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ABSTRACT
Thanks to the numerous machine learning tools available to us

nowadays, it is easier than ever to derive a model from a dataset in

the frame of a supervised learning problem. However, when this

model behaves poorly compared with an expected performance,

the underlying question of the existence of such a model is often

underlooked and one might just be tempted to try different param-

eters or just choose another model architecture. This is why the

quality of the learning examples should be considered as early as

possible as it acts as a go/no go signal for the following potentially

costly learning process. With ADESIT, we provide a way to evalu-

ate the ability of a dataset to perform well for a given supervised

learning problem through statistics and visual exploration. Notably,

we base our work on recent studies proposing the use of functional

dependencies and specifically counterexample analysis to provide

dataset cleanliness statistics but also a theoretical upper bound on

the prediction accuracy directly linked to the problem settings (mea-

surement uncertainty, expected generalization...). In brief, ADESIT

is intended as a go/no go step right after data selection and right

before the machine learning process itself. With further analysis for

a given problem, the user can characterize, clean and export dynam-

ically selected subsets, allowing to better understand what regions

of the data could be refined and where the data precision must be

improved by using, for example, new or more precise sensors.
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1 INTRODUCTION
In a supervised learning (SL) context where the task is to predict a

continuous or categorical target 𝐶 from a set of features 𝑋 using a

set of examples, the goal is to find a function 𝑓 (a.k.a. model) such
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that 𝑓 (𝑋 ) ≃ 𝐶 . This function must balance between error mini-

mization on the provided examples and its ability to generalize well

on unseen instances to avoid overfitting. To do so, a set of training

examples is sent to a learning algorithm to infer such a function

which can be evaluated afterwards against a testing dataset. Sup-

pose the resulting accuracy is below expectations: what should

be questioned? One might be tempted to try different training pa-

rameters or even change the learning algorithm. If this approach

makes sense in some cases, challenging the very existence of 𝑓

should also be one of the primary concerns to prevent an unsuc-

cessful SL process or, conversely, to help the practitioners trust the

computed model. In practice, the quality and completeness of the

learning examples is one of the primary factors of success in SL.

Noisy, inaccurate, or incomplete data can lead to poor models and

it is sometimes even difficult to understand that the dataset itself

is to blame. Indeed, if the examples given for training contradict

themselves or do not contain sufficient information, even the most

advanced algorithm will fail at understanding the workings of the

phenomenon one wants to predict.

In response to these concerns, multiple methods and metrics

have been developed in the past allowing to evaluate, improve, and

better understand the data and its predictive power. In particular,

we focus on the recent studies proposing the use of functional

dependencies (FDs) [5, 13] and specifically the analysis of coun-

terexamples to find contradictions in the dataset [4, 12]. For the

specific case of SL, we understand intuitively that equal causes

(𝑋 ) leading to different outcomes (𝐶) raises issues in the learning

process. As a function, 𝑓 needs to give a unique answer for a given

input. This type of contradiction can be due to noise in the data

(sensor error, input error...) but it might also reveal missing features

or just the unpredictable nature of the phenomenon. Therefore,

finding regions with high densities of counterexamples is of great

interest for data preprocessing, to gain insight into the intrinsic

limitations of the raw dataset and the problem statement itself but

also to guide interactions with domain experts. If the limits given

by counterexample analysis are not suitable for the problem at

hand, the process must be refined by working on data acquisition

or processing.

As our main proposition, we present ADESIT (Advanced Data

Exploration and Selection Interactive Tool), a web-based intuitive

graphical user interface to evaluate the limits of a dataset for a given

SL problem. This evaluation is made through statistical measures

based on counterexamples and an interactive visual exploration

permits the user to see the variations of this measure on differ-

ent regions of the data. Given a dataset, a set of features 𝑋 and
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a prediction target 𝐶 , ADESIT helps the user to understand the

predictive power of the data but also potential refinements and

improvements in her features or data selection. We propose various

statistics on the dataset up to tuple granularity along with an inter-

active representation of the data and found counterexamples. As

shown in Figure 1, we thought ADESIT as being part of an iterative

refinement process. Given a new SL problem, we want the user to

quickly be able to evaluate what performances she cannot exceed

and what steps should be taken before approaching the learning

process itself.

Figure 1: Place of ADESIT in the data processing pipeline
for machine learning. Just before the model creation step, ADESIT
allows the user to understand the limits of her dataset, thus taking
part of an iterative data refinement process from data acquisition to
preprocessing.

Due to a technical gap between data scientists and experts, do-

main knowledge is often underused in the conception of prediction

models. However, it is often the domain experts themselves who

know the intrinsic theoretical parameters of the prediction problem

but want a more practical model closer to reality. As a consequence,

one of our primary concerns while designing ADESIT was to in-

volve domain experts in the process: the intuitive visualization

of counterexamples proposed by ADESIT allows a quick under-

standing and explanation of the potential issues which may arise,

promoting dialogue within all the actors of the data chain.

In summary, for a given dataset and a specific SL problem, ADE-

SIT proposes the following contributions:

• Statistics derived from counterexamples analysis of the asso-

ciated FD to characterize the ability of the dataset to perform

well on the given problem. Notably, we extend previous indi-

cators [10] with domain knowledge integration and propose

their first known efficient implementations. One of those in-

dicators serves as an upper bound on the maximum accuracy

obtainable with any model [12].

• Scalable counterexample enumeration based on Blocking and

Sorted Neighborhood indexing [11] allowing fast analysis of

large datasets .

• Customizable visualization and selection of counterexamples

in the dataset up to tuple granularity.

• Ways to find and export regions of data with good learning

potential but also subsets which need refinements. Those sub-

sets can also be automatically described using SQL queries.

• An intuitive interface focusing on visualization, allowing an

easy collaboration between domain experts and data scien-

tists.

2 SYSTEM OVERVIEW
2.1 Counterexample analysis
For the sake of simplicity, we consider a relation 𝑟 [𝑈 ] with 𝑈 a set

of continuous or categorical attributes and a functional dependency

𝑋 → 𝐶 with 𝑋 ∪ {𝐶} ⊆ 𝑈 . We focus on a target𝐶 to predict from a

set of features 𝑋 which can either be a classification or a regression

SL problem. In our case study for example, it is possible to use

the flow and the elevation of the river (𝑋 = {𝑓 𝑙𝑜𝑤, 𝑒𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛}) to
predict the power produced by a water turbine (𝐶 = {𝑝𝑜𝑤𝑒𝑟 }).
Recent studies [4, 5, 12–14] have shown the interest of assessing

the veracity of 𝑋 → 𝐶 in regard to a relation 𝑟 . A direct way to

evaluate a dataset in view of a given FD is through the study of

violating pairs (VPs). In the case of classic (a.k.a. crisp) FDs, a pair

of tuples (𝑢, 𝑣) is defined as a VP if for all 𝐴 ∈ 𝑋 , 𝑢 [𝐴] = 𝑣 [𝐴] and
𝑢 [𝐶] ≠ 𝑣 [𝐶]. In other words, a VP can be seen as a contradiction

in the data where two same sets of features’ values lead to different

outcomes for 𝐶 . The terms counterexample and violating pair will
be used interchangeably from now on.

[10] proposes threemeasures to evaluate how a relation 𝑟 deviates
from a given FD: 𝑔1 measures the ratio of VPs, 𝑔2 measures the ratio

of tuples involved in a VP and 𝑔3 gives the normalized minimum

number of tuples one has to delete to obtain a relation without VPs.

In other words, 𝑔1 and 𝑔2 propose evaluations of the dataset purity

and counterexamples distribution while 𝑔3 gives an appreciation

of learnability by proposing an upper bound on the maximum

accuracy obtainable with an ideal model [12]. In the case of crisp

FDs, the 𝑔3 error can be specifically expressed as follows:

𝑔3 (𝑋 → 𝐶, 𝑟 ) = 1 − 𝑚𝑎𝑥 ( |𝑠 | : 𝑠 ⊆ 𝑟, 𝑠 |= 𝑋 → 𝐶)
|𝑟 |

where |𝑟 | is the number of tuples in 𝑟 and 𝑠 |= 𝑋 → 𝐶 means that

𝑋 → 𝐶 is satisfied in 𝑠 (i.e. no pair of tuples in 𝑠 is a VP). However,

this definition of VP is known to be too strict as it lacks some crucial

domain knowledge integration such as data uncertainty (sensor

error, noisy acquisition...). Thus, we propose the use of non-crisp

FDs to define VPs and therefore generalised version of 𝑔1, 𝑔2 and 𝑔3
as described in [14]. Many approximations of crisp FDs have been

proposed in the literature, see for instance [2] for a survey. To deal

with similarity (≃) instead of crisp equality, we need to define the

satisfaction of non-crisp FDs (p≈) and therefore a relaxed version

of VPs. 𝑟 p≈ 𝑋 → 𝐶 is now satisfied when there is no pair of

tuples (𝑢, 𝑣) such that for all 𝐴 ∈ 𝑋 , 𝑢 [𝐴] ≃ 𝑣 [𝐴] and 𝑢 [𝐶] ; 𝑣 [𝐶].
We can therefore define a generalised version of 𝑔3 using the same

notation for simplicity:

𝑔3 (𝑋 → 𝐶, 𝑟 ) = 1 − 𝑚𝑎𝑥 ( |𝑠 | : 𝑠 ⊆ 𝑟, 𝑠 p≈ 𝑋 → 𝐶)
|𝑟 |

This generalized 𝑔3 indicator extends the initial 𝑔3 to propose

an upper bound on the accuracy of any model paired with domain

knowledge and similarity integration. Among the many similarity

measures presented in literature, we consider the following one

based on measurement uncertainties: for values 𝑎 and 𝑏 of some
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numerical attribute 𝐴 ∈ 𝑈 , 𝑎 and 𝑏 are considered as similar under

an absolute threshold 𝜏𝑎 and a relative threshold 𝜏𝑟 if:

|𝑎 − 𝑏 | ≤ 𝜏𝑎 + 𝜏𝑟 ×𝑚𝑎𝑥 ( |𝑎 |, |𝑏 |)

Note that when 𝜏𝑎 and 𝜏𝑟 tend to zero, this definition comes back

to that of crisp FDs. Moreover, strict equality is used for categorical

attributes but appropriate distance measures (eg. edit distance for

textual attributes) as well as other similarity measures could be

introduced in the future.

2.2 Computation overview
2.2.1 Violating pairs discovery. To enumerate VPs, every tuple has

to be compared to each other and two tuples are added to the set of

VPs if they agree on X and disagree on C in regard to the similarity

measures defined for each attribute. As this operation is quadratic

in the number of tuples, it does not scale to massive datasets. Such

couple enumeration has been extensively studied for record linkage,
see [3] for a survey. This is the first step in our process and we reuse

Blocking and Sorted Neighborhood indexing for remarkable gains

in reducing the processing time. While this is still an approximate

method which relies on the size of the neighborhood, exact linkage

can then be achieved for exact computation. Note that this approach

is also highly scalable as many distributed approaches such as

MapReduce [11] are presented in literature and could be easily

implemented on top of the pipeline.

2.2.2 Generalised 𝑔1, 𝑔2 and 𝑔3 computation. Once the VPs have
been found, 𝑔1 is just the number of VPs and 𝑔2 the number of

tuples involved in a VP. On the other hand, 𝑔3 requires finding the

minimum number of tuples to remove from the relation 𝑟 to satisfy

𝑋 → 𝐶 . If its computation is trivial in the case of classic FDs [9], the

use of non-crisp FDs makes it NP-Complete, a reduction from the

minimum vertex cover (MVC) problem has been shown in [14].

Indeed, using a graph representation where nodes correspond to

tuples and edges connect nodes involved in a VP, the MVC comes

back to the identification of the largest subset of 𝑟 verifying the FD.

To spare the user the exponential complexity of exact solving, we

propose an approximation algorithm giving upper and lower bounds

on the size |𝑀𝑉𝐶 | of the MVC. The best-known constant-factor

approximation algorithm for the |𝑀𝑉𝐶 | upper bound |𝑀𝑉𝐶 |𝑢𝑏 is

described in [8] while the lower bound |𝑀𝑉𝐶 |𝑙𝑏 is given by the size

of maximum matching [7], such that:

0.5|𝑀𝑉𝐶 | ≤ |𝑀𝑉𝐶 |𝑙𝑏 ≤ |𝑀𝑉𝐶 | ≤ |𝑀𝑉𝐶 |𝑢𝑏 ≤ 2|𝑀𝑉𝐶 |

In addition, we also propose an exact algorithm that combines

branching and polynomial-time graph reductions [1] at the price

of exponential complexity, and thus only usable for medium-sized

datasets.

To the best of our knowledge, ADESIT implements for the first

time an efficient computation of the generalised𝑔3 measure, both ex-

act and approximated, pointing out an interesting cross-fertilization

from database core technologies to machine learning.

2.3 ADESIT
ADESIT is a web-based application which proposes a machine-

learning-focused analysis and visualization of a given dataset based

on counterexample analysis and especially the 𝑔1, 𝑔2 and 𝑔3 mea-

sures. Notably, it provides a direct appreciation of the performances

a prediction model cannot exceed and ways to clean the data and

improve learning results by observing what tuples do not respect

the FD associated to the SL problem at hand. As labelled in the

screenshot available in Figure 2, ADESIT’s interface is divided into

three main areas:

A This area is used to define the SL problem. The user first uploads

her dataset and can then select attributes to define the features

𝑋 and the target 𝐶 of the prediction problem. In conjunction

with domain experts, similarity measure based on absolute and

relative thresholds need to be defined for each continuous at-

tribute. Finally, the user can choose the type of computation for

𝑔3 (approximate or exact) and start analysis (VPs discovery and

indicators computation).

B In area B is displayed the number of tuples involved in a coun-

terexample (unnormalized 𝑔2) along with the 𝑔1, 𝑔2 and 𝑔3 indica-

tors. Those indicators are inverted versions of the raw measures

(e.g. 𝑔1 becomes 1−𝑔1) for readability: the higher the better. Note
that each information can be hovered as displayed in Figure 2

to get more detailed information. If the performances are not

appropriate for the domain experts, we can intervene on the data

collection process by exploring solutions such as increasing data

accuracy to influence similarity measures (eg. using better sen-

sors), adding new features or refine the data processing pipeline

(acquisition, denoising, gap filling...).

C (C1) This area is used to visualize the dataset in the perspective

of counterexample analysis. Each dot in the graph represents a

tuple of the dataset and counterexamples are highlighted accord-

ing to the chosen parameters. By hovering a dot, you can show

Figure 2: Labelled screenshot of the ADESIT interface. A:
Problem settings given by a domain expert (features X, target C and
similarity measures), B: Counterexample indicators based on 𝑔1, 𝑔2
and 𝑔3, C: Interactive counterexample visualization and selection of
the dataset with export capabilities
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its specific information and by clicking it, all nodes in contra-

diction get highlighted. Plots of counterexamples distribution

are available for each axis combination also including PCA and

t-SNE projections. This visualisation allows to detect areas with

high densities of counterexamples. In addition, the graphical in-

terface is fully interactive allowing to zoom, move and select

tuples using lasso or square tools. Finally, the user can choose

to select all tuples, counterexamples or pure tuples only. This

is also the place to decide if the process of data selection for SL

can continue or if new or better data is needed. (C2) This last
area displays information about the current selection (number of

tuples selected, number of tuples involved in a counterexample),

proposes a SQL query corresponding to the selection and displays

the selected tuples in an interactive array. One can also export

the selection as a CSV.

It is important to emphasize that we are upstream from themodel

creation itself. The generalized 𝑔3 indicator acts as an upper-bound

on the target accuracy but will not necessarily be the desired one

as it might result in a lack of generalisation. However, by mak-

ing informed choices for the similarity measures (thresholds) and

therefore assuming imperfections in the accuracy of the attributes,

we produce a better reflection of the real-life phenomenon behind

the data and therefore reduce the overall variance. ADESIT is used

to identify contexts where creating a good model will be difficult

or promising and provides you with knowledge to explain why

to potentially refine your data from acquisition (eg. Should we get
new sensors or more precise ones?) to preprocessing. Also note that

ADESIT proposes intuitive indicators in view of a given dataset
and is not meant to analyse the unpredictability of the underlying

phenomenon itself which is notably linked to the Bayes error [6].

ADESIT is coded in Python using the Dash framework based on

the Plotly library. We also use the Pandas, NetworkX and Python

Record Linkage Toolkit libraries. A beta version of ADESIT hosted

on the LIRIS laboratory servers is available at adesit.datavalor.com.

3 DEMONSTRATION SCENARIO
For our demonstration, we propose to analyse a real case issue pro-

posed by the Compagnie Nationale du Rhône (CNR), a hydropower

company in France. They have recorded various sensor data of one

of their hydropower plant over the past ten years at frequencies up

to the second and commissioned the following study from us: Is it

possible to predict the power produced by a turbine with a preci-

sion of 1%? Notably, the given sensor features are rather imprecise

with uncertainties up to 5%. Rather than giving them a question-

able cryptic number obtained by the costly task of training a lot of

different models with multiple sets of parameters to get the best

accuracy possible, we propose the alternative of ADESIT, allowing

to get a direct visual understanding of the limitations of the dataset,

facilitating the dialogue with domain experts. Moreover, ADESIT

proposes numeric indicators allowing to also give them tangible

numbers and notably a theoretical upper bound on the accuracy

for their dataset.

The analysis will be deeply linked to domain knowledge as we

will use the information provided by the company such as validity

domains or uncertainty. We will work with 5 attributes: the power

produced (Megawatts) which is the target C we want to predict, the

flow of the river (𝑚3𝑠−1), the turbine’s blades position (percents),

the opening of the water supply (percents) and the elevation of

the waterfall (m). We will play with those attributes to show the

audience their respective usefulness in the SL problem at hand. No-

tably, we identify specific areas with more counterexamples which

need to be studied closely for training. On Figure 2 for example,

we observe that multiple counterexamples occur for openings be-
tween 50% and 60%. After correlation with the operating curve of

the plant and closer examination with experts from the CNR, this

observation helped us identify situations of underproduction which

could be corrected. Similarly, a range with high density of coun-

terexamples across the blades position attribute helped us identify

the degradation of a turbine. We will take advantage of complexity

of the problem to showcase the diverse functionalities of ADESIT.

During our demonstration, the audience will play the role of the

company and we will explain to them in detail what might and

might not work with their project. We will notably encourage dia-

logue and questioning by giving them clear information about the

data and the problematic. In addition, we will cover some datasets

from the UCI Machine Learning Repository and link our results

to the actual performances obtained by the community. Finally,

visitors will also be invited to upload their own data to play with

ADESIT.
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