Cyril Gorlla
email: cyril.m.gorlla@jacobs.ucsd.edu

Using Distributed Compute Solutions in the Cloud to Predict Loan Defaulting With Large Datasets May 31, 2021

Abstract

The proliferation of ever-enlarging datasets enabled by the computational power available today presents many new opportunities for extracting value from data while also presenting numerous logistical and engineering challenges (Labrinidis & Jagadish, 2012). Local resources often are not sufficient to process these large datasets, causing a marked shift to off-site cloud computing resources (Nieuwenhuis et al., 2018). Such cloud systems offer the benefits of elasticity in scaling compute resources to allow a more flexible approach that is especially useful when processing large datasets. Here, we lay out and examine a framework for development of a random forest classification algorithm to predict loan defaulting in the Freddie Mac loan dataset. Feature engineering is accomplished with the Dask library on the Amazon Web Services EC2 platform, while label generation is done on the same provider's EMR platform with Apache Spark. Finally, a random forest model is trained locally with Dask and Scikit-learn resulting in a classification accuracy on the test dataset of 97.7%. The workflow proposed may be widely applied to artificial intelligence and machine learning tasks involving large datasets. 1

Feature Engineering

We begin by transferring the data to AWS S3 for use in other services. Starting initially with the first quarter of 2009, the feature file is under 100 MB while the file containing default information is 2.26 GB. We then instantiate an EC2 instance with the c5.xlarge configuration.

We set up the EC2 instance.

Dask

Dask "provides advanced parallelism for analytics, enabling performance at scale," making it optimal for this application. We perform feature engineering for our model, with Dask providing parallelism and taking advantage of the compute of the EC2 instance. The Dask UI showing the distribution of processes while running feature engineering

Label Generation

We instantiate an EMR cluster with the c6g.2xlarge configuration, optimized for processing large data. The EMR instance is pre-loaded with Spark.

Preparing the monthly performance data with Dask

Label generation with Spark

A label of 1 denotes that the loan has defaulted, while 0 means it has not. pyspark from pyspark.sql import functions as f textFile = spark.read.csv('historical_data_time_2009Q1.txt',header='false',sep='|')

#labelling logic df = textFile.withColumn('Label', f.when((f.col('_c1') > '2')| (f.col('_c2') =='9.0')|(f.col('_c2')=='6.0')|(f.col('_c2')=='3.0'), 1).otherwise(0)).select(['_c0','Label'])

#get label for each loan labels = df.groupby('_c0').max().select('*') labels = labels.withColumnRenamed('max(Label)','label') labels.write.parquet('labels.parquet')

Model

Finally, we build the model locally, retrieving the files from S3. We utilize Dask here as it can provide the benefits of parallelism on a local machine with multiple cores.

[74]: import pandas as pd import dask.dataframe as dd from dask.distributed import Client from sklearn.ensemble import RandomForestClassifier from dask_ml.model_selection import train_test_split import numpy as np import plotly.express as px from sklearn.metrics import plot_roc_curve pd.options.plotting.backend = "plotly"

[2]: Client()

[2]: <Client: 'tcp://127.0.0.1:31504' processes=4 threads=12, memory=31.83 GiB> →to_dict()

Conclusion

We have seen a practical example of the uses of cloud computing systems in tandem with libraries that enable distributed compute processing. Our model predicted default loans with 97.7% accuracy on the test dataset. The workflow presented here can easily be extrapolated to general AI/ML applications.

 sudo apt update && apt upgrade sudo apt install python3-venv python3-pip python3 -m pip install "dask[complete]" python3 -m pip install pyarrow curl "https://awscli.amazonaws.com/awscli-exe-linux-x86_64.zip" -o "awscliv2.zip" unzip awscliv2.zip sudo ./aws/install aws s3 cp s3://historical_data_2009Q1 ./ --recursive

[

]: import dask.dataframe as dd from dask.distributed import Client Client() df = dd.read_csv('historical_data_time_2009Q1.txt',␣ →sep="|",header=None,dtype={24: 'object', 28: 'object', 29: 'object', 3: 'object'}) df = df[[0,3,8]].compute() df[3] = df[3].replace('R','0').replace('XX','0') df.to_csv('historical_data_time_2009Q1.txt',sep='|', index=False, header=False)

[3]

 3 : feat = pd.read_parquet('features.parquet') [4]: labels = pd.read_parquet('labels.parquet/') [5]: labels = labels.rename({'_c0':'19'},axis=1) [64]: #column names ddict = pd.read_excel('file_layout.xlsx',header=None,index_col=0)[2:35][1].