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Abstract. On-board rotating machinery subject to multi-axial excitations is encountered in a wide variety of
high-technology applications. Such excitations combined with mass unbalance forces play a considerable role
in their integrity because they can cause parametric instability and rotor–stator interactions. Consequently,
predicting the rotordynamics of such machines is crucial to avoid triggering undesirable phenomena or at
least limiting their impacts. In this context, the present paper proposes an experimental validation of a
numerical model of a rotor-shaft-hydrodynamic bearings system mounted on a moving base. The model is
based on a finite element approach with Timoshenko beam elements having six degrees of freedom (DOF) per
node to account for the bending, torsion and axial motions. Classical 2D rectangular finite elements are also
employed to obtain the pressure field acting inside the hydrodynamic bearing. The finite element formulation
is based on a variational inequality approach leading to the Reynolds boundary conditions. The experimental
validation of the model is carried out with a rotor test rig, designed, built, instrumented and mounted on
a 6-DOF hydraulic shaker. The rotor’s dynamic behavior in bending, torsion and axial motions is assessed
with base motions consisting of mono- and multi-axial translations and rotations with harmonic, random and
chirp sine profiles. The comparison of the predicted and measured results achieved in terms of shaft orbits,
full spectrums, transient history responses and power spectral densities is very satisfactory, permitting the
experimental validation of the model proposed.

Keywords: On-board rotor / experimental validation / hydrodynamic bearings / 6-DOF shaker / multi-axial
excitation / random motion

1 Introduction

Rotating machinery subject to base motions, so-called
on-board rotor, is a common feature in many industrial
fields. Examples include a helicopter turbo-engine sub-
ject to airflight maneuvers and spectral lines associated
with rotor blades, a turbopropeller suspended from an air-
craft wing excited by the aerodynamic forces of a broad
frequency range, and a spatial turbopump undergoing
pyrotechnic shocks. These systems fulfill vital functions
that must be continuously ensured despite the internal
and external excitations they undergo during their life-
time. Internal excitations include the unavoidable residual
mass unbalances that generate forces synchronous with
the rotation speed and which are responsible for reso-
nance phenomena when passing through critical speeds.
The external forces generated from the base motions are
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generally asynchronous and may create parametric exci-
tation. In the presence of nonlinearities, these forces are
able to trigger dynamic behaviors such as bifurcations,
and quasi-periodic and chaotic motions. These phenom-
ena may be sources of failures by fatigue [1,2] or may lead
to rotor–stator contacts, with the destruction of labyrinth
seals or turbine blades [3]. In order to ensure the integrity
of on-board rotors, predicting the emergence of such phe-
nomena is crucial to ensure they can be avoided or that
their impacts can at least be limited. This goal can be
achieved by the development of reliable on-board rotor
modeling, rigorously validated by a complete series of
experimental comparisons.
In the last decade, contributions devoted to the topic

of on-board rotors have been relatively abundant. In par-
ticular, Dakel et al. [4] analyzed the bending vibrations
of a simply supported rotor composed of a shaft with
one disk, excited by both its base and the shaft asym-
metry. Their numerical results in terms of stability charts
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and shaft orbits evidenced the interactions between the
two types of parametric excitations. Afterwards, the same
authors [5] focused on the same shaft-disk system, this
time symmetrical, mounted on short journal bearings with
the great advantage of having an analytical solution to
the Reynolds equation. The following year, the lateral
and torsional dynamics of a multi-shaft on-board rotor
was examined by Han and Chu [6]. Their time-history
and spectral analysis revealed that the roll rotation of
the base was responsible for a noticeable increase in sys-
tem response and the occurrence of new resonances in
the vicinity of the natural frequencies. Later, they deter-
mined in [7] the stability of a single-shaft rotor in bending
only, parametrically excited by one or several harmonic
rotations of its base. The influence of the phase between
the combined base rotations acting with the same fre-
quency was shown in stability charts. Thereafter, the
non-stationary shaft’s speed of rotation was introduced
numerically in on-board rotor applications by Bouziani et
al. [8], who performed a numerical analysis of the bending
behavior in terms of spectrograms. Saimi et al. [9] used
a new discretization method with “h-p” finite elements to
model an on-board rotor with a cantilevered disk, under-
going constant base rotations which altered the Campbell
diagram. Following the work done by Dakel et al. [4], on-
board rotors supported by journal bearings have attracted
much attention. Wang et al. [10] considered the case of
a centrifugal pump modeled by a simplified six degrees
of freedom (DOF) system and subject to the El Cen-
tro earthquake, Reddy et al. [11] introduced viscoelastic
damping in the journal bearings of a rotor representing
a turbocharger, and Liu et al. [12] compared two journal
bearing models in terms of shaft orbits for a rotor with
one disk excited by a harmonic base translation.
Several authors addressed support flexibility in com-

bination with non-inertial support motion. Vicencio and
Cruz [13] examined the dynamics of rotating machinery
used in the nuclear field, such as gas and steam turbines
supported by hydrodynamic bearings mounted on flex-
ible foundations. By imposing base translations defined
with accelerograms corresponding to shock response spec-
trums from real seismic excitations, they deduced the
impact of the nonlinearities stemming from the journal
bearings and the importance of knowing the foundation
characteristics of such rotors. Zhu et al. [14] analyzed an
on-board hollow rotor mounted on hydrodynamic bearings
included within rubber damping rings showing viscoelastic
behavior. They first demonstrated the apparent passive
vibration control related to this additional damping, in
particular in the vicinity of the critical speeds, and sec-
ondly the influence of the base translations on the whole
rotor-bearing-foundation-system. Sales et al. [15] modeled
the bending, torsional and longitudinal effects of a rotor
mounted on a flexible moving support represented by a
Timoshenko beam. The impact of support flexibility was
exhibited on the bending effect through the disk orbits
and the Campbell diagram for harmonic base rotations
composed of roll and yaw.
Lastly, a novel control law intended to master the para-

metric instabilities of an on-board rotor was proposed
by Soni et al., for a shaft mounted on active magnetic

bearings [16] and in the presence of an electromagnetic
actuator [17]. Other contributions were devoted to on-
board rotors with geometric nonlinearities caused by large
shaft displacements. This was the case of Phadatare et al.
[18] with their highly flexible shaft mounted on a base sub-
ject to sinusoidal vertical translations and of Shahgholi et
al. [19] with their asymmetric shaft whose support was
subject to sinusoidal transverse rotations. In both these
works, the shaft dynamics was restricted to the first mode
of the linear system to facilitate the application of pertur-
bation methods. As performed previously by Dakel et al.
[4], Yi et al. [20] introduced the shaft and disk asymme-
tries of an on-board rotor and afterwards demonstrated
the frequency combinations stemming from the rotational
base motions and the asymmetry through the spectral
displacement response of the disk. Qiu et al. [21] focused
on the dynamics of a planetary gear excited by harmonic
yaw motions of its support. Sousa et al. [22] and Stan-
ica et al. [23] carried out several numerical investigations
such as the analysis of the influence of a constant sup-
port rotation on the variation of critical speeds. Other
simplified models have been developed recently to assess
the impact of the wave motions on the engine rotors of
maritime vessels [24,25].
All the research of this last decade mentioned previ-

ously has dealt exclusively with numerical results. The
experimental investigations performed after those of Lee
et al. [26], Duchemin et al. [27] and Driot et al. [28] are
however much rarer. Among the few cases was the work
done by Sousa et al. [29] who built an on-board rotor
test bench composed of a slender shaft with a constant
circular cross section and a disk supported by ball bear-
ings. This rotor was excited by its base with a mono-axial
electrodynamic shaker reproducing shock and sinusoidal
base translations. Their numerical model was validated
in terms of time-history disk displacements in the case of
a shock profile for the rotor at rest and of a sinusoidal
profile for the rotor operating at both sub- and super-
critical speeds. Chen et al. [30] designed a support for
combining simultaneous rotations around two orthogonal
axes. Nonetheless, they excited their rotor with only one
roll rotation of the base since the shaker they used was
mono-axial. The validation of their model was carried out
on a harmonic profile from the disk displacements in the
time domain. More recently, Jarroux et al. [31] mounted
a rotor equipped with active magnetic bearings on a 6-
DOF hydraulic shaker, the bearings being included within
touch-down bearings with elastic dampers. This rotor was
subjected to a harmonic vertical translation of its sup-
port for several acceleration levels until the occurrence of
rotor–stator contacts within the active magnetic bearings.
Their model was validated in terms of shaft orbits using
numerical-experimental comparisons.
Therefore, strong interest in on-board investigations can

be found in the literature. Nevertheless, most of the works
remain numerical, with assumptions that are often far
from those occurring in real industrial systems. This is
the case for instance with the papers devoted to journal
bearings [5,10–13,24,25] which exploited the short bearing
hypothesis so as to use analytical solutions of the Reynolds
equation and thus facilitate the numerical investigations.
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Furthermore, the base excitations were still too restricted
to mono-axial and mono-frequency cases as well as lim-
ited to the shaft bending dynamics without accounting for
the axial and torsional effects [5,7–11,14]. This also holds
for the experimental works, mostly owing to test benches
using mono-axial shakers that moreover do not permit a
straightforward change of position of the instantaneous
axis of the base rotation. In addition, the experimental
validations have been exclusively performed with shafts
mounted on ball bearings rather than on hydrodynamic
bearings for which numerical results are however abun-
dant. The purpose of the present paper is thus to overcome
all these issues by proposing a novel and complete experi-
mental study in order to validate an on-board rotor model
developed previously in [32]. The latter has six DOFs per
node to account for all bending, torsion and axial shaft
motions. The rotor is mounted on finite-length hydrody-
namic bearings. Simultaneous translational and rotational
base motions are properly defined to be able to cor-
rectly represent the multi-axial experimental excitations.
Experimental validations of the linearized model are then
carried out afterwards for one subcritical shaft speed of
rotation, not only with mono-axial base excitations but
also with multi-axial and multi-frequency base excitations.
For the sake of completeness, several time profiles of base
motions are imposed such as harmonic, random and chirp
sine. The bending, axial and torsional shaft dynamics are
all addressed successively. In order to obtain an experi-
mental validation of the model proposed, a test rig of an
on-board rotor has been designed, built and instrumented
accordingly. A 6-DOF hydraulic shaker is used to subject
the rotor to base excitations.

2 Modeling and base motion definition

A typical on-board rotor is sketched in Figure 1a.
Two frames of reference are necessary to represent its
dynamics. The first one, R0(O0, ~X0, ~Y0, ~Z0), is considered
as Galilean. The second one, R(O,~x, ~y, ~z), is fixed to the
rotor base and thus independent of the shaft’s rotation,
with its origin O located at the left end of the shaft’s neu-
tral axis and ~y along the shaft’s axis of rotation at rest. A
complete description and model of the rotor dynamics by
a finite element method was proposed in [32]. By way of a
brief recall, the shaft is modeled with 1D Timoshenko
beam elements having two nodes and six DOFs per
node which are (u,w) the bending transverse displace-
ments along (~x, ~z) respectively, v the axial displacement
in ~y, (ψ, θ) the bending transverse rotations around (~z, ~x)
respectively, and β the torsion angle of rotation around ~y.
All these displacements depend on only the axial coordi-
nate y, and the total shaft speed of rotation φ̇ is defined as
φ̇(y) = φ̇∗ + β̇(y) where φ̇∗ is the constant nominal shaft
speed of rotation provided by the motor. Cubic shape
functions are employed to approximate (u,w) while linear
shape functions are used for v and β. The following sys-
tem of equations governing the rotor dynamics can be
reached in a matrix form by applying the Lagrange’s
equations to all the energies and virtual works of the

system [32]:

Mδ̈ +
(
G+Cjb +Cba

)
δ̇ +

(
K+Kjb +Kba

)
δ

= Fgl + Fu + Fba

(1)

withM,G andK being the classical mass, gyroscopic and
structural stiffness matrices, respectively, Fu the classical
mass unbalance force vector and δ the global DOF vector
expressed with respect to the static equilibrium posi-
tion. Cba, Kba and Fba are the time-dependent damping
and stiffness matrices and the force vector, respectively,
related to the base motion. Fgl is a force vector related
to the gravity load oriented along ~X0, which is non-zero
and time-dependent only in the case of a rotational base
motion [32] (pitch or roll only, given here the gravity is
along the yaw axis). It is obtained as Fgl = Fgd − Fgs

where Fgd is the full dynamic gravity load vector and
Fgs is the static (without base motion) gravity load vec-
tor. The remaining terms are related to the linearization
of the journal bearing restoring forces in the vicinity of
the static equilibrium position at a given constant shaft
speed of rotation characterized by the static solution vec-
tor δs. In this context, Cjb and Kjb are respectively the
damping and stiffness matrices derived from these restor-
ing forces with respect to δ̇ and δ. The computation of the
pressure fields providing the restoring forces of the jour-
nal bearings are obtained using a 2D FEM with 4-node
rectangular elements, taking into account the cavity prob-
lem by applying the Reynolds boundary conditions as in
[33]. The only damping is provided by either the hydro-
dynamic bearings or the motor-shaft coupling. Unlike in
[32], non-stationary effects are not accounted for. Further-
more, the mass unbalance is considered small enough so
that the additional matrices related to mass unbalance are
neglected.
Given the aim of the present paper to deal with multi-

axial excitations, a complete description of the rotor base
kinematics is essential, especially in the case of combined
translational and rotational motions where the rotations
are defined around a fixed axis that may not necessar-
ily pass through O. Let the base be rigid but mobile. To
begin with the rotations only, the orientation of the mov-
ing frame R with respect to R0 is done with a classical
approach for rigid solids using the Euler angles. Thus,
R is obtained from R0 by three successive rotations:
a pitch rotation of angle α1 around Z0 that creates a
first intermediary frame R1(O0, ~X1, ~Y1, ~Z1) with ~Z1 = ~Z0,
a yaw rotation of angle α2 around ~X1 that creates a sec-
ond intermediary frameR2(O0, ~X2, ~Y2, ~Z2) with ~X2 = ~X1,
and a third roll rotation of angle α3 around ~Y2 that cre-
ates R with ~Y2 = ~y. The translation motion of R with
respect to R0 is defined through the motion of the origin
O of R in R0 by the vector

−−→
O0O = X0

~X0 + Y0~Y0 +Z0
~Z0.

In order to now impose base motions composed of simul-
taneous translations and rotations, one possible approach
decomposes the variables (X0, Y0, Z0) such that:

X0 = X0,rot +X0,tr (2a)
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Fig. 1. (a) Sketch of an on-board rotor and (b) Example of an in-plane motion of the moving frame R, composed of two translations
along ~X0 and ~Y0 and a rotation of angle α1 and radius C.

Y0 = Y0,rot + Y0,tr (2b)
Z0 = Z0,rot + Z0,tr (2c)

where (X0,rot, Y0,rot, Z0,rot) and (X0,tr, Y0,tr, Z0,tr) are
the variations of (X0, Y0, Z0) related to pure rotational
and translational motions, respectively. In this way, it is
possible to interpret the whole motion as a combination
of a translation in R0 of a fictitious point I and a rota-
tion around a combination of the axes (~Z0, ~X1, ~Y2) passing
through this point I. This is illustrated in Figure 1b
with an in-plane example composed of two translations
along ~X0 and ~Y0 and a rotation around ~Z0. The previ-
ous variables (X0,rot, Y0,rot, Z0,rot) are then related to the
constant coordinates (xI , yI , zI) of I in the moving frame
R by:

{
X0,rot

Y0,rot
Z0,rot

}
R0

= −PR0→R

{
xI
yI
zI

}
R

(3)

while the variables (X0,tr, Y0,tr, Z0,tr) represent the coor-
dinates of I in R0 with PR0→R the orthogonal trans-
formation matrix from R0 to R in which appear
cosine and sine functions of the angles (α1, α2, α3). If
(X0,tr, Y0,tr, Z0,tr) are nil or constant, then the actual
instantaneous axis of rotation of R with respect to R0

passes through I.
Therefore, according to the previous approach, the com-

plete motion of R is defined by three sets of parameters:
(1) (X0,tr(t), Y0,tr(t), Z0,tr(t)) the variables that produce
the translational motion along the fixed axes of the
Galilean frame R0, referred to as pure translations in the
sequel; (2) (α1, α2, α3) the Euler angles that produce the
rotational motion of R and all fixed points in R around an
axis passing through point I; (3) (xI , yI , zI) the constant

coordinates of I in R. The matrices Cba, Kba and vector
Fba of equation (1) will then depend on these variables,
as can be found in [32].

3 Experimental validation

3.1 Presentation of the on-board rotor test bench

As mentioned in Section 1, experimental investigations of
on-board rotors are not abundant in the literature, even
less so when the shaft is supported by hydrodynamic bear-
ings and subject to multi-axial motions. Nonetheless, this
type of bearing is widely used in industry and the excita-
tions experienced by on-board rotating machines are often
naturally multi-axial. These reasons thus motivated the
design and fabrication of the rotor test bench presented
in Figure 2. This rotor is composed of a steel shaft, two
steel disks, two hydrodynamic bearings, a flexible coupling
and a DC electric motor providing a maximum torque of
0.177 N.m. All the numerical data are available in Table 1.
The whole system is mounted on a thick plate, itself
fixed to the upper face of the 6-DOF hydraulic shaker
driven in closed loop by means of accelerations. The lat-
ter is a cube-shaped long-stroke shaker, with an edge of
0.8128 m and offering accelerations up to 10 g within a
frequency range of [0–250] Hz. The motor-shaft coupling
(model 321.12.2222 of Huco R©) characteristics are avail-
able in Table 2. These characteristics come either from the
manufacturer or from an optimization performed through
preliminary modal analysis with a fixed base.
Before any motion occurs, the Galilean frameR0 always

has the same orientation as the moving frame R so that
the angles (α1, α2, α3) do not present any non-zero 0-Hz
static components. However, the location of I in R may
depend on the test. In the sequel, unless otherwise speci-
fied, it is set by xI = yI = zI = 0. The shaft is discretized
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Fig. 2. On-board rotor test bench used for the experimental validations: (a) CAD view and (b) Photo view.

Table 1. Main rotor data.
Shaft length and main diameter 0.851 m; 12.7 mm
Shaft Young modulus and Poisson coefficient 210 GPa; 0.3
Shaft and disk density 7778 kg/m3

Radius and thickness of disks 6.3055× 10−2 m; 1.56× 10−2 m
Hydrodynamic bearing radius, length and clearance 6.39× 10−3 m; 6.2× 10−3 m; 4× 10−5 m
Hydrodynamic bearing oil viscosity, feeding pressure and feeding hole radius 0.0206 Pa s; 4× 104 Pa; 1.25 mm
Mass unbalance value, position, radius and initial phase 2.37 g; Node 21; 57 mm; 0 ◦

into 27 beam finite elements, as shown in Figure 3. The
shaft radius is 6.35 mm for the FEs 4 to 24 and 6 mm
for the FEs (1, 2, 3, 25, 26, 27). In order to model the shaft
local stiffening due to the tightening of the disks on the
shaft, angular stiffness coefficients of 100 N.m/rad are
added to the coefficients related to the DOFs ψ and

θ of Nodes 9 and 21 in the structural stiffness matrix
K of equation (1). These new coefficients were found
by a preliminary modal analysis, the shaft having free-
free boundary conditions, and proved to provide better
agreements with the experimental results even with the
supported shaft. The hydrodynamic bearings have finite
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Fig. 3. On-board rotor FE mesh.

Table 2. Motor-shaft coupling characteristics of the rotor
test bench.
Stiffness Value Damping Value
Kuu 1000 N/m Cuu 12 N s/m
Kvv 2700 N/m Cvv 10 N s/m
Kww 1000 N/m Cww 12 N s/m
Kθθ 0.21 N.m/rad Cθθ 1× 10−3 Nms/rad
Kψψ 0.21 Nm/rad Cψψ 1× 10−3 N.m.s/rad
Kββ 27 Nm/rad Cββ 1× 10−2 Nms/rad

lengths with a length/diameter ratio of 0.4851. They are
fed by two circular feeding holes located in the axial mid-
dle at 0 ◦ and 180 ◦ with respect to ~z. The hydrodynamic
bearings are discretized using a 2D rectangular mesh with
200 nodes and 15 nodes in the circumferential and axial
directions, respectively. The linearized stiffness and damp-
ing matrices at the operating speed φ̇∗ = 1700 rpm are
summed in Table 3.
In order to assess the whole shaft dynamics, the rotor

is equipped with several types of sensor. Firstly, four
radial proximity probes (inductive sensors with eddy cur-
rent) are distributed in two probe supports to monitor
the shaft bending motion. These supports are localized
at Nodes 15 and 19, i.e. relatively far from the bearings,
because of constraints regarding the available space and to
maximize the measurement amplitudes. Each probe was
rigorously calibrated with respect to the specific circu-
lar shape and material of the shaft. These sensors are
directed along either ~x or ~z of R. Secondly, an axial sen-
sor of the same model is set on one shaft end (Node
28) in order to measure the axial rigid-body motion.
Thirdly, two optical encoders with a resolution of 4096
line counts are installed at Nodes 2 and 27 to access the
shaft torsional motion. The stator part of these sensors
is not fixed to the stator nor any support so as to avoid
additional localized stiffness of the shaft. Their weight
of 215 g each is then fully supported by the shaft itself
and they can follow its deflection so that their presence
affects the original bending dynamics. However, the rota-
tion of the stator part is prevented with an axial screw.

These encoders are only used and mounted on the shaft for
the test in Section 3.4. Finally, another proximity probe
directed along ~x is used as a keyphasor probe (tachome-
ter) which detects an axial groove located on the shaft
near Node 4. Regarding the 6-DOF shaker, it is equipped
with six mono-axial accelerometers for its driving process
and with four tri-axial accelerometers to retrieve the real
shaker motion to be introduced into the on-board rotor
MEF for validation purposes. The process to obtain this
real 6-DOF motion is described in-depth in [34].
The Campbell diagram of the rotor test bench on a fixed

base and without encoders is computed and presented
in Figure 4. The tracking of the mode shapes is done
by applying the NC2O criterion [35]. The solid, dashed
and dash-dotted curves refer to the bending, axial and
torsional modes, respectively. The first four critical speeds
are [2084, 2281, 4749, 5402] rpm. The natural frequencies
and the modal damping factors of each mode appearing
in the Campbell diagram at φ̇∗ = 1700 rpm are listed in
Table 4. The first two modes of the latter, i.e. the axial
and torsion ones, are almost only rigid-body modes with
a main localized deformation in the coupling. The higher
modes, after the seventh one, are not displayed since their
natural frequencies are higher than 250 Hz which is above
the frequency range under study for the following test. As
could be expected, the additional mass from the encoders
tends to lower the natural frequencies related to bending
and axial dynamics.
Regarding the further experimental validations, the

shaft is rotating in the direct sense, i.e. from ~z to ~x,
at a constant nominal speed of φ̇∗ = 1700 rpm. The
keyphasor and proximity probe signals have the same sam-
pling frequency, fixed to 4096 Hz, in order to accurately
determine the shaft angle of rotation at any time. Thus,
the shaft angular position as well as the phase between
mass unbalance and base motion can be introduced in the
numerical model. The initial phases of the mass unbal-
ance and the base motions are given with respect to the
keyphasor pulse. Finally, except for the torsion measure-
ments in Section 3.4, the measurements presented below
are not filtered or processed with any data processing tools
(including windowing).
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Table 3. Non-zero coefficients of the linearized stiffness and damping matrices of the hydrodynamic bearings at
φ̇∗ = 1700 rpm.

Stiffness HB1 HB2 Damping HB1 HB2
Kuu 4.41× 106 N/m 4.11× 106 N/m Cuu 2.33× 104 Ns/m 2.19× 104 Ns/m
Kuw −2.45× 106 N/m −2.33× 106 N/m Cuw −5.66× 103 Ns/m −5.40× 103 Ns/m
Kwu −4.39× 105 N/m −4.11× 105 N/m Cwu −5.66× 103 Ns/m −5.40× 103 Ns/m
Kww 8.96× 105 N/m 8.62× 105 N/m Cww 2.95× 103 Ns/m 2.86× 103 Ns/m

Cuβ 0.1079 N s/rad 0.1032 N s/rad
Cwβ −0.0029 N s/rad −0.0030 N s/rad

Fig. 4. Campbell diagram of the rotor test bench.

Table 4. Seven first numerical modes of the rotor test bench at φ̇∗ = 1700 rpm (FW: forward whirl, BW: backward
whirl, WE: with encoders, ∅E: without encoders).

Mode number Frequency
[Hz] (∅E)

Modal damping
factor [%] (∅E)

Frequency [Hz]
(WE)

Modal damping
factor [%] (WE)

Modal shape

1 4.22 4.93 4.00 4.67 Axial
2 10.40 1.16 10.40 1.16 Torsion
3 34.85 3.87 33.63 2.89 Bending (BW)
4 37.85 1.84 36.05 1.82 Bending (FW)
5 87.04 11.39 82.18 4.02 Bending (FW)
6 91.80 1.57 82.62 1.43 Bending (BW)
7 92.50 0.14 92.50 0.14 Torsion

3.2 Multi-axial harmonic excitation

The first case of base excitation focuses on multi-axial har-
monic translations and on bending dynamics. The motion
comprises two translations: the first one along ~X0 defined
such that X0,tr = AX cos (2πfXt+ ϕX) with AX =
15 µm, fX = 42.5 Hz and ϕX = 57 ◦ and the second one
along ~Z0 defined such the Z0,tr = AZ cos (2πfZt+ ϕZ)
with AZ = 15 µm, fZ = 56.7 Hz and ϕZ = 91 ◦. The
frequencies were chosen intentionally as harmonics of the
shaft speed of rotation frequency X (fX ≡ 1.5X and
fZ ≡ 2X) to obtain a periodic shaft dynamics and peri-
odic orbits. In fact, the shaft speed of rotation delivered
by the motor is slightly lower than φ̇∗ = 1700 rpm,
inducing a slow variation of the experimental orbits
with time. This may be interpreted as a variation of
the phase between the mass unbalance and the base
motion.

The raw (without filter) experimental and numerical
orbits of Nodes 15 and 19 are shown in Figure 5a and
Figure 5b, respectively, within a time interval of 2 s (≈ 57
full shaft rotations). In addition, the shaft position at the
experimental and numerical keyphasor pulses is superim-
posed on the respective shaft orbits. Excellent agreement
can be noticed between the two sets of results in terms of
orbit shape, amplitude and phase. Furthermore, the shaft
occupies the same position at the keyphasor pulses (two
pulses are seen in the orbits since a period is obtained for
two full shaft rotations owing to the 1X frequency of exci-
tation). However, some small deviations may be noted in
amplitude in both Nodes 15 and 19. This can be attributed
mainly to the presence of a residual mass unbalance since
initial shaft balancing is never perfect, but also to some
likely weaknesses in the modeling of the hydrodynamic
bearings. It is noteworthy that the two orbits of Nodes
15 and 19 are relatively similar to one another. This is
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Fig. 5. Experimental-numerical comparison of shaft orbits in response to mass unbalance and two harmonic translations along ~X0

and ~Z0 within a time interval of 2 s (≈ 57 full shaft rotations): (a) Node 15 and (b) Node 19.

Fig. 6. Full spectrum of the numerical and experimental orbits of Figure 5: (a) Node 15 and (b) Node 19.

due to the fact that the frequencies of the base transla-
tions involved tend to excite the first two bending modes
more (Modes 3 and 4 of Tab. 4 which are characterized
by a maximum displacement in the middle of the shaft).
Given the position of the radial probes supports, these
modes do not induce any phase shift between these two
orbits.
The full spectrum [36] of these experimental and numer-

ical orbits are shown in Figure 6. They are obtained from
the time signal on 12 s once the steady state is reached

and normalized by the signals length (=12 s× 4096 Hz).
On looking at these new results, it can be seen that the
accuracy of the numerical model is also established in the
frequency domain. Besides, the amplitude discrepancy of
the orbits of Nodes 15 and 19 mostly occurs at the shaft
speed rotation frequency (±28.3 Hz) rather than on the
base motion frequencies. This might mean that this dis-
crepancy is due more to the residual mass unbalance than
to weaknesses in the modeling of the hydrodynamic bear-
ings. Other deviations may be noticed in some harmonics
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Fig. 7. PSD in acceleration of the 6 DOFs of the rotor base for the random excitation: (a) pure translational DOFs and (b) angular
DOFs.

of the shaft speed of rotation, mostly present experimen-
tally, for instance at 14.2 Hz (0.5X) or 85 Hz (3X). These
deviations may be explained by certain asymmetric prop-
erties either in the shaft or disks, nonlinearities in the
hydrodynamic bearings, cyclic phenomena in the motor
(ball bearings), etc. Lastly, the whirl of all the orbits
is mainly forward since the peaks at +28.3 Hz (1X),
+42.5 Hz (1.5X) and +56.7 Hz (2X) are higher than those
at the corresponding negative frequencies.

3.3 Multi-axial random excitation

In this section, the numerical model is tested with more
general motions of the random type. Both bending and
axial dynamics are assessed here. The shaker’s motion
is in-plane with only three DOFs involved: the translation
along ~X0, the translation along ~Y0 and the pitch α1 around
~Z0. The same power spectral density (PSD) is built for the
only two mono-axial accelerometers involved in the driv-
ing process of the 6-DOF shaker, with a theoretically nil
cross-correlation between each other. This PSD is defined
by two plateaus at 2.51 × 10−4 g2/Hz in [20-31.6] Hz
and [45-60] Hz and a third one at 2.51 × 10−6 g2/Hz in
[35-40] Hz. This specific profile permits avoiding the reso-
nance of the axial mode and the first two bending modes
(rows 1, 3 and 4 of Tab. 4) so that the rotor response
remains small enough and thus linear. The PSDs in accel-
eration of the corresponding six DOFs of the shaker,
obtained by the process described in [34] and computed
on the random part of the test between 5 s and 19 s (for a
full test occurring between 0 s and 22 s), are presented in
dB in Figure 7a for (Ẍ0,tr, Ÿ0,tr, Z̈0,tr) and Figure 7b for
(α̈1, α̈2, α̈3). The real base motion is mainly composed of
the three targeted DOFs. The peak around 28.3 Hz present
in the other three DOFs (Z̈0,tr, α̈2, α̈3) corresponds to the
shaft frequency of rotation which spreads in the rotor base,
but remains low enough.

The numerical and experimental time-history responses
in (u,w) for Node 15 and in −v (the minus sign is because
the axial sensor is directed along −~y) for Node 28 are
presented in Figure 8 in a short time interval for the
sake of clarity. The corresponding PSDs, computed in
the random part of the test in t ∈ [5; 19] s, are depicted
in Figure 9. Firstly, as expected, the amplitude of u
in Figure 8 shows random variations while the ampli-
tude of w is quite constant and unaffected by the base
excitation, which is in agreement with the level of the
corresponding translational base accelerations Ẍ0,tr and
Z̈0,tr in Figure 7a. Secondly, as for the harmonic case
of Section 3.2, the amplitudes of u and especially w are
slightly overestimated numerically. This overestimation
indeed mostly occurs at the shaft frequency of rotation
(see Fig. 9) in response to the residual mass unbalance,
as in the previous harmonic case. A small peak around
10.4 Hz, which is related to the first torsion mode, is pre-
dicted numerically because of a coupling between bending
and torsion in the damping matrix Cjb. Nonetheless, since
this peak does not appear experimentally, this coupling is
likely to be lower than expected. Another peak around
56.7 Hz (2X) is found in the measurements but is not pre-
dicted as the model considers only an axisymmetric shaft
and disks. Regarding the axial displacement, remarkable
agreement is seen in the whole frequency range of the
study. In this frequency range, the shaft responds on its
first axial rigid-body mode in the same way as for a 1-DOF
mass-damper-spring system (all the deformation acts on
the motor-shaft coupling).

3.4 Mono-axial chirp sine excitation

So far, only the bending and axial shaft dynamics have
been evaluated. The encoders were not installed in the
previous cases since they may alter the original shaft
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Fig. 8. Experimental (Exp.) and numerical (Num.) comparisons of displacements (u,w) of Node 15 and −v of Node 28 for a
random base excitation.

Fig. 9. PSD of the time-history responses of Figure 8 computed for t ∈ [5; 19] s.

dynamics and introduce additional sources of uncertain-
ties. For instance, the balancing is perturbed, the axial
rigid-body mode is deeply damped and several harmonics
of the shaft speed of rotation appear due in particular
to the ball bearings inside the encoders. In this context, a
test focusing only on the torsion dynamics was conducted.
Consequently, a mono-axial roll (around ~y) of the rotor
base was created, with a targeted instantaneous axis of
rotation defined to be coaxial with the shaft axis of rota-
tion (i.e. with xI = yI = zI = 0) in order to minimize
the bending and axial responses. However, maintaining
this coaxiality efficiently with a random excitation pro-
file through the shaker driving process is quite difficult.
Moreover, a mono-frequency harmonic excitation does not
permit distinguishing the torsional shaft response from
the bending one precisely. For these reasons, a chirp sine
profile of the base rotation was chosen.
Since the first torsional mode is almost a pure cou-

pling mode with no shaft deformation, it can hardly be
detected by the encoders both mounted on the shaft.
Therefore, the second torsional mode was targeted in this
study. To this end, the roll rotation is defined by an angle

α3 = A3(t) cos(2πfi
kt−1
ln k ) with k = (ff/fi)

1/T , fi = 10 Hz
the initial frequency, ff = 125 Hz the final frequency
and T = 16 s. In this way, the instantaneous frequency
f3(t) = fi k

t of the roll rotation increases exponentially
from fi at t = 0 to ff at t = T . In order to maintain
a relatively constant amplitude of angular acceleration,
A3 is defined so that it decreases with time such that
A3(t) = A0

1
(2π f3(t))2

with A0 = 1200 ◦/s2. The time vari-
ations of the targeted and real (experimental) α3 are
presented in Figure 10. Despite a real amplitude slightly
higher than expected, it can be seen that the chirp sine
profile is globally satisfactory. The other real DOFs of
the shaker, not shown here, are also present in practice
with maximum accelerations around 0.15 g, 0.25 g, 0.2 g,
250 ◦/s2, 60 ◦/s2 for Ẍ0,tr, Ÿ0,tr, Z̈0,tr, α̈1 and α̈2, respec-
tively. Although they are not nil, they are not high enough
to perturb the mono-axial motion.
To remove the rigid-body rotation φ∗ of the shaft

and emphasize the torsional dynamics, the experimental
response is established in terms of an angle B obtained as
the difference of the total shaft angle of rotation φ between
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Fig. 10. Comparison between the targeted and real roll angle α3 of the rotor base with a chirp sine profile.

Fig. 11. Experimental comparison of angle B = β27 − β2 with and without base roll excitation in chirp sine.

Nodes 27 and 2 (namely B = φ27 − φ2 = β27 − β2) where
the two encoders are located. Moreover, a high-pfilter
with a cut-off frequency of 5 Hz is applied to the exper-
imental angle B. The corresponding result is presented
in Figure 11 in terms of its PSD, computed between
2.3 s and 17.4 s. The response of angle B is also plotted
without base motion for two different shaft speeds of
rotation to emphasize the impact of the base on the
torsional response. The two corresponding PSDs are
computed from the same time duration of 15 s as for the
PSD with base motion.
Firstly, it is noteworthy that phenomena related to

bending dynamics were observed experimentally around
28.25 Hz and 56.75 Hz, which correspond to the harmon-
ics 1X and 2X of the mass unbalance forces, and around
35.75 Hz and 81.25 Hz, which correspond to Modes 4
and 5 of Table 4 (with the encoders). These frequencies,
that should, theoretically, not be detected by the encoders,
are present since the shaft deflections inherently induce a
rotational motion of the stator part of the encoders (see
Sect. 3.1 for more details). Secondly, a peak at 93.75 Hz
related to the second torsional mode appears. This peak
is not related to any bending phenomena, because it is
missing from the measured radial deflection, as seen for

instance in Figure 6, and it is insensitive to the speed of
rotation as seen with the dashed lines of Figure 11 in the
case of no base excitation. Thus, it can be stated that
it is related to the second torsion mode, well predicted
by the model, see Mode 7 at 92.50 Hz in Table 4. On
the other hand, erasing the base excitation leads to an
attenuation of -22 dB on the 93.75 Hz torsion peak: the
base roll excitation magnifies the torsional behavior of the
rotor-bearing system.

4 Conclusion

This work addressed the experimental validation of an
on-board rotor model supported by finite-length hydro-
dynamic bearings and subject to a wide variety of
excitations, such as translations and/or rotations, mono-
or multi-axial, harmonic or random or in chirp. To this
end, a rotor test bench was designed, built, instrumented
and mounted on a 6-DOF hydraulic shaker. The real
excitations produced by the latter were introduced in
the FEM by solving an inverse problem to obtain bet-
ter concordance between the calculated and measured
results. All the shaft dynamics, i.e. bending, torsion and
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axial motions, were assessed. Excellent agreements were
obtained in terms of shaft orbits and full spectrums
for the bending dynamics with the multi-axial harmonic
base excitation. However, some slight discrepancies in the
amplitudes were noted and could mainly be assigned to
the presence of residual mass unbalance in the experiment
and possibly to certain limitations in the hydrodynamic
bearing modeling (temperature and viscosity variations in
the fluid, angular misalignment, bearing roughness, etc.).
The axial dynamics was predicted with great accuracy in
both the time and frequency domains, even in a complex
case of random excitation. Regarding torsion, a roll base
rotation in chirp sine permitted demonstrating experimen-
tally the response of the second mode, whose frequency
matched that of the model.
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