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ABSTRACT
Thanks to the numerous machine learning tools available to us

nowadays, it is easier than ever to derive a model from a dataset in

the frame of a supervised learning problem. However, when this

model behaves poorly compared with an expected performance,

the underlying question of the existence of such a model is often

underlooked and one might just be tempted to try different param-

eters or just choose another model architecture. This is why the

quality of the learning examples should be considered as early as

possible as it acts as a go/no go signal for the following potentially

costly learning process. With ADESIT, we provide a way to evalu-

ate the ability of a dataset to perform well for a given supervised

learning problem through statistics and visual exploration. Notably,

we base our work on recent studies proposing the use of functional

dependencies and specifically counterexample analysis to provide

dataset cleanliness statistics but also a theoretical upper bound on

the prediction accuracy directly linked to the problem settings (mea-

surement uncertainty, expected generalization...). In brief, ADESIT

is intended to be part of an iterative data refinement process right

after data selection and right before the machine learning process

itself. With further analysis for a given problem, the user can char-

acterize, clean and export dynamically selected subsets, allowing

to better understand what regions of the data could be refined and

where the data precision must be improved by using, for example,

new or more precise sensors.
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1 INTRODUCTION
We consider a supervised learning (SL) problem where the task is

to predict a continuous or categorical target𝐶 from a set of features

𝑋 using a set of examples. The goal is to find a function 𝑓 (a.k.a.

model) such that 𝑓 (𝑋 ) ≃ 𝐶 . This function must balance between
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error minimization on the provided examples and its ability to gen-

eralize well on unseen instances to avoid overfitting. To do so, a

set of training examples is sent to a learning algorithm to infer

such a function which can be evaluated afterwards against a test-

ing dataset. Suppose the resulting accuracy is below expectations:

what should be questioned? One might be tempted to try different

training parameters or even change the learning algorithm. If this

approach makes sense in some cases, challenging the very exis-

tence of 𝑓 should also be one of the primary concerns to prevent

an unsuccessful SL process or, conversely, to help the practitioners

trust the computed model. In practice, the quality and completeness

of the learning examples is one of the primary factors of success in

SL. Noisy, inaccurate, or incomplete data can lead to poor models,

and it is sometimes even difficult to understand that the learning

dataset itself is to blame. Indeed, if the examples given for train-

ing contradict themselves or do not contain sufficient information,

even the most advanced algorithm will fail at understanding the

workings of the phenomenon one wants to predict.

In response to these concerns, multiple methods and metrics

have been developed in the past allowing to evaluate, improve, and

better understand the data and its predictive power. In particular,

we focus on the recent studies proposing the use of functional

dependencies (FDs) and specifically the analysis of counterexamples

to find contradictions in the dataset [3, 12]. For the specific case of

SL, we understand intuitively that learning examples with equal

causes (𝑋 ) and different outcomes (𝐶) are likely to cause problems

during the learning process. As a function, 𝑓 needs to give a unique

answer for a given input. This type of contradiction can be due

to noise in the data (sensor precision, input error...) but it might

also reveal missing features or just the unpredictable nature of

the phenomenon. Therefore, finding regions with high densities

of counterexamples is of great interest for data preprocessing, to

gain insight into the intrinsic limitations of the raw dataset and

the problem statement itself but also to guide interactions with

domain experts. If the limits given by counterexample analysis are

not suitable for the problem at hand, the process must be refined

by working on data acquisition or processing.

As our main proposition, we present ADESIT (Advanced Data

Exploration and Selection Interactive Tool), a web-based intuitive

graphical user interface to evaluate the limits of a dataset for a given

SL problem. This evaluation is made through statistical measures

based on counterexamples and an interactive visual exploration

permits the user to see the variations of this measure on differ-

ent regions of the data. Given a dataset, a set of features 𝑋 and

a prediction target 𝐶 , ADESIT helps the user to understand the
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predictive power of the data but also potential refinements and

improvements in her features or data selection. We propose various

statistics on the dataset up to tuple granularity along with an inter-

active representation of the data and found counterexamples. As

shown in Figure 1, we thought ADESIT as being part of an iterative

refinement process. Given a new SL problem, we want the user to

quickly be able to evaluate what performances she cannot exceed

and what steps should be taken before approaching the learning

process itself.

Figure 1: Place of ADESIT in the data processing pipeline for
machine learning. Just before the model creation step, ADE-
SIT allows the user to understand the limits of her dataset,
thus taking part of an iterative data refinement process from
data acquisition to preprocessing.

Due to a technical gap between data scientists and experts, do-

main knowledge is often underused in the conception of prediction

models. However, it is often the domain experts themselves who

know the intrinsic theoretical parameters of the prediction problem

but want a more practical model closer to reality. As a consequence,

one of our primary concerns while designing ADESIT was to in-

volve domain experts in the process: the intuitive visualization

of counterexamples proposed by ADESIT allows a quick under-

standing and explanation of the potential issues which may arise,

promoting dialogue within all the actors of the data chain.

In summary, for a given dataset and a specific SL problem, ADE-

SIT proposes the following contributions:

• Statistics derived from counterexamples analysis of the asso-

ciated FD to characterize the ability of the dataset to perform

well on the given problem. Notably, we extend previous indi-

cators [10] with domain knowledge integration and propose

their first known efficient implementations. One of those in-

dicators serves as an upper bound on the maximum accuracy

obtainable with any model on a given dataset [12].

• Scalable counterexample enumeration along with fast ap-

proximate and exact computation of the associated indicators

allowing fast analysis of large datasets.

• Customizable counterexamples visualizations (scatter plot,

table, graph) and selection up to tuple granularity.

• Ways to find and export regions of data with good learning

potential but also subsets which need refinements. Those sub-

sets can also be automatically described using SQL queries.

• An intuitive interface focusing on visualization, allowing an

easy collaboration between domain experts and data scien-

tists.

2 SYSTEM OVERVIEW
2.1 Counterexample analysis
For the sake of simplicity, we consider a relation 𝑟 [𝑈 ] with 𝑈 a set

of continuous or categorical attributes and a functional dependency

𝑋 → 𝐶 with 𝑋 ∪ {𝐶} ⊆ 𝑈 . We focus on a target𝐶 to predict from a

set of features 𝑋 which can either be a classification or a regression

SL problem. In our case study for example, it is possible to use

the flow and the elevation of the river (𝑋 = {𝑓 𝑙𝑜𝑤, 𝑒𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛})
to predict the power produced by a water turbine (𝐶 = {𝑝𝑜𝑤𝑒𝑟 }).
Recent studies [3, 5, 12–14] have shown the interest of assessing the

veracity of𝑋 → 𝐶 regarding a relation 𝑟 . A direct way to evaluate a

dataset in view of a given FD is through the study of violating pairs
(VPs). In the case of classic (a.k.a. crisp) FDs, a pair of tuples (𝑢, 𝑣)
is defined as a VP if for all 𝐴 ∈ 𝑋 , 𝑢 [𝐴] = 𝑣 [𝐴] and 𝑢 [𝐶] ≠ 𝑣 [𝐶].
In other words, a VP can be seen as a contradiction in the data

where two same sets of features’ values lead to different outcomes

for 𝐶 . The terms counterexample and violating pair will be used
interchangeably from now on.

[10] proposes three measures to evaluate how a relation 𝑟 de-
viates from a given FD: 𝑔1 measures the ratio of VPs, 𝑔2 measures

the ratio of tuples involved in a VP and 𝑔3 gives the normalized

minimum number of tuples one has to delete to obtain a relation

without VPs. While 𝑔1 and 𝑔2 propose evaluations of the dataset

purity and counterexamples distribution, 𝑔3 provides an apprecia-

tion of learnability by proposing an upper bound on the maximum

accuracy obtainable with any model on a given dataset [12]. Intu-

itively, this is true because a model cannot correctly classify a tuple

and its associated counterexample at the same time. In the case of

crisp FDs, the 𝑔3 error can be specifically expressed as follows:

𝑔3 (𝑋 → 𝐶, 𝑟 ) = 1 − 𝑚𝑎𝑥 ( |𝑠 | : 𝑠 ⊆ 𝑟, 𝑠 |= 𝑋 → 𝐶)
|𝑟 |

where |𝑟 | is the number of tuples in 𝑟 and 𝑠 |= 𝑋 → 𝐶 means that

𝑋 → 𝐶 is satisfied in 𝑠 (i.e. no pair of tuples in 𝑠 is a VP). However,

this definition of VP is known to be too strict as it lacks some crucial

domain knowledge integration such as data uncertainty (sensor

error, noisy acquisition...). Thus, we propose the use of non-crisp

FDs to define VPs and therefore generalized version of 𝑔1, 𝑔2 and

𝑔3 inspired by [14] for conditional matching dependencies (CMDs).

Many relaxations of crisp FDs have been proposed in literature,

see for instance [1] for a survey. To deal with similarity (≃) instead
of crisp equality, we need to define the satisfaction of non-crisp

FDs (p≈) and therefore a relaxed version of VPs. 𝑟 p≈ 𝑋 → 𝐶 is

now satisfied when there is no pair of tuples (𝑢, 𝑣) such that for all

𝐴 ∈ 𝑋 , 𝑢 [𝐴] ≃ 𝑣 [𝐴] and 𝑢 [𝐶] ; 𝑣 [𝐶]. We can therefore define a

generalised version of 𝑔3 using the same notation for simplicity:

𝑔3 (𝑋 → 𝐶, 𝑟 ) = 1 − 𝑚𝑎𝑥 ( |𝑠 | : 𝑠 ⊆ 𝑟, 𝑠 p≈ 𝑋 → 𝐶)
|𝑟 |

This generalized 𝑔3 indicator extends the initial 𝑔3 to propose

an upper bound on the accuracy of any model paired with domain

knowledge and similarity integration. Among the many similarity

measures presented in literature, we consider the following one

based on measurement uncertainties: for values 𝑎 and 𝑏 of some

numerical attribute 𝐴 ∈ 𝑈 , 𝑎 and 𝑏 are considered as similar under



an absolute threshold 𝜏𝑎 and a relative threshold 𝜏𝑟 if:

|𝑎 − 𝑏 | ≤ 𝜏𝑎 + 𝜏𝑟 ×𝑚𝑎𝑥 ( |𝑎 |, |𝑏 |)

This similarity measure is notably appropriate for the sensor

data used in the demonstration. Note that when 𝜏𝑎 and 𝜏𝑟 tend to

zero, this definition comes back to that of crisp FDs. Moreover, strict

equality is used for categorical attributes but appropriate distance

measures (eg. edit distance for textual attributes) as well as other

similarity measures could be introduced in the future.

2.2 Computation overview
2.2.1 Violating pairs enumeration. To enumerate VPs, every tuple

has to be compared to each other and two tuples are added to the set

of VPs if they agree onX and disagree onC in regard to the similarity

measures defined for each attribute. As this operation is quadratic

in the number of tuples, it does not scale easily. Nonetheless, such

couple enumeration has been extensively studied for record linkage
and similarity joins where optimisations have been proposed for

massive datasets. Depending of the attribute type, techniques such

as blocking [2] and/or a sliding window algorithm (similar to [4])

can be used for remarkable gains in reducing the processing time.

Note that this approach is also highly scalable as many distributed

approaches such as MapReduce [11] are presented in literature and

could be easily implemented on top of the pipeline.

2.2.2 Generalized 𝑔1, 𝑔2 and 𝑔3 computation. Once the VPs have
been found, 𝑔1 is just the number of VPs and 𝑔2 the number of

tuples involved in a VP. On the other hand, 𝑔3 requires finding

the minimum number of tuples to remove from the relation 𝑟 to

satisfy 𝑋 → 𝐶 . If its computation is trivial in the case of classic

FDs [9], the use of non-crisp FDs makes it NP-Hard which can be

proven by a reduction from the minimum vertex cover (MVC)

similar to the one proposed in [14] for CMDs. Moreover, using a

graph representation where nodes correspond to tuples and edges

connect nodes involved in a VP, computing 𝑔3 becomes equivalent

to solving the MVC, allowing to benefit from the extensive litera-

ture on the subject. To spare the user the exponential complexity

of exact solving, we propose an approximation algorithm giving

upper and lower bounds on the size |𝑀𝑉𝐶 | of the MVC. The best-

known constant-factor approximation algorithm for the |𝑀𝑉𝐶 |
upper bound |𝑀𝑉𝐶 |𝑢𝑏 is described in [7] while the lower bound

|𝑀𝑉𝐶 |𝑙𝑏 is given by the size of maximum matching, such that:

0.5|𝑀𝑉𝐶 | ≤ |𝑀𝑉𝐶 |𝑙𝑏 ≤ |𝑀𝑉𝐶 | ≤ |𝑀𝑉𝐶 |𝑢𝑏 ≤ 2|𝑀𝑉𝐶 |

In addition, we also propose an exact algorithm which combines

multiple graph techniques (kernelization, branch-and-reduce and

intermediate local search solutions...) [8] at the price of exponential

complexity in the number of edges, and thus only usable for datasets

with a reasonable number of counterexamples.

To the best of our knowledge, ADESIT implements for the first

time an efficient computation of the generalized𝑔3 measure, both ex-

act and approximated, pointing out an interesting cross-fertilization

from database core technologies to machine learning.

2.3 ADESIT
ADESIT is a web-based application which proposes a machine-

learning-focused analysis and visualization of a given dataset based

on counterexample analysis and especially the 𝑔1, 𝑔2 and 𝑔3 mea-

sures. Notably, it provides a direct appreciation of the performances

a prediction model cannot exceed and ways to increase the quality

of input data and improve learning results by observing what tu-

ples do not respect the FD associated to the SL problem at hand. As

labelled in the screenshot available in Figure 2, ADESIT’s interface

is divided into three main areas:

A This area is used to define the SL problem. The user first uploads

her dataset and can then select attributes to define the features

𝑋 and the target 𝐶 of the prediction problem. In conjunction

with domain experts, similarity measures based on absolute and

relative thresholds need to be defined for each continuous at-

tribute. Finally, the user can choose the type of computation for

𝑔3 (approximate or exact) and start analysis (VPs discovery and

indicators computation). At the present time, unknown values

are not explicitly handled by ADESIT but approaches such as

[15] could be implemented in the future.

B This area displays the number of tuples involved in a counterex-

ample (unnormalized 𝑔2) along with the 𝑔1, 𝑔2 and 𝑔3 indicators.

Those indicators are inverted versions of the raw measures (e.g.

𝑔1 becomes 1 − 𝑔1) for readability: the higher the better. If the
performances are not appropriate for the domain experts, we can

intervene on the data collection process by exploring solutions

such as increasing data accuracy to influence similarity measures

(eg. using better sensors), adding new features or refine the data

processing pipeline (acquisition, denoising, gap filling...).

C (C1) This area is used to visualize the dataset in the perspective

of counterexample analysis trough a scatter plot. Each dot in the

graph represents a tuple of the dataset and counterexamples are

highlighted according to the chosen parameters. By hovering a

dot, you can show its specific information and by clicking it, all

Figure 2: Labelled screenshot of the ADESIT interface. A: Su-
pervised learning problem settings. B: Counterexample indi-
cators. C: Counterexamples exploration.



nodes in contradiction get highlighted. Plots of counterexamples

distribution are available for each axis combination also including

attributes produced with dimensionality reduction techniques

such as PCA. In addition to the ability to zoom, move and select

tuple regions using lasso or square tools, the user can choose

to filter all tuples, counterexamples, or pure tuples only. This

visualization allows to detect areas with high densities of coun-

terexamples and helps to decide if the process of data selection

for SL can continue or if new or better data is needed. An alterna-

tive mirroring table view can also be used to explore and export

parts of the dataset. (C2) This last area proposes an interactive

counterexample graph of variable depth. Nodes can be hovered to

get more information on their corresponding tuples and clicked

to be selected. A table summarizing the selected tuple and its

direct neighborhood is also available.

It is important to emphasize that we are upstream from themodel

creation itself. The𝑔3 indicator acts as an upper-bound on the target

accuracy but will not necessarily be the desired one as it might result

in a lack of generalization. However, by making informed choices

for the similarity measures (thresholds) and therefore assuming

imperfections in the accuracy of the attributes, we produce a better

reflection of the real-life phenomenon behind the data and therefore

reduce the overall variance. ADESIT is used to identify contexts

where creating a good model will be difficult or promising and

provides you with knowledge to explain why to potentially refine

your data from acquisition (eg. Should we get new sensors or more
precise ones?) to preprocessing. Also note that ADESIT proposes

intuitive indicators in view of a given dataset and is not meant to

analyze the unpredictability of the underlying phenomenon itself

which is notably linked to the Bayes error [6].

ADESIT is coded in Python using the Dash framework. We also

use Pandas and Numpy. A beta version of ADESIT hosted on the

LIRIS laboratory servers is available at adesit.datavalor.com.

3 DEMONSTRATION SCENARIO
For our demonstration, we propose to analyse a real case issue pro-

posed by the Compagnie Nationale du Rhône (CNR), a hydropower

company in France. They have recorded various sensor data of one

of their hydropower plant over the past ten years at frequencies up

to the second and commissioned the following study from us: Is it

possible to predict the power produced by a turbine with a precision

of 1%? Notably, the given sensor features are rather imprecise with

uncertainties up to 5%. Rather than giving them a questionable cryp-

tic number obtained by the costly task of training a lot of different

models to get the best accuracy possible, we propose the alternative

of ADESIT, allowing to get a direct visual understanding of the

limitations of the dataset, facilitating the dialogue with domain

experts. Moreover, ADESIT proposes numeric indicators allowing

to also give them tangible numbers and notably a theoretical upper

bound on the accuracy for their dataset.

The analysis will be deeply linked to domain knowledge as we

will use the information provided by the company such as validity

domains or uncertainties. We will work with 5 attributes: the power

produced (Megawatts) which is the target C we want to predict, the

flow of the river (𝑚3𝑠−1), the turbine’s blades position (percents),

the opening of the water supply (percents) and the elevation of

the waterfall (m). We will play with those attributes to show the

audience their respective usefulness in the SL problem at hand. No-

tably, we identify specific areas with more counterexamples which

need to be studied closely for training. On Figure 2 for example, we

observe that multiple counterexamples occur for openings between
50% and 60%. After correlation with the operating curve of the plant

and closer examination with experts from the CNR, this observation

helped us identify situations of underproduction which could be

corrected. Similarly, a range with high density of counterexamples

across the blades position attribute helped us identify the degrada-

tion in time of a turbine. We will take advantage of the complexity

of the problem to showcase the diverse functionalities of ADESIT.

During our demonstration, the audience will play the role of the

company and we will explain to them in detail what might and

might not work with their project. We will notably encourage dia-

logue and questioning by giving them clear information about the

data and the problematic. In addition, we will cover some datasets

from the UCI Machine Learning Repository and link our results to

the actual performances obtained by the community. Visitors will

also be invited to upload their own data to play with ADESIT.
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