 h in advance. It would be
interesting to assess the operational performance of the models
presented in these papers with the TDM and by evaluating only
the ability to predict the onset of a storm in order to have a more
comprehensive understanding of their actual effectiveness in
operational contexts. Let us insist, however, on the fact that
the difficulty for long prediction horizons lies at the beginning
of the storm and not in its continuity because the accumulation
of energy makes it possible to find a link between the solar wind
parameters and the geomagnetic indices even after 6 h of
course. This is particularly the case with a time-integrated index
such as Ca, which allows for good overall forecast perfor-
mances up to 24 h in advance.

It might be tempting to compare our results to the results
presented in e.g. Forsyth et al. (2020), where the authors present
a model to forecast the GOES-15� 2 MeV electron fluxes from
solar wind data and also evaluate their model with classification
measures. For instance, one of their models (when maximising
the average Receiver Operating Characteristic score) for a time

Fig. 8. Percentage of times the 24 h-binary classification problem was correctly forecast during quiet periods previous to a threshold
exceedance depending on how much time (from 1 h to 24 h) there was left before the exceedance.
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horizon of 6 h gives a hit rate (or precision) of 0.75, whereas for
the same time horizon, ours give a higher hit rate of 0.87.
However, this comparison does not stand because we are not
focusing on the same energy range, and our model does not
use the same classification thresholds and criteria. Indeed, here
we answer the question: will the threshold be exceeded some-
where in the next t hours? In Forsyth et al. (2020), the question
is: will the threshold be exceeded in exactly t hours? We have
chosen to approach the problem in this way because we believe
that a warning system defined in this way is more useful, espe-
cially if we ask this question for several time horizons t. Yet this
is an arbitrary choice, and it could be argued otherwise. We
wanted to stress here that, as highlighted in Camporeale
(2019), comparing the performance of one model relative to
another is not straightforward, and one should be cautious when
doing it.

5 Conclusion

In this study, we propose a recurrent network-based
approach to forecast the fairly new geomagnetic index Ca.
The main reason for focusing on this index is that this index
is well correlated with the high-energy electron fluxes in the
radiation belts and could hence be used as an indicator for their
state of filling, without the drawbacks inherent to measuring
in-situ fluxes with spacecrafts.

The implementation choices made in this paper were made
by keeping in mind an operational context. These choices
include the geomagnetic index to be forecast, the inputs used
in our models, and the whole evaluation methodology. To this
end, we have highlighted the importance of choosing statisti-
cally and physically representative train and test sets. We have
also stressed the need to use adequate measures to evaluate the
model since classical metrics such as the RMSE or the Pearson
correlation cannot give an exhaustive report on the performance
of the model, in particular during disturbance periods. That is
why we use the Temporal Distortion Mix to measure the
tendency for a forecast to be late or in advance in regards to
the true observations.

We also transform the forecast problem from a regression
problem to a binary classification one. The choice of the thresh-
old used to define the binary classes was made, taking into
account the risk for GEO spacecrafts to suffer damage from
the surface charging effect. The evaluation of the binary classi-
fication forecasts shows that even though the regression
measures seemed great, the network does not show outstanding
performance when it comes to forecasting the onset of a distur-
bance period. This is most certainly due to the spatial (and
hence temporal) proximity between the solar wind parameters
used as inputs and the geomagnetosphere. In order to improve
the forecast results for time horizons of 12 h, 24 h, and beyond
it could be interesting to go back to the Sun and use data
originating from solar imaging as inputs to a model. This
topic will be the main focus of future studies. For now, even
though the measures are good and much better than the linear
baseline, it would be difficult to claim that this model is fully
adequate for use in an operational situation. This would require
at least an assessment of the model’s ability to predict extreme
events, which will be the subject of future studies. However,

with this study, we have already taken a first great step towards
this goal.

Other possibilities that remained out of the scope of this
study are the use of probabilistic forecasts (as done with other
indices e.g. in Chandorkar et al., 2017; Chakraborty & Morley,
2020) or grey-box models. This paper being the first one dealing
with the topic of forecasting the Ca index, we voluntarily kept
those possibilities aside for the sake of clarity and so as not to
dilute the purpose of this study. However, we acknowledge that
these are important avenues to explore, which will be done in
future studies.
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Appendix A

A.1 Gap-filling with Singular Spectrum Analysis (SSA)

To fill the missing values in our dataset we followed the
SSA gap-filling method described in Kondrashov et al. (2010)
and very well summarised in Section 2 of Kondrashov et al.
(2014): “SSA is a data-adaptive, nonparametric method for
spectral estimation; a comprehensive review can be found in

Ghil et al. (2002) It is based on diagonalization of the time-
lagged covariance matrix of multivariate time series; the set of
its eigenvectors or temporal empirical orthogonal functions
(EOFs) is an optimal set of data-adaptive, narrowband filters
for decomposing the variance within a sliding time window M.
Projecting the data set onto each EOF yields the corresponding
principal component (PC); the entire time series or parts thereof
can be reconstructed by using linear combinations of PCs and
EOFs for selected number of K modes, which yield the recon-
structed components. Kondrashov & Ghil (2006) developed an
SSA-based gap-filling method that relied on the presence of sig-
nificant oscillatory modes in the time series [...]. Kondrashov
et al. (2010) generalized the SSA gap-filling methodology to
multivariate geophysical data consisting of gappy “drivers”
and continuous “response” records and applied it to fill in large
gaps in solar wind and IMF data, by combining it with time-
continuous geomagnetic indices. It is the covariation in driver
and response at times when both are present that allows us to
reconstruct the former when only the latter is measured.”

Here we will be using the geomagnetic indices Kp and Dst
as our “response” records. All the steps of the SSA gap-filling
method are automatically performed by the SSA-MTM toolkit
(Vautard et al., 1992) that is publicly available e.g. at https://
dept.atmos.ucla.edu/tcd/download. But we also need to find
the optimal M and K values, which are non-trivial. Kondrashov
et al. (2014) suggests some values for a few solar wind param-
eters, but they did not include e.g. the plasma temperature T.
That is why we performed a new search for optimal parameters,
using a more recent period.

In order to find the optimal SSA window size M and num-
ber of modes K for each solar wind parameter, we introduced
artificial gaps in each time series for the period 2008–2018.
The artificial gaps are reproductions of the true gaps found in
the same time series, but during the period 1984–1994, so that
the distribution and the length of the artificial gaps were plausi-
ble. Then we searched for the best M and K values that allowed
for the best reconstruction of the gaps as measured with the
RMSE and Pearson correlation. The parameters optimal param-
eters were found by performing an iterative grid search using
quasi-random low discrepancy Sobol sequences (Sobol’,
1967) generated by the Python package OpenTURNS (Baudin
et al., 2015). The set of optimal parameters (namelyM* and K*)
found for each time series are reported in Table A.1. The time
series gap-filled using the SSA technique and these M* and K*
values are available online as Supplementary Material to this
article.

Table A.1. Optimal M* and K* values found for filling the gaps in
the time series.

Solar wind parameter M* K*

Vsw 110 29
q 12 30
T 12 29
Bz 9 17
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