
HAL Id: hal-03242557
https://hal.science/hal-03242557v1

Preprint submitted on 31 May 2021 (v1), last revised 11 Feb 2022 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

An operational approach to the forecasting of the
dynamics of the Earth’s radiation belts

Guillerme Bernoux, Antoine Brunet, Éric Buchlin, Miho Janvier, Angélica
Sicard

To cite this version:
Guillerme Bernoux, Antoine Brunet, Éric Buchlin, Miho Janvier, Angélica Sicard. An operational
approach to the forecasting of the dynamics of the Earth’s radiation belts. In press. �hal-03242557v1�

https://hal.science/hal-03242557v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


submitted to Journal of Space Weather and Space Climate
© The author(s) under the Creative Commons Attribution 4.0 International License (CC BY 4.0)

An operational approach to the forecasting of the1

dynamics of the Earth’s radiation belts2

Guillerme Bernoux1,?, Antoine Brunet1, Éric Buchlin2, Miho Janvier2, and3
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ABSTRACT9

The Ca index is a time-integrated geomagnetic index that correlates well with the dynamics of10

high-energy electron fluxes in the outer radiation belts. Therefore it can be used as an indicator for11

the state of filling of the radiation belts for those electrons, with the advantage of being a ground-12

based measurement with extensive historical records. In this work we propose a data-driven model13

to forecast Ca up to 24 hours in advance from near-Earth solar wind parameters. Our model relies14

mainly on a recurrent neural network called Long Short Term Memory network that has shown15

good performances in forecasting other geomagnetic indices in previous papers. Most implemen-16

tation choices in this study have been arbitrated from the point of view of a space system operator,17

including the data selection and split, the definition of a binary classification threshold and the18

evaluation methodology. We evaluate our model (against a linear baseline) using both classic and19

novel (in the space weather field) measures. In particular, we use the Temporal Distortion Mix20

(TDM) to assess the propensity of two time series to exhibit time lags. We also evaluate the ability21

of our model to detect storm onsets during calm periods. It is shown that our model has a high over-22

all accuracy, with evaluation measures deteriorating in an almost linear trend over time. However,23

using the TDM and the metrics for evaluating the binary classification forecast, it is shown that24

after a time horizon of approximately 6 hours the forecasts lose some of their usefulness in an op-25

erational context. This behaviour was not observable when evaluating the model only with metrics26

such as the root-mean-square error or the Pearson linear correlation. Considering the physics of27

the problem, this result is not surprising and suggests that the use of more spatially remote data28

(such as solar imaging) could improve space weather forecasts.29

Key words. space weather – forecasting – radiation belts – machine learning – solar wind

1. Introduction30

One of the current main topics of interest in the space weather field is the forecasting of geomagnetic31

indices based on machine learning methods. These methods have allowed for a great improvement32
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in short-term forecasts of geomagnetic indices such as the global index Kp (Wintoft et al., 2017;33

Tan et al., 2018; Chakraborty and Morley, 2020) or Dst index (Gruet et al., 2018; Lethy et al.,34

2018). Space weather induced events can have heavy-to-extreme consequences on human-made35

infrastructures, as for instance space-borne hardware or even ground-based facilities (Riley et al.,36

2017). That is why the reliable forecast of geomagnetic indices and other space-weather relevant37

physical quantities (e.g. relativistic electron or proton fluxes in the radiation belts) is of paramount38

importance.39

The extent of the effects of the space radiative environment on satellites ranges from single events40

caused by high energy charged particles from cosmic rays or solar energetic particles (SEP) to in-41

ternal charging, surface charging or total ionising dose (Horne et al., 2013). Therefore, being able42

to accurately and reliably forecast the fluxes of high-energy electrons (from dozens of kiloelectron-43

volts to a few megaelectronvolts) in the radiation belts would represent a great leap towards a better44

mitigation of the radiation-induced risks in space. Extensive efforts have already been conducted45

to forecast such electron fluxes. A considerable review of the methods used to forecast these elec-46

trons was recently proposed by Camporeale (2019), where it is detailed that feed-forward neural47

networks and recurrent neural networks (RNNs) are used to obtain forecasts up to a few hours or a48

few days ahead (see e.g. Ling et al. (2010); Wei et al. (2018)).49

However Camporeale (2019) notes that although many approaches have been tested, it remains50

difficult to predict these fluxes due in particular to certain physical phenomena that are difficult to51

take into account for a ”black-box” type model. Thus, many more recent models based on machine52

learning methods do not seem to perform better than older models. In addition, using data-driven53

approaches to predict radiation belt dynamics with in-situ data is challenging since it is important54

to have large databases that are properly calibrated (which is more complicated when using space-55

borne instruments rather than ground-based ones).56

Recently, Bernoux and Maget (2020) have proposed a new time-integrated geomagnetic index57

which aims to be more representative of the state of filling of radiation belts. Thus we propose in58

this study to focus on the prediction of the dynamics of radiation belts through this so-called Ca59

index. In order to do this we will use Deep Learning methods that have already been successfully60

tested with other geomagnetic indices. However, and in contrast to other studies, we will concentrate61

on evaluating our models by trying to take into account the point of view of a spacecraft operator62

and therefore using evaluation methods other than the classic metrics such as the root-mean-square63

error and the linear correlation, which can only account for global behaviour and are consequently64

largely insufficient to quantify other phenomena such as time shifts.65

In this work we create a neural-network-based model to forecast the Ca index up to 24 hours in66

advance. We then evaluate the model using classical metrics and also using a method to detect the67

systematic existence of time shifts in our predictions. We then transform the regression problem68

into a binary classification problem aimed at predicting danger periods in terms of surface charging69

and we evaluate it accordingly. In Section 2 we present the data sets we used in our models and70

explain why they have been chosen and how they have been pre-processed. In Section 3 we present71

the regression and classification models and their dedicated evaluation methods. In Section 4 we72

present and discuss the results before concluding in Section 5.73
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2. Data analysis74

In this section we describe and analyse the data sets used in this paper. Firstly we list the solar wind75

parameters and geomagnetic indices used here and explain where and how they can be obtained.76

Then we focus on the geomagnetic index Ca and explain its relevance and why it has been chosen77

for this study. Finally we explain how the time periods used for the training and the evaluation of78

the different models were selected.79

2.1. Data sets80

It has now been well known for decades that the geomagnetic indices representing the state of81

the magnetosphere are predominantly driven by the solar wind dynamics (Akasofu, 1981; Baker82

et al., 1981). That is why, as in many other studies (e.g. Lundstedt and Wintoft, 1994; Wu and83

Lundstedt, 1997; Wing et al., 2005; Chandorkar et al., 2017; Chakraborty and Morley, 2020),84

we have decided to use solar wind parameters available in the OMNIweb database (King and85

Papitashvili, 2005) as inputs to our geomagnetic index forecast models. The OMNIweb database86

(https://omniweb.gsfc.nasa.gov/) grants access to hourly spacecraft-interspersed near-Earth87

measurements of solar wind parameters. Earliest solar wind parameters are available since late88

1963. In particular we selected the plasma bulk velocity Vsw, the ion density ρ, the southward com-89

ponent of the interplanetary magnetic field (IMF) Bz and the plasma temperature T as our inputs to90

our models. It is now well known that these parameters correlate well with geomagnetic indices and91

with the dynamics of electron fluxes in the radiation belts (Burton et al., 1975; Wing et al., 2016).92

The geomagnetic index studied here is the Ca index, that was first introduced by Bernoux and93

Maget (2020) based on a previous study by Rochel et al. (2016). Therefore the following paragraphs94

rephrase some information on the purpose and relevance of this index that was contained in these95

papers.96

The Ca index is an index derived from the well-known aa index. The aa index is a 3-hr K-97

based index first introduced by Mayaud (1971) and computed from data provided by two subauroral98

opposite observatories. aa index is the geomagnetic index having the longest available track record99

with data available since 1868. This gives us more than 150 years of homogeneous (Mayaud, 1980)100

and exploitable geomagnetic data with a time cadence of 3 hours. This is particularly useful when101

dealing with topics such as statistical analysis which require a great amount of data. In particular, aa102

index covers a time range equivalent to 14 solar cycles. Nowadays, the aa index is made available by103

the International Service of Geomagnetic Indices (IGSI) and can be downloaded from their website104

(http://isgi.unistra.fr/data_download.php).105

As stated in Bernoux and Maget (2020), Ca index has been designed to quantify the geoeffective-
ness of solar wind structures impacting the magnetosphere from the radiation belts perpective. The
relaxation characteristic time in the radiation belts for high-energy electrons after a strong magne-
tospheric disturbance is of the order of 4 days (Meredith et al., 2006; Rochel et al., 2016). Therefore
the Ca index is defined as follows:

Ca(t) =
1
τ

∫ ∞

0
aa(t − t′)e

−t′
τ dt′ (1)

with τ = 4 days being the relaxation characteristic time and aa representing the geomagnetic activ-106

ity. Being directly derived from aa index, Ca index shares the same above-mentioned qualities and107
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properties. Further details on the interest and relevance of using Ca index is provided in subsection108

2.2.109

2.2. Why study and forecast the Ca index?110

Many studies have already been conducted on the topic of the nowcasting and forecasting of ge-111

omagnetic indices. Most of them focus on the Kp index or the Dst index, that are two very well112

known indices that have been thoroughly studied for decades. However it should be reminded that113

all geomagnetic indices are not interchangeable and that those indices have physical meanings. For114

instance, Borovsky and Shprits (2017) makes clear that the Dst index is unable to capture all types115

of geomagnetic storms behaviour and is in reality a very poor index when studying space-weather-116

relevant phenomena such as the dynamics of the electrons in the outer radiation belts induced by117

long-duration Corotating Interaction Regions (CIR)-driven storms. This is why it is important not to118

direct the research effort solely to the problem of forecasting the Kp and Dst indices, but to diversify119

the indices studied, in order to include a greater diversity of space-weather-relevant phenomena.120

The Ca index was created to account for geomagnetic storms during which an intensification of121

relativistic electrons trapped in the radiation belts is observed. It was shown in Rochel et al. (2016)122

and Bernoux and Maget (2020) that this index correlates well with electron fluxes (E > 30 keV) in123

the radiation belts and is able to take into account phenomena such as energy accumulation due to124

long duration Stream Interaction Region (SIR)-driven storms, but also due to multiple successive125

Interplanetary Coronal Mass Ejection (ICME)-driven events. Figure 1 display examples of the typ-126

ical behaviour of the Ca index during ICME- and SIR-driven storms. During ICME-driven storms,127

the aa index tends to reach higher values (in this example aa reaches 228 nT) quickly, but it also128

decreases rapidly, whereas during SIR-driven storms the disturbance lasts longer even though the129

aa index usually does not reach such high values (in this example it only reaches 81 nT). Therefore130

the Ca index reaches its peak value much faster during the ICME-driven storm. However the value131

of the peak is similar during both these events as Ca accounts better for energy accumulation (48.6132

nT during the ICME-driven storm against 42.4 nT during the SIR-driven storm).133

It was also stated in those papers that by changing the value of the parameter τ it is possible to134

easily create an index that accounts better for a given specific orbit (but then less for the others). It135

is interesting to note that the Ca index is not the only attempt to create an index with such properties136

and another approach was proposed by Borovsky and Yakymenko (2017).137

From an operational perspective, the prediction of the Ca index could serve as a basis for an alert138

service for the accumulation of high-energy electrons in the radiation belts. In such a context, the Ca139

index would act as a proxy for relativistic electron fluxes, which is monitored from ground-based140

magnetometers. As stated in Section 1, using a data set that already has decades of cross-calibrated141

samples is also a great asset when dealing with data-driven approaches that require lots of data142

to be efficient. Besides, it may also be more reliable in terms of continuity of service to rely on143

ground-based instruments rather than on-board instruments that are subject to the risks associated144

with their being in space, at least as a back-up. Thus, the prediction of the Ca index is of immediate145

interest to the operators of space-borne systems.146
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Fig. 1. From bottom to top: evolution of the geomagnetic indices Dst, aa, and Ca, and of the flux of
electrons in the radiation belts for the E ≥ 300 keV energy range, measured by the SEM instrument
aboard the POES-15 spacecraft a) from 24 September to 8 October 1998 during a period that dis-
played an ICME-induced disturbance starting on 25 September 1998, and b) from 7 October to 21
October 1999 during a period that displayed a SIR-induced disturbance starting on 9 October 1999.

2.3. Establishing the training, validation and test sets147

2.3.1. Splitting the data sets148

In this subsection we briefly analyse the time series supplied by the OMNIweb database in order149

to detect any important data gaps (that would be prejudicial for the training of a machine learning150

algorithm) and to carefully chose the time periods used to train, validate and evaluate our models.151

Dividing a data set into training, validation and test sets is very common practice in machine learn-152

ing applications. If needed the reader is referred to Carè and Camporeale (2018) for more details.153

Before the availability of the Wind/Solar Wind Experiment (Wind/SWE) and the Advanced154

Composition Explorer magnetometer and Solar Wind Electron, Proton, and Alpha Monitor155

(ACE/MAG and ACE/SWEPAM) data starting in 1995 and 1998, the OMNIweb database has a156

high percentage of missing data. Therefore in our study we only use data from 1995 onward. For157

the 1995-2019 period there was in average 2.41% of missing data per year. The data gaps were158

filled with a simple linear interpolation as the gaps were mostly very short ones.159

The choice of the data that will be used to train, validate and test the neural network is of critical160

importance. This includes the appropriate choice of how the data set will be temporally subdivided161

into training, validation and test data sets (Lazzús et al., 2017). In order to correctly train a machine162

learning algorithm, the training data set should be comprised of a representative period during which163

all kinds of space weather phenomena, including extreme events were observed. The testing (and164
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the validation) period should also be comprised of both quiet and agitated periods. Eventually we165

have chosen the following periods, highlighted in Figure 2:166

– Training set: 2003-01-01 – 2018-12-31167

– Validation set: 1995-01-01 – 1996-12-31168

– Test set : 1997-01-01 – 2002-12-31169

Fig. 2. Plot of the values taken by the Ca index between 1995 and 2018 included (black thin line).
The training (green area), validation (yellow area) and test (red area) sets are highlighted. The 13-
month smoothed Sunspot Number is also plotted as an indicator for the solar cycle (red thick line).

The train set is composed of 16 continuous years including the declining phase of one cycle and170

a full second cycle. The train set includes several extreme and even most extreme events, including171

the ”Halloween storm” of November 2003 that reached a maximum value of Ca of 147.6 nT and172

was found to be the only 1-in-100 year event (in terms of Ca index) witnessed since the beginning173

of the Space Era (Bernoux and Maget, 2020). The validation set is composed of a 2-year long period174

during a solar minimum. The test set is composed of 6 continuous years including the ascending175

phase, the maximum and the beginning of the descending phase of a solar cycle. The test set in-176

cludes intense and extreme storms (≥ 67 nT), which is a good step towards a fair evaluation of our177

model. The chosen split should ensure that our sets are representative enough of the space weather178

phenomena that can be observed through Ca.179

To evaluate our model in an even more detailed way, we divide the test set into subparts corre-180

sponding to periods of disturbances induced on the one hand by ICMEs and on the other hand by181

Stream Interaction Regions (SIRs), including CIRs. For this purpose we use the ICME database182

provided by Chi et al. (2016) and the SIR database provided by Chi et al. (2018). These databases183

include the time of beginning and time of ending for several ICME and SIR induced geomagnetic184

disturbances between 1995 and 2015 (2016 for SIRs). According to these databases, 212 SIRs and185
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204 ICMEs were observed in the near-Earth environment between 1997 and 2002 included. In our186

study we define an ICME- (respectively SIR-) induced disturbance period as the time period dur-187

ing which an ICME- (respectively SIR-) induced geomagnetic disturbance has an influence on the188

dynamics of the Ca index. The beginning of the disturbance period is given by the beginning of the189

storm as indicated in the database. The ending of the disturbance period is given by adding τ = 4190

days to the ending of the storm as indicated in the database. We can hence evaluate our models using191

only the ICME- or SIR-induced disturbance periods and be able to better understand the accuracy192

of our forecasts.193

Let us note that the train set is composed of 139512 samples, the validation set of 16801 sam-194

ples and the full test set of 51841 samples. The SIR-induced disturbance period includes 212195

recorded SIRs, which makes 27776 samples, and the ICME-induced disturbance period includes196

204 recorded ICMEs, which makes 24058 samples. 5407 samples belong both to the SIR-induced197

period and to the ICME induced period.198

2.3.2. Preprocessing the data199

Before being fed into the neural-network based model, the data are processed as follows:200

– We interpolate the values of the Ca index in order to have hourly values instead a value every201

3 hours (this is meaningful since Ca is a very smooth time-integrated index and thus doing this202

interpolation does not change neither the physics nor the statistics of the problem).203

– Missing values in the other data sets are filled with linear interpolation.204

– Inputs and outputs are rescaled so that their mean is 0 and their standard deviation is 1. The205

weights for performing the transformation are calculated only from the training set data in order206

not to include bias for validation and testing. This procedure is standard when working with207

recurrent networks.208

3. Models and evaluation methods209

In this section we present the models used to predict the Ca index as well as the machine learning210

algorithms used in these models. We also describe the methods and measures used to evaluate the211

model.212

3.1. Model description213

The model developed in this study receives as input the past values of four solar wind parameters214

listed in Subsection 2.1, namely the plasma bulk velocity (Vsw), the ion density (ρ), the southward215

component of the interplanetary magnetic field (IMF) Bz and the plasma temperature (T ). Unlike216

other studies we decided not to include the past values of the geomagnetic index as an input to217

the models because we position ourselves in an operational-like context. Indeed, even though the218

ISGI provides quick-look aa index values, reliance on two different data sources always presents a219

higher risk of data unavailability from one source, which is prejudicial when establishing a near-real220

time forecasting service. Ideally for such a service one would have both models (with and without221
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historical geomagnetic indices as inputs), but this is out of the scope of this study and for clarity we222

only study one model in this paper. Here we have used the 30 last days for each input (i.e. the 720223

last hourly values). The inputs/outputs link can be summarised as follows:224


Vsw(t − 719) ... Vsw(t − 1) Vsw(t)
ρ(t − 719) ... ρ(t − 1) ρ(t)
Bz(t − 719) ... Bz(t − 1) Bz(t)
T (t − 719) ... T (t − 1) T (t)

 −→

Ca(t + 1)
Ca(t + 2)

...
Ca(t + n)

 , where n is the forecast horizon.

In section 4 we will analyse the results for a model trained and tested with a forecast horizon225

n = 24 hours.226

Our main model is a neural network-based model. It consists of a single layer Long-Short Term227

Memory network (LSTM) combined with a linear fully-connected feed-forward (FCFF-NN) layer.228

LSTMs are a type of recurrent neural networks first introduced in Hochreiter and Schmidhuber229

(1997). LSTMs were created to address problems involving sequentially-structured data such as230

time-series or natural language. In particular, LSTMs possess two internal memory states that are231

designed to help addressing the gradient vanishing issue that occurs when handling long sequences232

(Hochreiter, 1998). For an in-depth understanding of deep learning methods, including recurrent233

and LSTM networks, the reader is referred to the above-mentioned papers as well as to reference234

textbooks such as Goodfellow et al. (2016).235

Our model is summarised in Figure 3.236

LSTM Layer

LSTM Cell LSTM Cell LSTM Cell

FC
FF-N

N
 layer

Fig. 3. Simple scheme representing the LSTM-based model to forecast the values of the Ca index
up to n hours in advance. The mechanism inside the LSTM cell was voluntarily not detailed.

Let us summarise the functioning of the LSTM network here. For each sample corresponding to237

a time step t − p, the LSTM cell is fed with our solar wind parameters xt−p and the two memory238

states computed at the previous time step: the hidden state ht−p and the cell state ct−p. The LSTM239

cell processes and transforms the input and updates its hidden state and cell state (now ht−p+1 and240

ct−p+1) using three ”gates”: the input gate, the output gate, and the forget gate. To put it in simple241

words, the LSTM cell decides which information from the past is ”worth” being kept, forgotten,242
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or updated according to the last input. The latest memory states are again fed to the LSTM cell243

along with the solar wind parameters at the next time step xt−p+1. After all time steps have been244

given to the network, the LSTM layer outputs the final hidden state ht that serves as the input to245

the FCFF-NN layer, which itself outputs the t + 1 to t + n next values of Ca, n being the forecast246

horizon.247

Let us note that LSTMs have already demonstrated a good efficiency on geomagnetic index248

prediction problems (see e.g. Gruet et al., 2018; Chakraborty and Morley, 2020; Laperre et al.,249

2020).250

Since this is the first study that focuses on the forecast of the Ca index, there is no immediate251

baseline for us to compare our model to. The usual baseline used in such situation is the ”persistence252

model” (also known as the ”naive model”), which simply consists in assuming that the predicted253

value is the same as the last observed value. However that baseline cannot be pertinently used here as254

we do not include the past values of Ca index among the inputs to our model. That is why we have255

also trained a simple linear regression model to forecast the Ca index from the same solar wind256

parameters as with the neural network-based model, with the notable exception that the baseline257

linear model only uses the last value for each solar wind parameter as input (and not several past258

values as with the neural network-based model).259

3.2. Training and parameters of the model260

Our model was trained using the classical backpropagation method (Rumelhart et al., 1986). The261

optimisation method used is the Adam algorithm (Kingma and Ba, 2017). We have used a learning262

rate lr = 5× 10−4 that is halved every 10 epochs. The loss function is the mean-square error (MSE).263

The parameters of the model were hand-picked using cross-validation and iteration. We list below264

the main parameters of our model and some implementation choices, so that the replicability of our265

results is made easier. Let the reader be advised that even after changing some of these parameters266

(e.g. in order to reduce the computational cost) it is possible to obtain very similar results.267

– The LSTM cell state has dimension 256.268

– The LSTM layer is mono-directional.269

– We use L2-regularisation with weight 5× 10−3. L2-regularisation consists in adding the squared-270

sum of the network’s weights (with a multiplicative constant) to the loss function in order to271

avoid overfitting.272

– Size of each mini-batch: 256.273

– The training is done with 30 epochs and with early stopping. Early stopping consists in stopping274

the training of the network as soon as clear signs of overfitting are observed.275

The model was developed using the PyTorch (v1.6) library for Python (Paszke et al., 2019).276

3.3. Detection of events277

Our models as described above offer predictions in the form of a regression problem. However,278

it is more often useful for an end-user in a decision-making context to benefit from a predictive279
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alert system. The problem to be solved is then no longer a regression problem, but a classification280

problem. In this study we will transform our prediction model into a simple binary classification281

model (i.e. with only two classes) based on threshold detection: if we predict that Ca will exceed a282

given threshold value during the next t hours then we issue an alert (class 1), if we predict that we283

stay below this threshold then we issue no alert (class 0). The only difficulty lies in the choice of a284

suitable threshold.285

In our example we will choose a threshold based as much as possible on operational criteria.286

The threshold must be meaningful to the end user, i.e. the triggering of an alert must correspond287

to a situation for which the operator is expected to make a decision or take an action. As the Ca288

index represents the filling state of radiation belts with high energy electrons, we will choose a Ca289

threshold associated with a non-negligible risk of damage due to surface charging.290

Figure 4 in Bernoux and Maget (2020) shows that Ca index has a quite high correlation coefficient291

(R ≈ 0.83) with the dynamics of the integrated E ≥ 30 keV electron flux at L∗ ≈ 6. Moreover,292

Matéo-Vélez et al. (2018) shows that the risk of damage due to surface charging for a spacecraft in293

geostationary orbit (i.e. at L∗ ≈ 6) is well correlated with the 10 ≤ E ≤ 50 keV electron flux when294

the latter is greater than 1 × 108 cm−2s−1sr−1. A day during which the 10 ≤ E ≤ 50 keV electron295

flux always stayed above this value has a minimum daily fluence of 8.64× 1012 cm−2sr−1. From this296

value we define a fluence threshold equals 8 × 1012 cm−2sr−1.297

We then tried and find a Ca threshold that gives the highest correlation between the monthly298

exceedances of the electron fluence and the monthly exceedances of the Ca threshold (using the299

daily Ca maximum). For the daily fluences we have taken data provided by the Magnetospheric300

Plasma Analyzer (MPA) instrument onboard the Geosynchronous Equatorial Orbit (GEO) LANL301

1991-80 spacecraft between 1997 and 2006 for the energy range 35-46 keV (McComas et al., 1993).302

It was found that the number of monthly fluence exceedances is best correlated with the monthly303

Ca exceedances when the Ca threshold is Cathreshold = 38 nT. This is also illustrated in Figure 4.304

It should be noted in hindsight that the Ca value of 38 nT corresponds approximately to the305

0.95 percentile of all Ca values, which seems statistically satisfactory. Indeed, it is a value that is306

therefore rare enough to make a credible and useful alert threshold (an operator would probably not307

want to receive an alert when the Ca value only exceeds the median, for example). But it is also a308

value that is not too high, which allows better learning for the neural network (indeed, the higher the309

threshold, the fewer samples we would have to train and evaluate the model). Let us also insist on310

the fact that this threshold value used to define our binary classes in our study is only an example,311

and that depending on the effect considered (internal charging, surface charging, singular events,312

etc), the orbit considered, or even the satellite considered (and thus its structure) it would be more313

interesting to use other thresholds, and probably to increase the number of classes.314

3.4. Model evaluation315

In this subsection we describe the measures used to evaluate the forecast performance of our models.316

3.4.1. Regression metrics317

Since our problem is designed as a regression problem we first evaluate our model using two very318

common regression metrics: the root-mean-square error (RMSE) and the Pearson (linear) correla-319
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Fig. 4. Count of days per month for which LANL 1991-80/MPA instrument measured a daily elec-
tron fluence above 8× 1012 cm−2sr−1 along with the count of days per month for which the daily Ca
max was above 38 nT.

tion coefficient (R). Let us define yi the real observed values and ȳi the values forecast by a model320

for i ∈ 1, ...,N, N being the number of samples.321

– The RMSE is a measure of the global accuracy of the model, with more emphasis put on higher
values (e.g. here the emphasis is on periods of more intense geomagnetic activity). A lower
RMSE means a more accurate forecast. The RMSE is given by:

RMSE =

√√
1
N

N∑
i=1

(
ȳi − yi

)2 (2)

– The Pearson correlation indicates if the forecast values globally follow the same trends as the
real values. The Pearson correlation ranges between 0 and 1 (higher is better). It is given by:

R =
Cov(ȳi, yi)√

Var(ȳi) × Var(yi)
(3)

Both metrics are widely used in the geomagnetic indices forecasting literature (e.g. in Lazzús322

et al. (2017); Tan et al. (2018); Gruet et al. (2018); Sexton et al. (2019)). However, these metrics do323

not capture the full performance of a model in all situations. Indeed, these metrics indicate overall324

trends. Most of the time geomagnetic activity is fairly quiet, so quiet periods will weigh much more325

heavily on the evaluation metrics than periods of high activity, thus creating a bias. While it is326

very interesting for a satellite operator to be able to accurately predict quiet periods, it is also very327
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important to be able to accurately predict periods of geomagnetic disturbance. This type of bias328

can be partially counterbalanced by taking adapted test sets, as we have done in Section 2.3. In the329

following subsections we describe two other methods for evaluating our predictions that allow us330

to better capture other types of behaviours.331

3.4.2. Measuring time lags332

Some studies such as Wintoft and Wik (2018) and Laperre et al. (2020) highlight the fact that333

some forecasting models that display a great RMSE or Pearson correlation actually fail to reliably334

forecast high disturbance periods in advance. Laperre et al. (2020) shows that some prediction335

models exhibit systematic time lags between the observed time series and the predicted time series.336

This systematic time lag would most often be of the order of magnitude of the model’s prediction337

horizon. This would indicate that the model in reality would fail to predict a disturbance before it338

has actually been observed, which is of very limited interest to an operator.339

To quantify this behaviour Laperre et al. (2020) use the Dynamic Time Warping (DTW) algo-340

rithm, which measures the time difference between two time series (Berndt and Clifford, 1994).341

By applying this algorithm to the observed series and the predicted series shifted successively342

by several consecutive time steps the authors are able determine the extent of the systematic lag.343

Nonetheless in our study we do not use the exact same approach but a very similar one. Indeed,344

the main drawback of the DTW method is that for a given prediction horizon n, it requires circa n2
345

iterations of the DTW algorithm with different time shifts to accurately assess the systematic time346

lag. Besides, the computational complexity of the DTW algorithm is high even with modern now347

methods to fasten the computation of the DTW measure (e.g. Gold and Sharir, 2018). This is why348

we use instead the Temporal Distortion Mix (TDM).349

The Temporal Distortion Mix is a metric proposed in Vallance et al. (2017) to characterise the350

propensity of a time series to be late or early relative to a reference series. This metric is also based351

on the DTW algorithm. Based on this algorithm, Frı́as-Paredes et al. (2016) proposes the Temporal352

Distortion Index (TDI), which indicates to what extent the two time series are systematically (or not)353

late (or early). Unlike the approach proposed by Laperre et al. (2020), the TDI does not indicate354

the value of a possible systematic time lag, but whether the two time series exhibit this type of355

behaviour and to which extent. In return, there is no need for several computations of the DTW356

measure as only one (per forecast horizon) is sufficient to get the TDI. Guen and Thome (2019)357

has even suggested that the TDI could be used as a part of the loss function when training a neural358

network but this is out of scope of our paper.359

To obtain the TDM, the TDI is decomposed into two components, which characterise the lateness360

and the advance, so that TDI = TDIadv + TDIlate. The TDM is then given by:361

TDM = 1 − 2 ×
TDIadv

TDI
(4)

The TDM is hence a normalised version of the TDI. It ranges between -1 and 1. Let s1 and s2 be362

two time series.363

– if TDM(s1, s2) = −1 then s1 is systematically in advance compared to s2364

– if TDM(s1, s2) = 1 then s1 is systematically late compared to s2365
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– if TDM(s1, s2) = 0 then both time series are temporally aligned366

For instance, the TDM between a given time series and its corresponding naive forecast is always367

1. A good forecast is hence a forecast that has a TDM close to 0. The TDM is a very interesting368

evaluation measure since it only requires one run of the DTW algorithm and it is possible to compare369

the TDM between several forecasts (e.g. several forecast horizons). The TDM was first introduced in370

a study dealing with the topic of solar irradiance forecasting, which is also a time-series forecasting371

problem that shares structural similarities with ours.372

3.4.3. Evaluation of the classification-based alert system373

As we have already established, in an operational context in space weather it is important not only374

to have regression type predictions but also to have warning systems based on class predictions.375

In Section 3.3 we discussed how to transform our regression problem into a binary classification376

problem (with a threshold of Cathreshold = 38 nT). In order to evaluate this derived alert system we377

use several following metrics and measures. TP, FP, FN and TN are the true positive, false positive,378

false negative and true negative counts.379

– the precision: it is the ratio of issued alerts that match a true threshold excess. It gives an indica-
tion of how relevant the issued alerts are. It ranges between 0 and 1. Higher is better. It is given
by:

precision =
TP

TP + FN
(5)

– the recall: it is the ratio of true threshold exceedances that match an issued alert. It gives an
indication of our ability to issue relevant alerts. It ranges between 0 and 1. Higher is better. It is
given by:

recall =
TP

TP + FP
(6)

– the Fscore: it is the harmonic mean of precision and recall. It ranges between 0 and 1. Higher is
better. It is given by:

Fscore =
precision × recall
precision + recall

(7)

– the threat score (TS): it gives an indication of how well true threshold exceedances were forecast,
penalising both false alarms and false negatives. It ranges between 0 and 1. Higher is better. It is
given by:

TS =
TP

TP + FN + FP
(8)

– the Heidke skill score (HSS): it could be seen as a generalised skill score, giving the overall
accuracy of the model against that of a random model. It ranges between -1 and 1. Higher is
better, 0 denotes no skill. It is given by:

HSS =
2 × (TP × TN − FP × FN)

(TP + FN)(FN + TN) + (TP + FP)(FP + TN)
(9)

13



Bernoux et al.: Forecasting the geomagnetic index Ca

– The percentage of threshold-exceedance periods for which the model actually issues an alert380

before the threshold was exceeded (i.e. the amount of active periods that were forecast before381

they started and not only forecast after the threshold was exceeded for the first time). This is not382

a classical metric, but perhaps one of the most useful ones here, since this gives an indication of383

how well the model is able to forecast disturbance periods before they happened, not including384

the performance of the model once the disturbance period has already started. Let us note that385

there are 42 disturbance onsets (above the threshold Ca = 38 nT) in the test set.386

4. Results and discussion387

4.1. Regression results388

The regression results obtained with the baseline model and the LSTM-NN model are presented389

in Table 1. Firstly, we can see that the classical metrics (RMSE, R) give much better values with390

the LSTM-NN model than with the linear baseline. For a time horizon of 3 hours, the RMSE with391

the LSTM-NN is about 2.9 times lower than with the baseline (2.81 instead of 8.13), and for a392

time horizon of 24 hours this ratio is 1.9 (4.40 instead of 8.16). This is an additional indication393

to the fact that LSTM-NN networks are efficient for understanding the solar wind-magnetosphere394

coupling. The RMSE values should be put into perspective with the statistical distribution of the395

Ca index, which over the test period has a variance of 8.9 nT and an interquartile range of 10.5 nT.396

This comparison allows us to state that the RMSE values are satisfactory, especially for a model397

that does not include the Ca index among its inputs. We also find that the Pearson correlation values398

are quite high (≥ 0.9 for all test sets up to a time horizon of 15 hours, instead of ≤ 0.65 with the399

baseline), which is very satisfactory.400

The TDM gives values close to 0 for a time horizon of 3 hours and up to 6 hours, for test sets401

based on periods of disturbance. This indicates that up to about 6 hours, our forecasts are well402

aligned in time with the target values. Beyond that, the TDM value increases up to 0.59 for a 24403

hour time horizon with the full test set, indicating that there is an almost systematic delay between404

the predicted values and the target values.405

Unsurprisingly, the values of the conventional metrics all degrade as the time horizon increases.406

This degradation (increase for RMSE and TDM, decrease for the Pearson correlation) appears to407

be slow and smooth, as shown in Figure 5. However, for this reason it becomes difficult to tell from408

these metrics alone from which time horizon the model is no longer operationally valid.409

We also observe that, in general, the LSTM-NN model performs better during periods of SIR-410

induced disturbances than during periods of ICME-induced disturbances. For a time horizon of 3411

hours, the RMSE is 1.37 times higher for the ICME-induced period than for the SIR-induced period,412

which is far from negligible. Figure 6 shows several examples of forecasts for two geomagnetic413

storms: one induced by an ICME and the other by a SIR, the same storms already shown in Figure414

1. This figure shows the forecast values for 4 different time horizons (3, 6, 12 and 24 hours) made415

with both the LSTM-NN model and the linear baseline model. It is clear from this figure that the416

neural network-based model outperforms the linear model, as already indicated by the evaluation417

measures for the regression problem. In these examples the dynamics of the storm appear to be well418

captured, and the forecast values are indeed close to the observed values, as indicated by the RMSE.419

Furthermore it becomes apparent that the negative TDM values measured with the linear model are420
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Fig. 5. Evaluation of the LSTM-NN model with three measures (RMSE, R and TDM) for values of
time horizon ranging from 1 hour to 24 hours. Three evaluation sets (full test set, SIR-induced set
and ICME-induced set) were used.

due to the fact that the model has difficulty in correctly modeling the decay phase of a storm, which421

decreases too fast and hence appears ”ahead” in comparison to the true series.422

Besides, the fact that the predicted (with the LSTM-NN model) and observed time series show423

a time delay as the time horizon increases is evident in these examples. It would appear that this424

time shift is more pronounced during the beginning of the disturbance period than during the decay425
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phase of the storm, which in the SIR-induced storm example remains well predicted even 24 hours426

in advance. We should be able to better quantify this behaviour using the measures for the evaluation427

of the classification problem.428

The difference of performance between ICME-induced and SIR-induced storms could hence at429

least partly be explained by the fact that Ca increases more rapidly during ICME-induced distur-430

bances. As indicated by the TDM values (and as we will see below with the classification measures),431

the LSTM-NN model seems to be under-performing during the initial phase of a disturbance. Since432

during SIR-induced disturbances the initial increase is slower than during ICME-induced distur-433

bances, the RMSE during the beginning of the disturbance period should be lower in the first case,434

which contributes to the overall RMSE being lower for the SIR-induced test set than for the ICME-435

induced test set.436

4.2. Classification results437

The classification results are given in Table 2 and Figure 7. For a time horizon of 3 hours, nearly438

89% of the alerts issued were true positives, while 74% of the threshold exceedances were detected.439

For a time horizon of 24 hours, these numbers rise and fall respectively to 93% and 63%. The fact440

that the precision increases with the time horizon is due to the definition of our binary classes.441

Indeed, we are trying to forecast if the threshold will be exceeded at any given time in the next t442

hours (and not at a precise given time). In our case, as the threshold increases, the model forecasts443

less often true and false positives and more false negatives. That is why the precision increases444

somewhat counter-intuitively. This highlights the need for several evaluation methods in order to445

obtain a more exhaustive idea of the true performance of the model. Let us note that the Fscore,446

which is the harmonic mean of precision and recall, decreases from 0.81 (for a time horizon of 3447

hours) to 0.75 (for a time horizon of 3 hours), further indicating that the model performs better for448

shorter time horizons.449

It is difficult to argue at what percentage of precision and recall the model becomes satisfactory.450

In absolute terms, correctly predicting more than two out of three periods of disturbance while451

making only ≈ 25% false positives might seem to be a satisfactory target. However, depending452

on the economic constraints due to spacecraft operation this could be largely insufficient. Here453

we cannot definitively conclude about the absolute quality of our model but only about criteria that454

would be defined by an operator and that depend on each space mission or on the targeted objective.455

It should be noted, however, that the score values are also quite high, especially for the HSS. In456

absolute terms, these values are rather difficult to interpret and should serve above all as a point of457

comparison for possible future studies focusing on the forecast of similar physical quantities.458

A result that is easier to interpret and that gives a user-friendly information is the percentage of459

disturbance periods forecast in advance, given in Figure 7. To obtain this figure we calculated the460

percentage of times and how long before the model was able to correctly answer the question: ”will461

the threshold be exceeded during the next 24 hours?” Therefore here we are only interested in the462

model’s ability to predict the beginning of a period of disturbance (without taking into account the463

continuation of such a period). It appears that the model is able to answer this question correctly464

less than 50% of the time 1 hour before the threshold is exceeded and less than 25% of the time 12465

hours and longer before. This shows that even though 65% of the total exceedances were detected466

somewhere between 1 hour and 24 hours before they happened, only less than one out of two467
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Fig. 6. Example of forecasts obtained with the LSTM-NN model and the linear model during two
geomagnetic storms, the first one (left-hand side) being an ICME-driven storm and the second one
being a SIR-driven storm (right-hand side). 4 different forecast horizons were used (3, 6, 12 and 24
hours). The value of Ca used for the binary classification is given in blue dotted line as a landmark.
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Fig. 7. Percentage of times the 24h-binary classification problem was correctly forecast during calm
periods previous to a threshold exceedance depending on how much time (from 1 hour to 24 hours)
there was left before the exceedance.

disturbance periods were detected 1 hour before they happened and less than one out of four were468

detected 24 hours before they happened. This is a much more significant measure of the operational469

nature of our model and confirms the point we made earlier about the difficulty of predicting the470

onset of a geomagnetic storm.471

4.3. Further discussion472

In fact, the above-mentioned results are not very surprising since we rely on solar wind parameters473

measured close to the Earth and thus the temporal hindsight to predict the dynamics of radiation474

belts is small. This is reflected in the TDM measurements which indicate that the forecasts are475

very well temporally aligned with the observations for forecast horizon values shorter than 6 hours,476

which corresponds approximately to the reaction time of the geomagnetosphere interacting with a477

disturbance arriving near Earth. We can therefore deduce on the one hand that our model seems to478

be in agreement with the physics of the problem, but also that this same physics stops us, if we do479

not change inputs, from having good operational performances for prediction horizons greater than480

6 hours. The limit of 6 hours was also found in other papers dealing with the forecasting of the Dst481

index (Lazzús et al., 2017; Gruet et al., 2018). It would also be interesting to evaluate with these482

methods (TDM and evaluating only the ability to predict the onset of a storm) the models presented483

e.g. in Tan et al. (2018); Sexton et al. (2019) that aim at forecasting the Kp index up to 24 hours484

in advance, in order to have a more comprehensive understanding of their actual effectiveness for485

prediction horizons between 6 and 24 hours. Let us insist, however, on the fact that the difficulty486

for these prediction horizons lies in the beginning of the storm and not in its continuity, because the487

accumulation of energy makes it possible to find a link between the solar wind parameters and the488

geomagnetic indices even after 6 hours of course. This is particularly the case with a time-integrated489

index such as Ca, which allows for good overall forecast performances up to 24 hours in advance.490
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It might be tempting to compare our results to the results presented in e.g. Forsyth et al. (2020)491

where the authors present a deterministic model to forecast the GOES 15 ≥ 2 MeV electron fluxes492

from solar wind data and also evaluate their model with classification measures. For instance, one493

of their models (when maximising the average Receiver Operating Characteristic score) for a time494

horizon of 6 hours gives a hit rate (or precision) of 0.75 whereas for the same time horizon ours495

give a higher hit rate of 0.87. However this comparison does not stand because we are not focusing496

on the same energy range and our model does not use the same classification thresholds and crite-497

ria. Indeed, here we answer the question: will the threshold be exceeded somewhere in the next t498

hours? In Forsyth et al. (2020) the question is: will the threshold be exceeded in exactly t hours?499

We have chosen to approach the problem in this way because we believe that a warning system500

defined in this way is more useful, especially if we ask this question for several time horizons t.501

However this is an arbitrary choice and it could be argued otherwise. We wanted to stress here that,502

as highlighted in Camporeale (2019), comparing the performance of one model relative to another503

is not straightforward, and one should be cautious when doing it.504
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5. Conclusion505

In this study we propose a recurrent-network based approach to forecast the fairly new geomagnetic506

index Ca. The main reason for focusing on this index is that this index is well correlated with the507

high-energy electron fluxes in the radiation belts and could hence be used as an indicator for their508

state of filling, without the drawbacks inherent to measuring in-situ fluxes with spacecrafts.509

The implementation choices made in this paper were made by keeping in mind an operational510

context. These choices include the geomagnetic index to be forecast, the inputs used in our models511

and the whole evaluation methodology. To this end we have highlighted the importance of choosing512

statistically and physically representative train and test sets. We have also stressed the need to513

use adequate measures to evaluate the model, since classical metrics such as the RMSE or the514

Pearson correlation are not able to give an exhaustive report on the performance of the model, in515

particular during disturbance periods. That is why we use the Temporal Distortion Mix to measure516

the tendency for a forecast to be late or in advance in regards to the true observations.517

We also transform the forecast problem from a regression problem to a binary classification one.518

The choice of the threshold used to define the binary classes was made taking into account risk519

for GEO spacecrafts to suffer damage from surface charging effect. The evaluation of the binary520

classification forecasts shows that even though the regression measures seemed great, the network521

does not show outstanding performance when it comes to forecasting the onset of a disturbance522

period. This is most certainly due to the spatial (and hence temporal) proximity between the solar523

wind parameters used as inputs and the geomagnetosphere. In order to improve the forecast results524

for time horizons of 12 hours, 24 hours and beyond it could be interesting to go back to the Sun and525

use data originating from solar imaging as inputs to a model. This topic will be the main focus of526

future studies. For now even though the measures are good and much better than the linear baseline,527

it would be difficult to claim that this model is fully adequate for use in an operational situation. It528

represents however a first and great step towards this purpose.529

Other possibilities that remained out of scope of this study are the use of probabilistic forecasts530

(as done with other indices e.g. in Chandorkar et al., 2017; Chakraborty and Morley, 2020) or531

grey-box models. This paper being the first one dealing with the topic of forecasting the Ca index532

we voluntarily kept those possibilities aside for the sake of clarity and so as not to dilute the purpose533

of this study. However, we acknowledge that these are important avenues to explore, which will be534

done in future studies.535

Acknowledgements. The authors are thankful to the NOAA-POES for online data access available on the536

CDAweb (at http://cdaweb.gsfc.nasa.gov/). The results presented in this paper rely on geomag-537

netic indices calculated and made available by ISGI Collaborating Institutes from data collected at mag-538

netic observatories. We thank the involved national institutes, the INTERMAGNET network and ISGI539

(isgi.unistra.fr). The OMNI data were obtained from the GSFC/SPDF OMNIWeb interface (at https:540

//omniweb.gsfc.nasa.gov). Sunspot data from the World Data Center SILSO, Royal Observatory of541

Belgium, Brussels.542

G. Bernoux is thankful for funding from Région Occitanie and ONERA, under Grant Agreements543

19008721/ALDOCT and 30196.544

21

http://cdaweb.gsfc.nasa.gov/
isgi.unistra.fr
https://omniweb.gsfc.nasa.gov
https://omniweb.gsfc.nasa.gov
https://omniweb.gsfc.nasa.gov


Bernoux et al.: Forecasting the geomagnetic index Ca

References545

Akasofu, S.-I., 1981. Prediction of Development of Geomagnetic Storms Using the Solar Wind-546

Magnetosphere Energy Coupling Function ε. Planetary and Space Science, 29(11), 1151–1158.547

10.1016/0032-0633(81)90121-5. 2.1548

Baker, D. N., E. W. Hones, J. B. Payne, and W. C. Feldman, 1981. A High Time Resolution Study549

of Interplanetary Parameter Correlations with AE. Geophysical Research Letters, 8(2), 179–182.550

10.1029/GL008i002p00179. 2.1551

Berndt, D. J., and J. Clifford, 1994. Using Dynamic Time Warping to Find Patterns in Time Series. In552

Proceedings of the 3rd International Conference on Knowledge Discovery and Data Mining, AAAIWS’94,553

359–370. AAAI Press, Seattle, WA. 3.4.2554

Bernoux, G., and V. Maget, 2020. Characterizing Extreme Geomagnetic Storms Using Extreme Value555

Analysis: A Discussion on the Representativeness of Short Data Sets. Space Weather, 18(6),556

e2020SW002,450. 10.1029/2020SW002450. 1, 2.1, 2.2, 2.3.1, 3.3557

Borovsky, J. E., and Y. Y. Shprits, 2017. Is the Dst Index Sufficient to Define All Geospace Storms? Journal558

of Geophysical Research: Space Physics, 122(11), 11,543–11,547. 10.1002/2017JA024679. 2.2559

Borovsky, J. E., and K. Yakymenko, 2017. Systems Science of the Magnetosphere: Creating Indices of560

Substorm Activity, of the Substorm-Injected Electron Population, and of the Electron Radiation Belt.561

Journal of Geophysical Research: Space Physics, 122(10), 10,012–10,035. 10.1002/2017JA024250. 2.2562

Burton, R. K., R. L. McPherron, and C. T. Russell, 1975. An Empirical Relationship between563

Interplanetary Conditions and Dst. Journal of Geophysical Research (1896-1977), 80(31), 4204–4214.564

10.1029/JA080i031p04204. 2.1565

Camporeale, E., 2019. The Challenge of Machine Learning in Space Weather: Nowcasting and Forecasting.566

Space Weather, 17(8), 1166–1207. 10.1029/2018SW002061. 1, 4.3567
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