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ABSTRACT9

The Ca index is a time-integrated geomagnetic index that correlates well with the dynamics of10

high-energy electron fluxes in the outer radiation belts. Therefore Ca can be used as an indica-11

tor for the state of filling of the radiation belts for those electrons. Ca also has the advantage of12

being a ground-based measurement with extensive historical records. In this work, we propose a13

data-driven model to forecast Ca up to 24 hours in advance from near-Earth solar wind parame-14

ters. Our model relies mainly on a recurrent neural network architecture called Long Short Term15

Memory that has shown good performances in forecasting other geomagnetic indices in previous16

papers. Most implementation choices in this study were arbitrated from the point of view of a17

space system operator, including the data selection and split, the definition of a binary classifica-18

tion threshold, and the evaluation methodology. We evaluate our model (against a linear baseline)19

using both classical and novel (in the space weather field) measures. In particular, we use the20

Temporal Distortion Mix (TDM) to assess the propensity of two time series to exhibit time lags.21

We also evaluate the ability of our model to detect storm onsets during quiet periods. It is shown22

that our model has high overall accuracy, with evaluation measures deteriorating in a smooth and23

slow trend over time. However, using the TDM and binary classification forecast evaluation met-24

rics, we show that the forecasts lose some of their usefulness in an operational context even for25

time horizons shorter than 6 hours. This behaviour was not observable when evaluating the model26

only with metrics such as the root-mean-square error or the Pearson linear correlation. Considering27

the physics of the problem, this result is not surprising and suggests that the use of more spatially28

remote data (such as solar imaging) could improve space weather forecasts.29

Key words. space weather – forecasting – radiation belts – machine learning – solar wind

1. Introduction30

One of the current main topics of interest in the space weather field is the forecasting of geomagnetic31

indices based on machine learning methods. Machine learning has allowed for a great improvement32
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in short-term forecasts of geomagnetic indices such as the global index Kp (Wintoft et al., 2017;33

Tan et al., 2018; Chakraborty and Morley, 2020) or Dst index (Gruet et al., 2018; Lethy et al.,34

2018). Space weather-induced events can have heavy-to-extreme consequences on human-made35

infrastructures, as for instance space-borne hardware or even ground-based facilities (Riley et al.,36

2017). That is why the reliable forecast of geomagnetic indices and other space-weather relevant37

physical quantities (e.g. relativistic electron or proton fluxes in the radiation belts) is of paramount38

importance.39

The extent of the effects of the space radiative environment on satellites ranges from single events40

caused by high energy charged particles from cosmic rays or solar energetic particles (SEP) to in-41

ternal charging, surface charging, or total ionising dose (Horne et al., 2013). Therefore, being able42

to accurately and reliably forecast the fluxes of high-energy electrons (from dozens of kiloelectron-43

volts to a few megaelectronvolts) in the radiation belts would represent a great leap towards better44

mitigation of the radiation-induced risks in space. Extensive efforts have already been conducted to45

forecast such electron fluxes. A considerable review of the methods used to forecast these electron46

fluxes was recently proposed by Camporeale (2019), where it is detailed that feed-forward neural47

networks and recurrent neural networks (RNNs) are used to obtain forecasts up to a few hours or a48

few days ahead (see e.g. Ling et al. (2010); Wei et al. (2018)).49

However, Camporeale (2019) notes that although many approaches have been tested, it remains50

difficult to predict these fluxes due in particular to certain physical phenomena that are difficult to51

take into account for a “black-box” type model. Thus, many more recent models based on machine52

learning methods do not seem to perform better than older models. In addition, using data-driven53

approaches to predict radiation belt dynamics with in-situ data is challenging since it is important54

to have large databases that are properly calibrated (which is more complicated when using space-55

borne instruments rather than ground-based ones).56

Recently, Bernoux and Maget (2020) have proposed a new time-integrated geomagnetic index57

that aims to be more representative of the state of filling of the Earth’s radiation belts. This so-58

called Ca index is a time-integrated index based on the better-known aa index. As we will see59

in detail in section 2, Ca was created to take into account the intensification of trapped electrons60

in the radiation belts. Ca is therefore a complementary index to other indices such as Kp or Dst.61

Thus in this study we focus on the prediction of the radiation belts dynamics represented by the62

Ca index. To do so we will use deep learning methods (i.e. machine learning approaches based on63

deep neural networks) that have already been successfully tested with other geomagnetic indices.64

However, and in contrast to other studies, we concentrate on evaluating our models by trying to65

take into account the point of view of a spacecraft operator. Therefore we use evaluation methods66

other than the classical metrics such as the root-mean-square error and the linear correlation, which67

can only account for global behaviour and are consequently largely insufficient to quantify other68

phenomena such as time shifts.69

In this work, we design a neural network-based model to forecast the Ca index up to 24 hours70

in advance. Then we evaluate the model using both classical metrics and also a method to detect71

the systematic existence of time shifts in our predictions. We also transform the regression problem72

into a binary classification problem aimed at predicting danger periods in terms of surface charging73

and we evaluate it accordingly. In Section 2 we present the data sets used in our models and we74

explain why they were chosen and how they were pre-processed. In Section 3 we present the models75

2



Bernoux et al.: An operational approach to forecast the Earth’s radiation belts dynamics

and their dedicated evaluation methods. In Section 4 we present and discuss the results before76

concluding in Section 5.77

2. Data analysis78

In this section, we describe and analyse the data sets used in this paper. Firstly we list the solar wind79

parameters and geomagnetic indices used here and explain where and how they can be obtained.80

Then we focus on the geomagnetic index Ca and explain its relevance to our purposes. Finally, we81

explain how the time periods used for the training and the evaluation of the different models were82

selected.83

2.1. Data sets84

It is now well known that the geomagnetic indices representing the state of the magnetosphere85

are predominantly driven by solar wind dynamics (Akasofu, 1981; Baker et al., 1981). That is86

why, as in many other studies (e.g. Lundstedt and Wintoft, 1994; Wu and Lundstedt, 1997; Wing87

et al., 2005; Chandorkar et al., 2017; Chakraborty and Morley, 2020), we use solar wind parameters88

available in the OMNIweb database (King and Papitashvili, 2005) as inputs to our geomagnetic89

index forecast models. The OMNIweb database (https://omniweb.gsfc.nasa.gov/) grants90

access to hourly spacecraft-interspersed near-Earth measurements of solar wind parameters. Earliest91

solar wind parameters are available since late 1963. In particular we select the plasma bulk velocity92

Vsw, the ion density ρ, the southward component of the interplanetary magnetic field (IMF) Bz and93

the plasma temperature T as the inputs to our models. It is now well known that these parameters94

correlate well with geomagnetic indices and with the dynamics of electron fluxes in the radiation95

belts (Burton et al., 1975; Wing et al., 2016). A thorough study based on information-theoretical96

tools could help us in finding an even better set of input parameters, but this is out of the scope of97

our study and could be the topic of future work.98

The geomagnetic index studied here is the Ca index, that was first introduced by Bernoux and99

Maget (2020) based on a previous study by Rochel et al. (2016). Therefore the following paragraphs100

rephrase some information on the purpose and relevance of this index that was contained in these101

papers.102

The Ca index is an index derived from the well-known aa index. The aa index is a 3-hr K-103

based index first introduced by Mayaud (1971) and computed from data provided by two subauroral104

antipodal observatories. aa index is the geomagnetic index having the longest available track record105

with data available since 1868. This gives us more than 150 years of homogeneous (Mayaud, 1980)106

and exploitable geomagnetic data with a time cadence of 3 hours. This is particularly useful when107

dealing with topics, such as statistical analysis, which require a great amount of data. In particular,108

aa index covers a time range equivalent to 14 solar cycles. Nowadays, the aa index is made available109

by the International Service of Geomagnetic Indices (ISGI) and can be downloaded from their110

website (http://isgi.unistra.fr/data_download.php).111

As stated in Bernoux and Maget (2020), Ca index has been designed to quantify the geoeffective-
ness of solar wind structures impacting the magnetosphere from the radiation belts perspective. The
relaxation characteristic time in the radiation belts for high-energy electrons after a strong magne-
tospheric disturbance is of the order of 4 days (Meredith et al., 2006; Rochel et al., 2016). Therefore
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the Ca index is defined as follows:

Ca(t) =
1
τ

∫ ∞

0
aa(t − t′)e

−t′
τ dt′ (1)

with τ = 4 days being the relaxation characteristic time and aa representing the geomagnetic ac-112

tivity. Being directly derived from aa index, Ca index shares the same above-mentioned qualities113

and properties. Further details on the interest and relevance of using the Ca index are provided in114

subsection 2.2.115

2.2. Why study and forecast the Ca index?116

Numerous studies have already been conducted on the topic of the nowcasting and forecasting of117

geomagnetic indices. Many of them focus on the Kp index or the Dst index, which are two very well-118

known indices that have been thoroughly studied for decades. However, it should be reminded that119

all geomagnetic indices are not interchangeable and that those indices have physical meanings. For120

instance, Borovsky and Shprits (2017) makes clear that the Dst index is unable to capture all types121

of geomagnetic storms behaviour and is in reality a very poor index when studying space-weather-122

relevant phenomena such as the dynamics of the electrons in the outer radiation belts induced by123

long-duration Corotating Interaction Regions (CIR)-driven storms. This is why it is important not to124

direct the research effort solely to the problem of forecasting the Kp and Dst indices, but to diversify125

the indices studied, in order to include a greater diversity of space-weather-relevant phenomena.126

The Ca index was created to account for geomagnetic storms during which intensification of rel-127

ativistic electrons trapped in the radiation belts is observed. It was shown in Rochel et al. (2016)128

and Bernoux and Maget (2020) that this index correlates well with electron fluxes (E > 30 keV) in129

the radiation belts and is able to take into account phenomena such as energy accumulation due to130

long-duration Stream Interaction Region (SIR)-driven storms, but also due to multiple successive131

Interplanetary Coronal Mass Ejection (ICME)-driven events. Figure 1 displays examples of the typ-132

ical behaviour of the Ca index during ICME- and SIR-driven storms. During ICME-driven storms,133

the aa index tends to reach higher values (in this example aa reaches 228 nT) quickly, but it also134

decreases rapidly, whereas during SIR-driven storms the disturbance lasts longer even though the aa135

index usually does not reach such high values (in this example it only reaches 81 nT). Therefore the136

Ca index reaches its peak value much faster during the ICME-driven storm. However, the value of137

the peak is similar during both these events as Ca accounts better for energy accumulation (48.6 nT138

during the ICME-driven storm against 42.4 nT during the SIR-driven storm).139

It was also stated in those papers that by changing the value of the parameter τ it is possible to140

easily create an index that accounts better for a given specific orbit (but then less for the others). It141

is interesting to note that the Ca index is not the only attempt to create an index with such properties142

and another approach was proposed by Borovsky and Yakymenko (2017).143

From an operational perspective, the prediction of the Ca index could serve as a basis for an alert144

service for the accumulation of high-energy electrons in the radiation belts. In such a context, the Ca145

index would act as a proxy for relativistic electron fluxes, which is monitored from ground-based146

magnetometers. As stated in Section 1, using a data set that already has decades of cross-calibrated147

samples is also a great asset when dealing with data-driven approaches that require lots of data to be148

efficient. Besides, it may also be more reliable in terms of continuity of service to rely on ground-149

based instruments rather than onboard instruments that are subject to the risks associated with their150
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Fig. 1. From bottom to top: evolution of the geomagnetic indices Dst, aa, and Ca, and of the flux of
electrons in the radiation belts for the E ≥ 300 keV energy range, measured by the SEM instrument
aboard the POES-15 spacecraft a) from 24 September to 8 October 1998 during a period that dis-
played an ICME-induced disturbance starting on 25 September 1998, and b) from 7 October to 21
October 1999 during a period that displayed a SIR-induced disturbance starting on 9 October 1999.

being in space, at least as a backup. Thus, the prediction of the Ca index is of immediate interest to151

the operators of space-borne systems.152

2.3. Establishing the training, validation, and test sets153

2.3.1. Splitting the data sets154

In this subsection, we briefly analyse the time series supplied by the OMNIweb database in order155

to detect any important data gaps (that would be prejudicial for the training of a machine learning156

algorithm) and to carefully choose the time periods used to train, validate and evaluate our models.157

Dividing a data set into training, validation, and test sets is a very common practice in machine158

learning applications. If needed the reader is referred to Carè and Camporeale (2018) for more159

details.160

Before the availability of the Wind/Solar Wind Experiment (Wind/SWE) and the Advanced161

Composition Explorer magnetometer and Solar Wind Electron, Proton, and Alpha Monitor162

(ACE/MAG and ACE/SWEPAM) data starting in 1995 and 1998, the OMNIweb database has a163

high percentage of missing data. Therefore in our study, we only use data from 1995 onward. For164

the 1995-2019 period there was on average 2.41% of missing data per year. Even if most of the165

gaps are very short ones, there are some gaps larger than three or four days, which require proper166

handling. That is why we decided to fill the data gaps with the method introduced in Kondrashov167
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et al. (2010). This method is based on Singular Spectrum Analysis, a data-adaptive spectral estima-168

tion method that is designed to provide information on the underlying dynamics of a (multivariate)169

time series (Ghil et al., 2002). In the context of space physics, SSA has already been used to fill170

the gaps in the OMNIweb database, which improved the accuracy of empirical magnetic field mod-171

els compared to another simpler method based on linear interpolations (Kondrashov et al., 2014).172

Appendix A provides more information on the practical gap-filling of the time series used in this173

paper with a dedicated toolkit (Vautard et al., 1992).174

The choice of the data that is used to train, validate and test the neural network is of critical175

importance. This includes the appropriate choice of how the data set is temporally subdivided into176

training, validation, and test data sets (Lazzús et al., 2017). In order to correctly train a machine177

learning algorithm, the training data set should be comprised of a representative period during178

which all kinds of space weather phenomena, including extreme events, were observed. The testing179

(and the validation) period should also be comprised of both quiet and agitated periods. Eventually,180

we have chosen the following periods, highlighted in Figure 2:181

– Training set: 2003-01-01 – 2018-12-31182

– Validation set: 1995-01-01 – 1996-12-31183

– Test set : 1997-01-01 – 2002-12-31184

Fig. 2. Plot of the values taken by the Ca index between 1995 and 2018 included (black thin line).
The training (green area), validation (yellow area), and test (red area) sets are highlighted. The 13-
month smoothed Sunspot Number is also plotted as an indicator for the solar cycle (red thick line).

The train set is composed of 16 continuous years including the declining phase of one cycle and185

a full second cycle. The train set includes several extreme and even most extreme events, including186

the “Halloween storm” of November 2003 that reached a maximum value of Ca of 147.6 nT and187

was found to be the only 1-in-100 year event (in terms of Ca index) witnessed since the beginning188
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of the Space Era (Bernoux and Maget, 2020). The validation set is composed of a 2-year long period189

during a solar minimum. The test set is composed of 6 continuous years including the ascending190

phase, the maximum, and the beginning of the descending phase of a solar cycle. The test set191

includes intense and even extreme storms (≥ 67 nT), which is a good step towards a fair evaluation192

of our model. The chosen split should ensure that our sets are representative enough of the space193

weather phenomena that can be observed through Ca.194

To evaluate our model in an even more detailed way, we divide the test set into subparts corre-195

sponding to periods of disturbances induced on the one hand by ICMEs and on the other hand by196

Stream Interaction Regions (SIRs), including CIRs. For this purpose, we use the ICME database197

provided by Chi et al. (2016) and the SIR database provided by Chi et al. (2018). These databases198

include the time of beginning and time of ending for several ICME- and SIR-induced geomagnetic199

disturbances between 1995 and 2015 (2016 for SIRs). According to these databases, 212 SIRs and200

204 ICMEs were observed in the near-Earth environment between 1997 and 2002 included. In our201

study, we define an ICME- (respectively SIR-) induced disturbance period as the time period dur-202

ing which an ICME- (respectively SIR-) induced geomagnetic disturbance has an influence on the203

dynamics of the Ca index. The beginning of the disturbance period is given by the beginning of the204

storm as indicated in the database. The ending of the disturbance period is given by adding τ = 4205

days to the ending of the storm as indicated in the database. We can hence evaluate our models using206

only the ICME- or SIR-induced disturbance periods and be able to better understand the accuracy207

of our forecasts. Table 1 summarises the number of data samples in each set and details the number208

of samples belonging to the disturbance periods.209

Table 1. Number of data samples in each set, including the number of samples belonging to a
disturbance period.

Data set Total number of samples
Number of samples in a disturbance period

SIR-induced ICME-induced SIR- and ICME-induced
Training 139,512 > 77,710 > 28,047 > 4219
Validation 16,801 10,794 2,251 888
Test 51,841 27,776 24,058 5,407
Full 208,154 > 116,280 > 54,356 > 10,514

Notes. The lists of SIR and ICME events we used end respectively in 2015 and 2016. Therefore, the number
of samples in each disturbance period for the training set and the full set are actually greater than the ones
reported in this table. This has no consequence in this study since we only split the test set according to the
nature of the disturbance in order to evaluate the models.

2.3.2. Preprocessing the data210

Before being fed into the neural network based model, the data are processed as follows:211

– We interpolate the values of the Ca index in order to have hourly values instead of a value every212

3 hours (this is meaningful since Ca is a very smooth time-integrated index and thus doing this213

interpolation changes neither the physics nor the statistics of the problem).214

– Missing values in the other data sets are filled using SSA.215
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– Inputs are rescaled so that their mean is 0 and their standard deviation is 1. Outputs are rescaled216

to fit in the [0, 1] interval. The weights for performing the transformations are calculated only217

from the training data set in order not to include bias for validation and testing. This procedure is218

standard when working with recurrent networks.219

3. Models and evaluation methods220

In this section, we present the models used to predict the Ca index as well as the machine learning221

algorithms used in these models. We also describe the methods and measures used to evaluate the222

model.223

3.1. Model description224

The model developed in this study receives as input the past values of four solar wind parameters225

listed in subsection 2.1, namely the plasma bulk velocity (Vsw), the ion density (ρ), the southward226

component of the interplanetary magnetic field (IMF) Bz and the plasma temperature (T ). Unlike227

other studies, we choose not to include the past values of the geomagnetic index as an input to228

the models because we position ourselves in an operational-like context. Indeed, even though the229

ISGI provides quick-look aa index values, reliance on two different data sources always presents230

a higher risk of data unavailability from one source, which is prejudicial when establishing a near-231

real-time forecasting service. Ideally for such a service, one would have both models (with and232

without historical geomagnetic indices as inputs), but this is out of the scope of this study and for233

clarity we only study one model in this paper. Here we use the 30 last days for each input (i. e. the234

720 last hourly values). The inputs/outputs link can be summarised as follows:235


Vsw(t − 719) ... Vsw(t − 1) Vsw(t)
ρ(t − 719) ... ρ(t − 1) ρ(t)
Bz(t − 719) ... Bz(t − 1) Bz(t)
T (t − 719) ... T (t − 1) T (t)

 −→

Ca(t + 1)
Ca(t + 2)
...

Ca(t + n)

 , where n is the forecast horizon.

In section 4 we will analyse the results for a model trained and tested with a forecast horizon236

n = 24 hours.237

Our main model is a neural network-based model. It consists of a single layer Long-Short Term238

Memory network (LSTM) combined with a linear fully-connected feed-forward (FCFF-NN) layer.239

LSTMs are a type of recurrent neural networks first introduced in Hochreiter and Schmidhuber240

(1997). LSTMs were created to address problems involving sequentially-structured data such as241

time series or natural language. In particular, LSTMs possess two internal memory states that are242

designed to help address the gradient vanishing issue that occurs when handling long sequences243

(Hochreiter, 1998). For an in-depth understanding of deep learning methods, including recurrent244

and LSTM networks, the reader is referred to the above-mentioned papers as well as to reference245

textbooks such as Goodfellow et al. (2016).246

Our model is summarised in Figure 3.247

Let us summarise the functioning of the LSTM network here. For each sample corresponding to248

a time step t − p, the LSTM cell is fed with our solar wind parameters xt−p and the two memory249

8
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LSTM Layer

LSTM Cell LSTM Cell LSTM Cell

FC
FF-N

N
 layer

Fig. 3. Simple scheme representing the LSTM-based model to forecast the values of the Ca index
up to n hours in advance. The mechanism inside the LSTM cell was voluntarily not detailed.

states computed at the previous time step: the hidden state ht−p and the cell state ct−p. The LSTM250

cell processes and transforms the input and updates its hidden state and cell state (now ht−p+1 and251

ct−p+1) using three “gates”: the input gate, the output gate, and the forget gate. To put it in simple252

words, the LSTM cell decides which information from the past is “worth” being kept, forgotten,253

or updated according to the last input. The latest memory states are again fed to the LSTM cell254

along with the solar wind parameters at the next time step xt−p+1. After all time steps have been255

given to the network, the LSTM layer outputs the final hidden state ht that serves as the input to256

the FCFF-NN layer, which itself outputs the t + 1 to t + n next values of Ca, n being the forecast257

horizon.258

Let us note that LSTMs have already demonstrated a good efficiency on geomagnetic index259

prediction problems (see e.g. Gruet et al., 2018; Chakraborty and Morley, 2020; Laperre et al.,260

2020).261

Since this is the first study that focuses on the forecast of the Ca index, there is no immediate262

baseline for us to compare our model to. The usual baseline used in such a situation is the “per-263

sistence model” (also known as the “naive model”), which simply consists in assuming that the264

predicted value is the same as the last observed value. However, that baseline cannot be pertinently265

used here as we do not include the past values of Ca index among the inputs to our model. That is266

why we have also trained a simple linear regression model to forecast the Ca index from the same267

solar wind parameters as with the neural network-based model, with the notable exception that the268

baseline linear model only uses the last value for each solar wind parameter as input (and not several269

past values as with the neural network-based model).270

3.2. Training and parameters of the model271

Our model was trained using the classical backpropagation method (Rumelhart et al., 1986). The272

optimisation method used is the Adam algorithm (Kingma and Ba, 2017). We have used a learning273

rate lr = 1 × 10−4 that is halved a first time after epoch 15 and a second time after epoch 50.274

The loss function is the mean-square error (MSE). The parameters of the model were hand-picked275
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using cross-validation and iteration. We list below the main parameters of our model and some276

implementation choices so that the replicability of our results is made easier. Let the reader be277

advised that even after changing some of these parameters (e.g. in order to reduce the computational278

cost) it is possible to obtain very similar results.279

– The LSTM cell state has dimension 256.280

– The LSTM layer is mono-directional.281

– We use L2-regularisation with weight 1 × 10−5. L2-regularisation consists in adding the squared282

sum of the network’s weights (with a multiplicative constant) to the loss function in order to283

avoid overfitting.284

– Size of each mini-batch: 256.285

– The training is done with 120 epochs and with early stopping. Early stopping consists in stopping286

the training of the network as soon as clear signs of overfitting are observed.287

The model was developed using the PyTorch (v1.9) library for Python (Paszke et al., 2019).288

3.3. Detection of events289

Our models as described above offer predictions in the form of a regression problem. However, it290

is often more useful for an end-user in a decision-making context to benefit from a predictive alert291

system. Such a (binary) predictive alert system can be built from our (regression) models with the292

following method: if we predict that Ca will exceed a given threshold value during the next t hours293

then we issue an alert (class 1), if we predict that we stay below this threshold then we issue no alert294

(class 0). The only difficulty lies in the choice of a suitable threshold.295

In our example, we will choose a threshold value based as much as possible on operational crite-296

ria. The threshold must be meaningful to the end-user, i.e. the triggering of an alert must correspond297

to a situation for which the operator is expected to make a decision or take an action. As the Ca298

index represents the filling state of radiation belts with high-energy electrons, we will choose a Ca299

threshold associated with a non-negligible risk of damage due to surface charging.300

Figure 4 in Bernoux and Maget (2020) shows that Ca index has a quite high correlation coefficient301

(R ≈ 0.83) with the dynamics of the integrated E ≥ 30 keV electron flux at L∗ ≈ 6. Moreover,302

Matéo-Vélez et al. (2018) shows that the risk of damage due to surface charging for a spacecraft in303

geostationary orbit (i.e. at L∗ ≈ 6) is well correlated with the 10 ≤ E ≤ 50 keV electron flux when304

the latter is greater than 1 × 108 cm−2s−1sr−1. A day during which the 10 ≤ E ≤ 50 keV electron305

flux always stayed above this value has a minimum daily fluence of 8.64× 1012 cm−2sr−1. From this306

value we define a fluence threshold equals 8 × 1012 cm−2sr−1.307

We then tried and find a Ca threshold that gives the highest correlation between the monthly308

exceedances of the electron fluence and the monthly exceedances of the Ca threshold (using the309

daily Ca maximum). For the daily fluences, we have taken data provided by the Magnetospheric310

Plasma Analyzer (MPA) instrument onboard the Geosynchronous Equatorial Orbit (GEO) LANL311

1991-80 spacecraft between 1997 and 2006 for the energy range 35-46 keV (McComas et al., 1993).312
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Fig. 4. Count of days per month for which LANL 1991-80/MPA instrument measured a daily 10 ≤
E ≤ 50 keV electron fluence above 8 × 1012 cm−2sr−1 along with the count of days per month for
which the daily Ca max was above 38 nT.

It was found that the number of monthly fluence exceedances is best correlated with the monthly313

Ca exceedances when the Ca threshold is Cathreshold = 38 nT. This is also illustrated in Figure 4.314

It should be noted in hindsight that the Ca value of 38 nT corresponds approximately to the315

0.95 percentile of all Ca values, which seems statistically satisfactory. Indeed, it is a value that is316

therefore rare enough to make a credible and useful alert threshold (an operator would probably not317

want to receive an alert when the Ca value only exceeds the median, for example). But it is also a318

value that is not too high, which allows better learning for the neural network (indeed, the higher319

the threshold, the fewer samples we have to train and evaluate the model). Let us also insist on320

the fact that this threshold value used to define our binary classes in our study is only an example,321

and that depending on the effect considered (internal charging, surface charging, singular events,322

etc), the orbit considered, or even the satellite considered (and thus its structure) it would be more323

interesting to use other thresholds, and probably to increase the number of classes.324

3.4. Model evaluation325

In this subsection we describe the measures used to evaluate the forecast performance of our models.326

3.4.1. Regression metrics327

Since our problem is designed as a regression problem we first evaluate our model using two very328

common regression metrics: the root-mean-square error (RMSE) and the Pearson (linear) correla-329
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tion coefficient (R). Let us define yi the real observed values and ȳi the values forecast by a model330

for i ∈ 1, ...,N, N being the number of samples.331

– The RMSE is a measure of the global accuracy of the model, with more emphasis put on higher
values (e.g. here the emphasis is on periods of more intense geomagnetic activity). A lower
RMSE means a more accurate forecast. The RMSE is given by:

RMSE =

√√
1
N

N∑
i=1

(
ȳi − yi

)2 (2)

– The Pearson correlation indicates if the forecast values globally follow the same trends as the
real values. The Pearson correlation ranges between 0 and 1 (higher is better). It is given by:

R =
Cov(ȳi, yi)√

Var(ȳi) × Var(yi)
(3)

We also use a normalised version of the RMSE (NRMSE), which allows for better comparison
of data sets with different scales. The NRMSE is obtained by dividing the RMSE by the mean value
of the observed yi. It is given by:

NRMSE =

√
1
N

N∑
i=1

(
ȳi − yi

)2
1
N

N∑
i=1

yi

(4)

Both RMSE and Pearson correlation are widely used in the geomagnetic indices forecasting332

literature (e.g. in Lazzús et al. (2017); Tan et al. (2018); Gruet et al. (2018); Sexton et al. (2019)).333

However, these metrics do not capture the full performance of a model in all situations. Indeed, these334

metrics indicate overall trends. Most of the time geomagnetic activity is fairly quiet, so quiet periods335

will weigh much more heavily on the evaluation metrics than periods of high activity, thus creating a336

bias. While it is very interesting for a satellite operator to be able to accurately predict quiet periods,337

it is also very important to be able to accurately predict periods of geomagnetic disturbance. This338

type of bias can be partially counterbalanced by taking adapted test sets, as we have done in Section339

2.3. In the following subsections, we describe two other methods for evaluating the predictions that340

allow us to better capture other types of behaviours.341

3.4.2. Measuring time lags342

Some studies, such as Wintoft and Wik (2018) and Laperre et al. (2020), highlight the fact that343

some forecasting models, that display a great RMSE or Pearson correlation, actually fail to reliably344

forecast high disturbance periods in advance. Laperre et al. (2020) shows that some prediction345

models exhibit systematic time lags between the observed time series and the predicted time series.346

This systematic time lag would most often be of the order of magnitude of the model’s prediction347

horizon. This would indicate that the model in reality would fail to predict a disturbance before it348

has actually been observed, which is of very limited interest to an operator.349
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To quantify this behaviour Laperre et al. (2020) use the Dynamic Time Warping (DTW) algo-350

rithm, which measures the time difference between two time series (Berndt and Clifford, 1994).351

By applying this algorithm to the observed series and the predicted series shifted successively by352

several consecutive time steps the authors are able to determine the extent of the systematic lag.353

Nonetheless in our study we do not use the exact same approach but a very similar one. Indeed,354

the main drawback of the DTW method is that for a given prediction horizon n, it requires circa n2
355

iterations of the DTW algorithm with different time shifts to accurately assess the systematic time356

lag. Besides, the computational complexity of the DTW algorithm is high even with now modern357

methods to fasten the computation of the DTW measure (e.g. Gold and Sharir, 2018). This is why358

we use instead the Temporal Distortion Mix (TDM).359

The Temporal Distortion Mix is a metric proposed in Vallance et al. (2017) to characterise the360

propensity of a time series to be late or early relative to a reference series. This metric is also based361

on the DTW algorithm. Based on this algorithm, Frı́as-Paredes et al. (2016) proposes the Temporal362

Distortion Index (TDI), which indicates to what extent the two time series are systematically (or not)363

late (or early). Unlike the approach proposed by Laperre et al. (2020), the TDI does not indicate364

the value of a possible systematic time lag, but whether the two time series exhibit this type of365

behaviour and to which extent. In return, there is no need for several computations of the DTW366

measure as only one (per forecast horizon) is sufficient to get the TDI. Guen and Thome (2019)367

have even suggested that the TDI could be used as a part of the loss function when training a neural368

network but this is out of the scope of our paper.369

To obtain the TDM, the TDI is decomposed into two components, which characterise the lateness370

and the advance, so that TDI = TDIadv + TDIlate. The TDM is then given by:371

TDM = 1 − 2 ×
TDIadv

TDI
(5)

The TDM is hence a normalised version of the TDI. It ranges between -1 and 1. Let s1 and s2 be372

two time series.373

– if TDM(s1, s2) = −1 then s1 is systematically in advance compared to s2374

– if TDM(s1, s2) = 1 then s1 is systematically late compared to s2375

– if TDM(s1, s2) = 0 then both time series are temporally aligned376

For instance, the TDM between a given time series and its corresponding naive forecast is always377

1. A good forecast is hence a forecast that has a TDM close to 0. The TDM is a very interesting378

evaluation measure since it only requires one run of the DTW algorithm and it is possible to compare379

the TDM between several forecasts (e.g. several forecast horizons). The TDM was first introduced in380

a study dealing with the topic of solar irradiance forecasting, which is also a time series forecasting381

problem that shares structural similarities with ours.382

3.4.3. Evaluation of the classification-based alert system383

As we have already established, in an operational context in space weather it is important not only384

to have regression type predictions but also to have warning systems based on class predictions.385

In Section 3.3 we discussed how to transform our regression problem into a binary classification386
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problem (with a threshold of Cathreshold = 38 nT). In order to evaluate this derived alert system,387

we use several metrics and measures. TP, FP, FN and TN are the true positive, false positive, false388

negative, and true negative counts.389

– the precision: it is the ratio of issued alerts that match a true threshold excess. It gives an indica-
tion of how relevant the issued alerts are. It ranges between 0 and 1. Higher is better. It is given
by:

precision =
TP

TP + FP
(6)

– the recall: it is the ratio of true threshold exceedances that match an issued alert. It gives an
indication of the ability to issue relevant alerts. It ranges between 0 and 1. Higher is better. It is
given by:

recall =
TP

TP + FN
(7)

– the Fscore: it is the harmonic mean of precision and recall. It ranges between 0 and 1. Higher is
better. It is given by:

Fscore =
precision × recall
precision + recall

(8)

– the False Alarm Rate (FAR): it is the ratio of nonevents for which an alert was issued. It gives an
indication of the tendency to issue irrelevant alerts. It ranges between 0 and 1. Lower is better. It
is given by:

FAR =
FP

FP + TN
(9)

– the threat score (TS): it gives an indication of how well true threshold exceedances were forecast,
penalising both false alarms and false negatives. It ranges between 0 and 1. Higher is better. It is
given by:

TS =
TP

TP + FN + FP
(10)

– the Heidke skill score (HSS): it could be seen as a generalised skill score, giving the overall
accuracy of the model against that of a random model. It ranges between -1 and 1. Higher is
better, 0 denotes no skill. It is given by:

HSS =
2 × (TP × TN − FP × FN)

(TP + FN)(FN + TN) + (TP + FP)(FP + TN)
(11)

– The percentage of threshold-exceedance periods for which the model actually issues an alert390

before the threshold was exceeded (i.e. the number of active periods that were forecast before391

they started and not only forecast after the threshold was exceeded for the first time). This is not392

a classical metric, but perhaps one of the most useful ones here, since this gives an indication of393

how well the model is able to forecast disturbance periods before they happened, not including394

the performance of the model once the disturbance period has already started. Let us note that395

there are 42 disturbance onsets (above the threshold Ca = 38 nT) in the test set.396
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4. Results and discussion397

4.1. Regression results398

The regression results obtained with the baseline model and the LSTM-NN model are presented399

in Table 2. Firstly, we can see that the classical metrics (RMSE, R) give much better values with400

the LSTM-NN model than with the linear baseline. For a time horizon of 3 hours, the RMSE with401

the LSTM-NN is about 3.1 times lower than with the baseline (2.62 instead of 8.13), and for a402

time horizon of 24 hours this ratio is 2.0 (4.17 instead of 8.16). This is an additional indication403

to the fact that LSTM-NN networks are efficient for understanding the solar wind-magnetosphere404

coupling. The RMSE values should be put into perspective with the statistical distribution of the405

Ca index, which over the test period has a variance of 8.9 nT and an interquartile range of 10.5 nT.406

This comparison allows us to state that the RMSE values are satisfactory, especially for a model407

that does not include the Ca index among its inputs. We also find that the Pearson correlation values408

are quite high (≥ 0.9 for all test sets up to a time horizon of 18 hours, instead of ≤ 0.65 with the409

baseline), which is very satisfactory.410

The TDM gives values ≤ 0.2 for a time horizon of 3 hours and up to 6 hours, for test sets based on411

periods of disturbance. This indicates that up to about 6 hours, our forecasts are well aligned in time412

with the target values. Beyond that, the TDM value increases up to 0.60 for a 24 hour time horizon413

with the full test set, indicating that there is an almost systematic delay between the predicted values414

and the target values.415

Unsurprisingly, the values of the conventional metrics all degrade as the time horizon increases.416

This degradation (increase for RMSE and TDM, decrease for the Pearson correlation) appears to be417

slow and smooth, as shown in Figure 5. However, for this reason, it becomes difficult to tell from418

these metrics alone from which time horizon the model is no longer operationally valid.419

We also observe that, in general, the LSTM-NN model performs better during periods of SIR-420

induced disturbances than during periods of ICME-induced disturbances. For a time horizon of 3421

hours, the RMSE is 1.4 times higher for the ICME-induced period than for the SIR-induced period,422

which is far from negligible. Figure 6 shows several examples of forecasts for two geomagnetic423

storms: one induced by an ICME and the other by a SIR, the same storms already shown in Figure424

1. This figure shows the forecast values for 4 different time horizons (3, 6, 12, and 24 hours) made425

with both the LSTM-NN model and the linear baseline model. We also indicate the TDM values426

calculated corresponding to each forecast (the values for the baseline are in brackets). It is clear from427

this figure that the neural network-based model outperforms the linear model, as already indicated428

by the evaluation measures for the regression problem. In these examples, the dynamics of the429

storm appear to be well captured, and the forecast values are indeed close to the observed values, as430

indicated by the RMSE. Furthermore, it becomes apparent that the negative TDM values measured431

with the linear model are due to the fact that the model has difficulty correctly modeling the decay432

phase of a storm, which decreases too fast and hence appears “ahead” in comparison to the true433

series.434

Besides, the fact that the predicted (with the LSTM-NN model) and observed time series show435

a time delay as the time horizon increases is evident in these examples. It would appear that this436

time shift is more pronounced during the beginning of the disturbance period than during the decay437

phase of the storm, which in the SIR-induced storm example remains well predicted even 24 hours438
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Fig. 5. Evaluation of the LSTM-NN model with three measures (RMSE, R and TDM) for values of
time horizon ranging from 1 hour to 24 hours. Three evaluation sets (full test set, SIR-induced set
and ICME-induced set) were used.

in advance. We should be able to better quantify this behaviour using the measures for the evaluation439

of the classification problem.440

The difference of performance between ICME-induced and SIR-induced storms could hence at441

least partly be explained by the fact that Ca increases more rapidly during ICME-induced distur-442

bances. As indicated by the TDM values (and as we will see below with the classification measures),443
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Fig. 6. Example of forecasts obtained with the LSTM-NN model and the linear model during two
geomagnetic storms, the first one (left-hand side) being an ICME-driven storm and the second one
being a SIR-driven storm (right-hand side). 4 different forecast horizons were used (3, 6, 12 and
24 hours). The value of Ca used for the binary classification is the blue dotted line, given as a
landmark. For each prediction, the corresponding TDM value is given (the TDM values for the
baseline forecasts are given in brackets).
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Fig. 7. Normalised RMSE and Pearson correlation of the 3-hour ahead predicted values versus
binned observed values. Each bin contains a quarter of the total observations in the test set.

the LSTM-NN model seems to be under-performing during the initial phase of a disturbance. Since444

during SIR-induced disturbances the initial increase is slower than during ICME-induced distur-445

bances, the RMSE during the beginning of the disturbance period should be lower in the first case,446

which contributes to the overall RMSE being lower for the SIR-induced test set than for the ICME-447

induced test set.448

Figure 7 shows the Normalised RMSE (NRMSE) and the Pearson correlation for forecasts with449

a time horizon of 3 hours, after binning the target values into quarters containing more-or-less the450

same number of items. Here we use the NRMSE since we are comparing the forecasts for different451

scales of Ca values, thus using the RMSE for the comparison would be like comparing apples and452

oranges. It appears that the LSTM-NN model gives stable NRMSE values when Ca increases, which453

shows that the model is performing similarly not only when Ca is low, but also when it reaches454

higher values, unlike the baseline. The Pearson Correlation for both models decreases when Ca is455

between the first and the third quartile. This is most probably due to the choice of bins matching456

the quartiles of Ca. Indeed, the range of Ca values in these bins is less than 6 nT, i.e. of the order of457

only twice the RMSE. Therefore, it is not surprising that the spread of predicted values over such458

a small range of observed values makes the linear correlation in these bins weaker. To summarise,459

this figure shows us that the model gives stable results and is still a much better model than the460

linear model for the whole distribution of Ca values, with a notable improvement for high values of461

Ca.462

4.2. Classification results463

The classification results are given in Table 3 and Figure 8. For a time horizon of 3 hours, nearly464

85% of the alerts issued were true positives, while 84% of the threshold exceedances were detected.465

For a time horizon of 24 hours, these numbers rise and fall respectively to 87% and 73%. The fact466

that the precision increases with the time horizon is due to the definition of our binary classes.467
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Fig. 8. Percentage of times the 24h-binary classification problem was correctly forecast during quiet
periods previous to a threshold exceedance depending on how much time (from 1 hour to 24 hours)
there was left before the exceedance.

Indeed, we are trying to forecast if the threshold will be exceeded at any given time in the next t468

hours (and not at a precise given time). In our case, as the threshold increases, the model forecasts469

less often true and false positives and more false negatives. That is why the precision increases470

somewhat counter-intuitively. This highlights the need for several evaluation methods in order to471

obtain a more exhaustive idea of the true performance of the model. Let us note that the Fscore,472

which is the harmonic mean of precision and recall, decreases from 0.84 (for a time horizon of 3473

hours) to 0.80 (for a time horizon of 24 hours), further indicating that the model performs better for474

shorter time horizons.475

It is difficult to argue at what percentage of precision and recall the model becomes satisfactory.476

In absolute terms, correctly predicting more than two out of three periods of disturbance while477

making only ≈ 25% false positives might seem to be a satisfactory target. However, depending478

on the economic constraints due to spacecraft operation this could be largely insufficient. Here479

we cannot definitively conclude about the absolute quality of our model but only about criteria that480

would be defined by an operator and that depend on each space mission or on the targeted objective.481

It should be noted, however, that the score values are also quite high, especially for the HSS. In482

absolute terms, these values are rather difficult to interpret and should serve above all as a point of483

comparison for possible future studies focusing on the forecast of similar physical quantities.484

A result that is easier to interpret and that gives user-friendly information is the percentage of485

disturbance periods forecast in advance, given in Figure 8. To obtain this figure we calculated the486

percentage of times and how long before the model was able to correctly answer the question: “will487

the threshold be exceeded during the next 24 hours?” Therefore here we are only interested in the488

model’s ability to predict the beginning of a period of disturbance (without taking into account the489

continuation of such a period). It appears that the model is able to answer this question correctly490

slightly less than 80% of the time 1 hour before the threshold is exceeded. This percentage remains491
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above 50% up to 5 hours before the threshold is exceeded. Between 6 and 9 hours prior to a threshold492

exceedance, around 40% of the disturbance periods were correctly forecasted. Less than 25% of the493

threshold exceedances were forecast at least 15 hours in advance. This shows that even though494

73% of the total exceedances were detected somewhere between 1 hour and 24 hours before they495

happened, only less than one out of two disturbance periods were detected 6 hours before they496

happened and less than one out of four were detected 24 hours before they happened. This is a497

much more significant measure of the operational nature of our model and confirms the point we498

made earlier about the difficulty of predicting the onset of a geomagnetic storm.499

4.3. Discussion500

In fact, the above-mentioned results are not very surprising since our models rely on solar wind501

parameters measured close to the Earth. Consequently, the temporal hindsight to predict the dy-502

namics of radiation belts is small. This is reflected in the TDM measurements which indicate that503

the forecasts are globally very well temporally aligned with the observations for forecast horizon504

values shorter than 6 hours, which corresponds approximately to the reaction time of the geomag-505

netosphere interacting with a disturbance arriving near Earth. We can therefore deduce on the one506

hand that our model seems to be in agreement with the physics of the problem. But on the other507

hand, if we do not change the nature of our inputs, the same physics stops us from having good508

operational performances for greater prediction horizons.509

Moreover, it seems delicate to find a limit to the prediction horizon for our model, beyond which510

it is possible to state definitively that the model is no longer operational. As mentioned above,511

this depends on the needs of an operator. In the absence of threshold values that could serve as512

landmarks for metrics such as precision or recall, we can only guess. One way to do this would513

be to consider the percentage of storms predicted in advance. If we take a threshold of 50%, then514

the operational prediction horizon limit of our model is 5 hours. With a threshold of 75% then our515

operational prediction horizon limit is only 1 hour. Another method would be to take into account516

the TDM. With an arbitrary threshold of 0.2, the prediction horizon limit of our model is 6 hours,517

whereas with a threshold of 0.1 the horizon limit is only 1 hour for the full test set, but 4 hours518

during SIR-induced disturbance periods and 3 hours during ICME-induced disturbance periods.519

A limit of 6 hours was found in other papers dealing with the forecasting of the Dst index (Lazzús520

et al., 2017; Gruet et al., 2018). Some studies that aim at forecasting the Kp index, such as Tan et al.521

(2018); Sexton et al. (2019), claim to be able to forecast the Kp index up to 24 hours in advance. It522

would be interesting to assess the operational performance of the models presented in these papers523

with the TDM and by evaluating only the ability to predict the onset of a storm, in order to have524

a more comprehensive understanding of their actual effectiveness in operational contexts. Let us525

insist, however, on the fact that the difficulty for long prediction horizons lies at the beginning of526

the storm and not in its continuity because the accumulation of energy makes it possible to find a527

link between the solar wind parameters and the geomagnetic indices even after 6 hours of course.528

This is particularly the case with a time-integrated index such as Ca, which allows for good overall529

forecast performances up to 24 hours in advance.530

It might be tempting to compare our results to the results presented in e.g. Forsyth et al. (2020)531

where the authors present a model to forecast the GOES-15 ≥ 2MeV electron fluxes from solar wind532

data and also evaluate their model with classification measures. For instance, one of their models533
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(when maximising the average Receiver Operating Characteristic score) for a time horizon of 6534

hours gives a hit rate (or precision) of 0.75 whereas for the same time horizon ours give a higher535

hit rate of 0.87. However, this comparison does not stand because we are not focusing on the same536

energy range and our model does not use the same classification thresholds and criteria. Indeed, here537

we answer the question: will the threshold be exceeded somewhere in the next t hours? In Forsyth538

et al. (2020) the question is: will the threshold be exceeded in exactly t hours? We have chosen to539

approach the problem in this way because we believe that a warning system defined in this way is540

more useful, especially if we ask this question for several time horizons t. Yet this is an arbitrary541

choice and it could be argued otherwise. We wanted to stress here that, as highlighted in Camporeale542

(2019), comparing the performance of one model relative to another is not straightforward, and one543

should be cautious when doing it.544
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5. Conclusion545

In this study, we propose a recurrent network-based approach to forecast the fairly new geomagnetic546

index Ca. The main reason for focusing on this index is that this index is well correlated with the547

high-energy electron fluxes in the radiation belts and could hence be used as an indicator for their548

state of filling, without the drawbacks inherent to measuring in-situ fluxes with spacecrafts.549

The implementation choices made in this paper were made by keeping in mind an operational550

context. These choices include the geomagnetic index to be forecast, the inputs used in our models,551

and the whole evaluation methodology. To this end, we have highlighted the importance of choosing552

statistically and physically representative train and test sets. We have also stressed the need to553

use adequate measures to evaluate the model, since classical metrics such as the RMSE or the554

Pearson correlation are not able to give an exhaustive report on the performance of the model, in555

particular during disturbance periods. That is why we use the Temporal Distortion Mix to measure556

the tendency for a forecast to be late or in advance in regards to the true observations.557

We also transform the forecast problem from a regression problem to a binary classification one.558

The choice of the threshold used to define the binary classes was made taking into account the risk559

for GEO spacecrafts to suffer damage from the surface charging effect. The evaluation of the binary560

classification forecasts shows that even though the regression measures seemed great, the network561

does not show outstanding performance when it comes to forecasting the onset of a disturbance562

period. This is most certainly due to the spatial (and hence temporal) proximity between the solar563

wind parameters used as inputs and the geomagnetosphere. In order to improve the forecast results564

for time horizons of 12 hours, 24 hours, and beyond it could be interesting to go back to the Sun and565

use data originating from solar imaging as inputs to a model. This topic will be the main focus of566

future studies. For now, even though the measures are good and much better than the linear baseline,567

it would be difficult to claim that this model is fully adequate for use in an operational situation.568

This would require at least an assessment of the model’s ability to predict extreme events, which569

will be the subject of future studies. However, with this study, we have already taken a first great570

step towards this goal.571

Other possibilities that remained out of the scope of this study are the use of probabilistic fore-572

casts (as done with other indices e.g. in Chandorkar et al., 2017; Chakraborty and Morley, 2020) or573

grey-box models. This paper being the first one dealing with the topic of forecasting the Ca index,574

we voluntarily kept those possibilities aside for the sake of clarity and so as not to dilute the purpose575

of this study. However, we acknowledge that these are important avenues to explore, which will be576

done in future studies.577

Acknowledgements. The authors would like to thank the anonymous reviewers for their insightful sugges-578

tions and comments, which helped improve the overall quality of the paper. The authors are thankful to the579

NOAA-POES for online data access available on the CDAweb (at http://cdaweb.gsfc.nasa.gov/).580

The results presented in this paper rely on geomagnetic indices calculated and made available by ISGI581

Collaborating Institutes from data collected at magnetic observatories. We thank the involved national insti-582

tutes, the INTERMAGNET network and ISGI (isgi.unistra.fr). The OMNI data were obtained from the583

GSFC/SPDF OMNIWeb interface (at https://omniweb.gsfc.nasa.gov). Sunspot data from the World584

Data Center SILSO, Royal Observatory of Belgium, Brussels.585

G. Bernoux is thankful for funding from Région Occitanie and ONERA, under Grant Agreements586

19008721/ALDOCT and 30196.587

23

http://cdaweb.gsfc.nasa.gov/
isgi.unistra.fr
https://omniweb.gsfc.nasa.gov


Bernoux et al.: An operational approach to forecast the Earth’s radiation belts dynamics

References588

Akasofu, S.-I., 1981. Prediction of Development of Geomagnetic Storms Using the Solar Wind-589

Magnetosphere Energy Coupling Function ϵ. Planetary and Space Science, 29(11), 1151–1158.590

10.1016/0032-0633(81)90121-5. 2.1591

Baker, D. N., E. W. Hones, J. B. Payne, and W. C. Feldman, 1981. A High Time Resolution Study592

of Interplanetary Parameter Correlations with AE. Geophysical Research Letters, 8(2), 179–182.593

10.1029/GL008i002p00179. 2.1594

Baudin, M., A. Dutfoy, B. Iooss, and A.-L. Popelin, 2015. Open TURNS: An Industrial Software for595

Uncertainty Quantification in Simulation. arXiv:1501.05242 [math, stat]. 1501.05242. A596

Berndt, D. J., and J. Clifford, 1994. Using Dynamic Time Warping to Find Patterns in Time Series. In597

Proceedings of the 3rd International Conference on Knowledge Discovery and Data Mining, AAAIWS’94,598

359–370. AAAI Press, Seattle, WA. 3.4.2599

Bernoux, G., and V. Maget, 2020. Characterizing Extreme Geomagnetic Storms Using Extreme Value600

Analysis: A Discussion on the Representativeness of Short Data Sets. Space Weather, 18(6),601

e2020SW002,450. 10.1029/2020SW002450. 1, 2.1, 2.2, 2.3.1, 3.3602

Borovsky, J. E., and Y. Y. Shprits, 2017. Is the Dst Index Sufficient to Define All Geospace Storms? Journal603

of Geophysical Research: Space Physics, 122(11), 11,543–11,547. 10.1002/2017JA024679. 2.2604

Borovsky, J. E., and K. Yakymenko, 2017. Systems Science of the Magnetosphere: Creating Indices of605

Substorm Activity, of the Substorm-Injected Electron Population, and of the Electron Radiation Belt.606

Journal of Geophysical Research: Space Physics, 122(10), 10,012–10,035. 10.1002/2017JA024250. 2.2607

Burton, R. K., R. L. McPherron, and C. T. Russell, 1975. An Empirical Relationship between608

Interplanetary Conditions and Dst. Journal of Geophysical Research (1896-1977), 80(31), 4204–4214.609

10.1029/JA080i031p04204. 2.1610

Camporeale, E., 2019. The Challenge of Machine Learning in Space Weather: Nowcasting and Forecasting.611

Space Weather, 17(8), 1166–1207. 10.1029/2018SW002061. 1, 4.3612
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Appendix A: Gap-filling with Singular Spectrum Analysis (SSA)728

To fill the missing values in our dataset we followed the SSA gap-filling method described in729

Kondrashov et al. (2010) and very well summarised in Section 2 of Kondrashov et al. (2014):730

“SSA is a data-adaptive, nonparametric method for spectral estimation; a comprehensive review731

can be found in Ghil et al. (2002). It is based on diagonalization of the time-lagged covariance732

matrix of multivariate time series; the set of its eigenvectors or temporal empirical orthogonal func-733

tions (EOFs) is an optimal set of data-adaptive, narrowband filters for decomposing the variance734

27
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within a sliding time window M. Projecting the data set onto each EOF yields the corresponding735

principal component (PC); the entire time series or parts thereof can be reconstructed by using lin-736

ear combinations of PCs and EOFs for selected number of K modes, which yield the reconstructed737

components. Kondrashov and Ghil (2006) developed an SSA-based gap-filling method that relied738

on the presence of significant oscillatory modes in the time series [...]. Kondrashov et al. (2010)739

generalized the SSA gap-filling methodology to multivariate geophysical data consisting of gappy740

“drivers” and continuous “response” records and applied it to fill in large gaps in solar wind and741

IMF data, by combining it with time-continuous geomagnetic indices. It is the covariation in driver742

and response at times when both are present that allows us to reconstruct the former when only the743

latter is measured.”744

Here we will be using the geomagnetic indices Kp and Dst as our “response” records. All the745

steps of the SSA gap-filling method are automatically performed by the SSA-MTM toolkit (Vautard746

et al., 1992) that is publicly available e.g. at https://dept.atmos.ucla.edu/tcd/download.747

But we also need to find the optimal M and K values, which are non-trivial. Kondrashov et al.748

(2014) suggests some values for a few solar wind parameters, but they did not include e.g. the749

plasma temperature T . That is why we performed a new search for optimal parameters, using a750

more recent period.751

In order to find the optimal SSA window size M and number of modes K for each solar wind752

parameter, we introduced artificial gaps in each time series for the period 2008-2018. The artificial753

gaps are reproductions of the true gaps found in the same time series, but during the period 1984-754

1994, so that the distribution and the length of the artificial gaps were plausible. Then we searched755

for the best M and K values that allowed for the best reconstruction of the gaps as measured with the756

RMSE and Pearson correlation. The parameters optimal parameters were found by performing an757

iterative grid search using quasi-random low discrepancy Sobol sequences (Sobol’, 1967) generated758

by the Python package OpenTURNS (Baudin et al., 2015). The set of optimal parameters (namely759

M* and K*) found for each time series are reported in Table A.1. The time series gap-filled using760

the SSA technique and these M* and K* values are available online as supplementary material to761

this article.762

Table A.1. Optimal M* and K* values found for filling the gaps in the time series.

Solar wind parameter M* K*
Vsw 110 29
ρ 12 30
T 12 29
Bz 9 17
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