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Abstract—Smart Cities rely on a broad variety of services
generating an heterogeneous traffic load, and having diverse
privacy and performance requirements. In this paper, we focus on
mobility services for an Intelligent Transportation System (ITS),
where several applications inter-operate by sharing information.
In particular, we consider three main services: ride-hailing, smart
parkings and traffic regulation. To investigate the load generated
by these mobility services, we rely on two real datasets. Our goal
is to study whether a given technology can scale with realistic
conditions related to the envisioned smart mobility scenario.
In particular, we analyze here how many LoRa gateways are
necessary and how they should be deployed to support these
mobility services. We highlight the bottlenecks occurring in
most dense areas of the network and argue that heterogeneous
deployments can efficiently handle such hot spots.

Index Terms—Smart Cities; Intelligent Transportation Sys-
tems; LPWAN; LoRa; scalability.

I. INTRODUCTION

The plethora of smart city services highlights the various
benefits that Internet of Things (IoT) can bring to the pop-
ulation, companies and local authorities [1]. A collection of
sensors is typically disseminated in a smart city, and monitors
a large set of environmental parameters such as traffic speed,
air quality, weather, noise, etc. These data streams help to
make the city more reactive and resilient. One of the most
promising services is about road traffic detection sensors to
re-route vehicles through less congested roads and indicate
them best spots to park.

Nowadays, smart city services are deployed as specific
applications, that emerge independently like as many proofs
of concepts (e.g., charging stations for electric vehicles, waste
management) for the future smart cities. But overall, smart
cities expect that the different applications cohabit with each
other exchanging data. Indeed, developing a silo architecture
is inefficient: applications are isolated and have to deploy
their own sensors even if they process the same kind of data.
Besides, such isolation has a cost [2]: the same radio resources
have to be shared among a larger number of flows, which is
particularly prejudicial in the ISM band.

While most deployments have demonstrated the interest
of connecting a myriad of sensors and actuators, we aim to
investigate the scalability of Low Power Wide Area Networks
(LPWAN) to handle such services. It is absolutely necessary
to avoid the tragedy of the commons [3]. Indeed, while each
object has only a few packets to transmit infrequently, the
competition for the medium access involves many devices.

LPWAN have already highlighted their limits when the load
(aka bit flux) increases [4], limiting the amount of traffic that
an application can generate.

In this paper, we investigate the scalability of LPWAN
solutions, and more specifically LoRa, a leading technology
for LPWAN, when considering a challenging smart mobility
solution. We consider both mobile devices, in particular to
monitor the actual speed through many road segments, and
static devices used in smart parking. We also consider a ride
hailing service co-existing in the same city. The contributions
of this paper are as follows:

1) first, we define a global scenario for Intelligent Transport
System (ITS): distinct applications share data to offer a
globally efficient transportation system for smart cities;

2) then, we take advantage of two real and large cities
datasets for our global system. That way, we can generate
packets that mimics a realistic situation, with all the
heterogeneity (e.g., downtown vs. suburbs) and tempo-
rality of large scale ITS. The traffic model we derive
from these datasets is useful to assess the communication
performances in real smart cities;

3) finally, to fully exploit our construct, we rely on a
LoRa model inferring the Packet Error Rate (PER) of an
arbitrary deployment of LoRa gateways; we thus estimate
the scalability of such LPWAN solutions in realistic
deployments. We highlighted the presence of hot spots,
where the density of required LoRa gateways can be quite
high to decently deal with some traffic peaks.

II. RELATED WORK

We detail here a few applications defined for smart cities,
and how to characterize them. Then, we discuss the existing
LPWAN scalability evaluations.

A. Service characterization

Realistic service definitions are crucial in order to assess
suitability of proposals. It is common to characterize a ser-
vice by the amount of messages generated by device and/or
geographical area [5]. Fortunately, more and more open data
projects have emerged [6] and allow us to design specific
scenarios. Zebranet [7] represents an early example of such
projects which has experimentally investigated the accuracy
of Wireless Sensor Networks for wildlife monitoring. The
Zebranet dataset has then been widely used, to assess the
performance of protocols and algorithms. In Smart Cities,



Kong et al. [8] exploit a floating car dataset in New York
City (NYC) to simulate a Vehicular Social Network.

However and unfortunately, most of these deployments
focus only on a single service and, as such, remain silo
proofs of concepts. Mixing different services having distinct
requirements is a more interesting challenge and certainly
represents most common scenarios to come.

B. LPWAN and Scalability

Low Power Wide Range technologies enable smart cities
by providing the ability to connect a large number of spread
devices required by these services. In particular, LoRa [9] is
capable of reaching several kilometers of range and thousands
of low power devices per base station. The deployment then
looks easier: a few antennas, aka. LoRa gateways, are suffi-
cient in theory to provide a large scale connectivity.

LoRa is based on a Chirp Spread-Spectrum (CSS) mod-
ulation technique, that uses pulses to encode information.
More precisely, a pair of transmitter/receiver has to select
a spreading code, also designated as a Spreading Factor
(SF) in LoRA. By selecting the right SF, each device can
choose the highest bit rate adapted to its signal strength. More
importantly, the SFs are mutually orthogonal, to multiplex the
transmissions. That is, transmissions on different SFs never
collide and SFs have different ranges, air times and bit rates.
However, handling a very large number of devices (even
generating only a few packets each) with few antennas is
challenging [4]. Collisions are frequent and network capacity
may be rapidly reached.

Characterizing the services is not enough: one needs to es-
timate the reliability provided by the wireless infrastructure to
be certain that it matches the requirements. Bankov et al. [10]
provide a model that computes the PER based on the signal
strength of all the devices, the amount of packets they generate,
and the allocation of SF to each device. The capture effect can
significantly impact the reliability of communications in large
geographical areas [11], it should also be modeled to provide
more realistic results.

III. INTELLIGENT TRANSPORTATION SERVICES

Intelligent Transportation represents a key enabler for smart
cities. We consider here the following mobility services:

Ride hailing a platform connects clients with vehicle drivers
(aka. on-demand taxi). In a smart city, this service could
be provided locally.

Smart parking where sensors monitor occupied parking
spots. Vehicles can then be guided to find an available
parking spot, and are billed by the system on departure.

Traffic monitoring where the ITS measures the average
speed for each road segment. This information helps for
traffic regulation (e.g., vehicle routing problem).

Figure 1 illustrates our scenario, where the different appli-
cations and entities share information with each other.
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Fig. 1: Overview of services

A. Query Language
We rely on a slightly extended version of SQL to explicitly

define the queries (i.e., the arrows in Fig. 1) that trigger the
streams of data between entities (in the inverse direction of
the queries). Furthermore, we map relational to IoT data by
having data sources, samples and attributes acting as tables,
rows and columns, respectively. We then simply add the
following keywords in our query language extending SQL to
fully describe the IoT streams:
COMPUTE indicates a list of computations to apply to the

data in sequence.
EVENT describes condition(s) that may activate/deactivate a

stream (anything, from local sensors to remote messages).
EVERY indicates when new data must be generated to the

stream. Events or constant time intervals may apply.
UNTIL indicates the condition to stop the stream. Analogous

to EVERY, events or specific duration may apply. Without
this keyword, the query is assumed to hold indefinitely.

B. Ride Hailing
Recently, the portion of taxi trips being handled by private

cars has been steadily increasing. A common platform serves
as a broker between passengers and drivers, so that all the
requests can be fulfilled. We detail here streams 1 and 2
illustrated in Fig. 1.

1) Query 1 (ride selection for passengers): passengers
request companies (i.e., brokers) for best quotes to perform a
ride by specifying the time of departure, and the geographical
location of departure and arrival. The reply data stream con-
sists of a continuous query remaining active until the passenger
has validated one of the proposed quotes. The data stream
stops when the passenger accepts a quote.



1 SELECT pricing_type, cost_to($destination) as
ride_cost

2 FROM ride_brokers
3 ORDER BY ride_cost DESC
4 LIMIT 5
5 EVERY minute
6 UNTIL EVENT client_decision

Query 1: Passenger request sent to a set of broker(s).

2) Query 2 (ride selection for drivers): for the other part of
the service, drivers must select their next ride. More precisely,
the drivers trigger a continuous query to get unsatisfied rides
when they are close to complete their current fare. We assume
here that brokers implement a scoring function (ride_score)
which ranks rides according to characteristics such as driver
preferences, proximity, and expected payment. As soon as a
driver accepts a quote, the corresponding query stops.

1 SELECT ride_begin, ride_end, estimated_price
2 FROM ride_brokers
3 ORDER BY ride_score(*) DESC
4 LIMIT 10
5 EVERY 5 minutes
6 UNTIL EVENT driver_decision

Query 2: A driver asks for the passenger requests.

C. Smart Parking Service

Searching for a parking spot is particularly expensive in
terms of time and fuel [12]. Thus, smart parking solutions
help drivers to find a parking spot, and to reduce their waiting
time. We can also make the system more efficient, with an
automatic billing solution.

1) Query 3 (Smart Billing): A vehicle can be automatically
billed when exiting its parking spot. We consider that a sensor
is capable of detecting the occupation of one or multiple
parking spots and then sends notifications whenever a vehicle
enters or departs of a spot. This notification is sent to the
company so that the vehicle can be charged accordingly. These
notifications include what event occurred (arrival or departure),
timestamp of the event, and identifications of vehicle and spot.

1 SELECT event_type, time_stamp, car_plate,
parking_spot_id

2 FROM parking_parking
3 EVERY EVENT park_begin, park_end

Query 3: Tracking vehicles entrances.

2) Query 4 (Guidance of cars to available parking):
Drivers ask for the availability of nearby parking areas to find
an available parking spot. A filter selects areas with a suffi-
cient number of available spots (THRESHOLD_VALUE), else the
available spots may be occupied by the time the driver arrives
to the location. Then, results are ordered by proximity and
limited to prevent verbose answers. The continuous query 4
holds from the time of departure to the time of arrival (end of
trip), and the list is updated every minute.

1 SELECT parking_area_id, available_count, distance
(arrival_location, parking_location) as
geo_distance

2 FROM parking_areas
3 WHERE available_count > THRESHOLD_VALUE

4 ORDER BY geo_distance DESC
5 LIMIT 10
6 EVERY minute
7 UNTIL EVENT end_of_trip

Query 4: Parking availability.

D. Smart Road Traffic Routing Service

Traffic jams induce increasing costs in most major cities,
both in terms of time, money and pollution 1. Not to mention
the frustration caused to drivers and consumers and thus the
ensuing damages it may lead to.

Vehicle routing solutions help drivers to find better
routes [13] to mitigate these effects. It requires road surveil-
lance in order to identify the level of congestion of each road
segment.

1) Query 5 (Real-time Road Speeds): A smart mobility
service may collect the location and speed measurements from
a large collection of vehicles (e.g., bus, private cars, taxis) to
profile congestion in real time. Smart cities may exploit this
information to make some interpolations and infer congestion
in each road segment. The real identity of each vehicle should
be hidden (e.g. with a hash) for obvious privacy concerns.

1 SELECT hash(car_plate), latitude, longitude,
current_speed

2 FROM consenting_vehicles
3 EVERY 3 minutes

Query 5: Road congestion information.

IV. OPEN MOBILITY DATASETS

In this section, we detail how we exploit two public datasets
to model the global smart mobility service we envision. We
rely on this data for performance evaluation: can an ITS rely-
ing on LoRa gateways can scale in these realistic conditions?

A. Datasets Description

We exploited the two following datasets (cf. Table I).
Ride hailing: we use a dataset of rides performed by the

companies Uber, Juno, Lyft and Via in NYC2. Each sam-
ple describes the pick-up and drop-off information (i.e.,
timestamp and geographical location) of a trip. To respect
privacy concerns, the city employs pre-defined zones and
zone identifiers instead of exact geographical coordinates.
We model here mobile sensors (i.e., vehicles);

Parking usage: the city of Melbourne provides measure-
ments of parking sensors3. Each sample of this dataset
describes individual occupations of parking spots in the
city and includes timestamps of arrival and departures in
addition to multiple identifiers of the parking spot. We
have here static sensors with an event-based traffic.

1https://inrix.com/press-releases/2019-traffic-scorecard-us/
2https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
3https://data.melbourne.vic.gov.au/Transport/On-street-Car-Parking-Sensor-
Data-2019/7pgd-bdf2



TABLE I: Datasets used in this study.

Service Parking usage Private-driver hailing

Location of sampling Melbourne, Australia New York City, USA
Number of samples 37.7 million samples 234 million samples

Sampled Period Jan 2019 to Dec 2019 Feb 2019 to Dec 2019
Data available Individual Parking occupations Taxi rides provided by private cars

B. Dataset Preparation

Since the service usage described by these two datasets are
deployed in different cities, we need to merge both to mimic a
global service running in the same city. We map Melbourne’s
dataset to NYC since more information is openly available
for the latter. We gather a list of parking lots in NYC with
the aid of the TomTom API4. Since we have more parking
lots in Melbourne than in NYC, one-to-one mapping cannot
be used. We first cluster the 4,876 parking lots in melbourne
into 1,212 clusters (the number of parking lots we found in
NYC) using the k-means algorithm according to geographical
location. With this, each cluster represents a virtual parking
lot with the data from its members.

Now we can look for a parking bijection from Melbourne
to NYC. Assuming that parking lots closer to Manhattan
(commercial center of NYC) will have more demand, we map
our virtual parking lots of Melbourne with most traffic into
the parking lots of NYC which are closer to Manhattan.

To mimic vehicle displacement, we expand the NYC dataset
by computing the trajectory between pick-up and drop-off
locations for each trip. For the sake of simplicity, we consider
here straight line trajectories under constant speeds. In our
case, an approximated geographical location is sufficient to
model the LoRa traffic.

C. Database-based Network Traffic Model

We infer the network traffic from the datasets (cf. Table II
that summarizes the parameters used in our models):

1) Ride Hailing: we model both queries 1 and 2 by using
the time and location information of taxi pick-ups and drop-
offs in NYC. Each trip record emulates a query at time and
location of pick-up and drop-off. We model the duration of
the query with a normal distribution (see Table II).

2) Smart Parking: we model the park_begin and
park_end events of queries 3 with the arrival and departure
data observed in the Melbourne dataset. More specifically, for
each record, at time of arrival and time of departure, one
message is sent from the parking lot location.

We model the inter-query time of query 4 by assuming that
there was a search for available parking every time a parking
spot is taken. Since available parking can change constantly,
one message is sent every minute until the car parks. For same
reasons as before, we again rely on a normal distribution to
model the time to find a parking spot (see Table II).

4https://developer.tomtom.com/

TABLE II: Service parameters.

Q Parameter Value

1 Periodicity 1 minute
Passenger decision Normal (µ=1, σ=1) min

2 Periodicity 5 minutes
Driver decision Normal (µ=5, σ=3) min

3 Event-based One shot query
4 Periodicity 1 minute

Limit 10
Trip duration Normal (µ=8, σ=3) min

5 Periodicity 3 minutes
Vehicles subset 10% of available cars

3) Smart Road Traffic Routing: in query 5, we consider
that a subset of vehicles sends its speed information (e.g., a
subset of vehicles is equipped). More precisely, we consider
that only 10% of the dataset of taxi trips is considered by this
sub-service. Messages are sent periodically along the trajectory
we generated for each trip.

V. SCALABILITY ANALYSIS WITH A LORA DEPLOYMENT

We discuss here whether a wireless technology like LoRa
could be used for such Smart Mobility services. We assume
that LoRa will be the only means of communication.

A. LoRa Analysis Methodology

To conduct our scalability analysis, we consider the LoRa
analytical model described in [10]: for a given amount of
network traffic, it predicts the PER of each device associated
with a LoRa gateway. This model measures collision proba-
bilities for each SF from the number of devices tuned to it
and assuming a Poisson process for packet generation5.

In our calculations we use the EU 863–880 MHz ISM
band, with the receiver sensitivity of the Semtech SX1276
LoRa receiver. We aim here to understand how many gateways
are required to ensure an efficient large-scale mobility service
deployment with a reasonable PER.

We consider two different SF allocation methods:
Distance-based: some devices are too far from the LoRa

gateway and we must consider their signal strength when
selecting a SF. Thus, we allocate to each device the lowest
SF with respect to its signal strength. A lower SF means
that the bitrate is higher.

5All formal details are given in [10].
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Fig. 2: Message density per service and neighborhood.

Airtime-based: with very dense deployments, devices are
closer to the gateway and the signal strength is not a
constraint anymore. In that case, we balance the load for
each SF. More precisely, we assign the data rates so that
all the data rates have the same cumulative air time. The
devices with the largest SF consume more energy to stay
awake longer, but we reduce the number of collisions.

We use the density of base stations deployed 5km appart as
the threshold to use the fair airtime allocation; we indeed
observed that at this point, the airtime allocation becomes a
better strategy. To simplify our study, we also assume that any
message can be sent within a single LoRa transmission.

We can now rely on the ITS we design along with the real
datasets introduced in sections III and IV. Since traffic can
greatly vary in time, we pick 200 random time intervals of
one hour, and use the average number of messages per second
during each of these intervals. More specifically, for each
randomly picked interval, we count the number of messages
sent by each device and infer the average number of messages
sent per second by each device. By considering independent
enough time samples, we are able to investigate the scalability
of LoRa for these smart mobility services.

We consider uniform grid deployments for LoRa gateways.
To assess the scalability of such LoRa deployments, we
however investigate several grid sizes, according to the density.
Overall, we consider each borough separately since each area
does not generate the same amount of traffic.

B. Results: Adapting the Deployment Density Looks Enough

We measured the intensity of traffic per mobility service and
per borough (Fig. 2). The graph presents the distribution of the
number of messages for all the 200 time intervals. The violin
plots are stretched out: the number of messages is obviously
much larger during peak hours. Besides, if we count the sum
of messages, we can see that Manhattan concentrates most of
the traffic, whatever the mobility service. For instance, 65%
of ride haling messages are generated in Manhattan while the
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Fig. 3: PER of streams under different base station densities.

other boroughs only stretch over 7.5% of NYC. The traffic
monitoring service is more balanced.

Relying on this data, we can now compute the distribution
of the PER independently for each borough (Fig. 3). Due to
space limitations, we limit our plots to Manhattan and Staten
Island (with respectively the largest and the lowest number
of messages per second in NYC). While each gateway is
theoretically capable of serving nodes that are up to 9km away,
the traffic is too high and the network is in that case congested.
For instance, we can see that two gateways are not enough
to efficiently cover Staten Island. However, 4 gateways seem
enough to cover the whole area, and to also decently limit the
number of collisions. Similar patterns can be seen for other
boroughs, except for Manhattan.

For Manhattan, the volume of packets being specially
large, many collisions occur. We see that only very dense
deployments of LoRa gateways are capable of providing an
acceptable PER. As a direct result, devices are very close to
the LoRa gateways, and the lowest SF may be used by all
devices, creating congestion. Thus, we need a more balanced
allocation among the different SFs, which motivates a further
evaluation of the two SF allocation schemes.

Fig. 4 shows how our two allocation strategies behave under
various network densities. For extremely dense deployments
(i.e., one gateway every kilometer), the number of devices
associated with a given gateway is quite low and collisions
seldom occur: the PER is maximal. For all the other densities,
the airtime-based strategy is more efficient: devices are well
balances among SFs, and the system minimizes the number



Fig. 4: Impact of the SF allocation strategy in Manhattan.
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of messages lost (i.e., PER) due to both collisions and a low
signal strength.

Finally, we look at the geographical distribution of the PER
value (Fig. 5). More precisely, for each borough, we select
a grid size to obtain for each device an acceptable reliability.
Thus, we consider 5km spacing for Manhattan, 13 km spacing
for Staten Island and 9km spacing for all other boroughs. We
represent the results with a quadtree: the size of each square is
selected so that each square has the same number of devices.
Then, each square is colored according to the average PER
obtained by the corresponding devices. As we can see, the
resulting PER reaches a maximum of 4% in the center of the
map: squares are smaller, denoting a huge number of devices
that generate traffic. On the contrary, sparse grids are enough
for Staten Island, since the traffic is very small in regards of
Manhattan. If the PER has to be decreased even further, an
efficient optimization scheme can be used to deploy extra base
stations in the congested hop spot areas (red ones).

VI. CONCLUSION & PERSPECTIVES

We define here a global smart mobility scenario, where
several services cohabit. We then emulate the traffic generated
by such scenario by using two datasets, collected respectively

in NYC and Melbourne. In particular, we consider both event-
based traffic from static devices, and periodical traffic from
mobile ones. Finally, we analyze how a LPWAN deployment
(LoRa in practice) may be sized to support these mobility
services. While our scalability analysis tends to indicate that
relying only on LoRa seems enough and so conceivable for
an unified ITS deployment, we note that the number of LoRa
gateways should be carefully tuned according to the traffic.
Overall, the network capacity is reached quite fast, and may
create scalability issues for large-scale scenarios.

In a future work, we plan to investigate how to refine
the placement of the LoRa gateways. We propose here a
simple heuristic, using a grid density adaptive to each borough.
We should go further, by identifying the most accurate and
favorable positions, depending on the location of hotspots.
Unfortunately, the location of gateways being a continuous 2D
variable, the global optimization becomes almost intractable.
We may also explore how different technologies (medium
vs. long range) may be complementary in such situations,
handling differently static and mobile devices. Typically, smart
parkings concentrate many devices in restricted areas that can
result in congested hotspots.
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