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Abstract—Tissue motion compensation during robotic needle
steering is a challenging research topic. While the deformable
non-linear coupling between needle and tissue is captured by
simulation-based control strategies, they increase significantly
the computational cost of the control. In this work, we rely on
machine learning methods to enable autonomous robotic needle
steering with very low computation times. We propose to use
an Extreme Learning Machine (ELM) to learn an inverse model
which accounts for needle-tissue interaction. The ELM trains
with synthetic data generated from multiple needle insertions
controlled by inverse finite-element simulations. Results indicate
the method is able to achieve clinical compatible precision, and
it’s robust to previously unseen trajectory-shapes and variable
tissue elasticity parameters, while using only a third of the
computational time demanded for simulation-based methods.

Index Terms—percutaneous procedures, deformable needle
steering, data-driven methods

I. INTRODUCTION

Percutaneous needle insertion procedures are popular med-
ical interventions because they minimize the patient trauma
reducing his/her recovery time. Although these procedures
are generally performed manually, they remain challenging
because they require a high targeting accuracy in a deformable
environment. Liver procedures are specially challenging given
its elasticity. In fact, physicians need for robotic assistance in
these procedures has been reported [1].

Many studies have proposed robotic assistance to needle
steering [2]. Some works target the robot-assisted needle
steering problem using simplified models that do not include
needle-tissue interactions. They are efficient and fast enough
to meet the robotic control time requirements, but they have
a low accuracy [3] due to the fact that non-linearity of the
needle-tissue interactions are not modelled.
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Fig. 1. Example of a FE simulation of a needle insertion through an entry-
point along a linear trajectory. For a given time-step i, figure shows the
robot position P(i), needle tip position ntip(i), trajectory point ntraj(i)
sliding trough the pink trajectory. After noise addition, a modified target point
ñtraj(i) is also shown in the image.

In order to account for this complex behavior, a physics-
based simulation can be integrated into the control loop to
estimate tissue deformations caused by the needle motion.
In particular, methods that use a finite element simulation to
compute the inverse kinematics of deformable needle (denoted
here as inverse finite element method I-FEM) have been able
to reach a sub-milimetric precision in aiming target located
deep inside soft tissues. [4]–[6]. These methods however
require high computational cost and thus introduce delay in the
robotic command, reducing its stability. Only after significant
computational time reduction, the method is able to perform
stable needle insertions under external perturbations (simulated
respiratory motion) [6].

In this paper, we propose to use Machine Learning (ML) to
control the needle movements while performing a needle in-
sertion. In a previous preliminary analysis [7], we have showed



that Extreme Learning Machines (ELM) neural networks are
able to learn from I-FEM and provide robotic commands at
a faster rate. The idea of training ML methods with synthetic
data generated from highly accurate finite element simulations
has been recently investigated in many works, to tackle the
lack of patient data which usually characterizes the medical
domain [8]–[10]. This paper presents an extended description
of the method and explores the solution robustness to variable
tissue elasticity parameters and different trajectory shapes.

II. BACKGROUND

Introduced in [4], the I-FEM method is able to compensate
for tissue deformation by including a FE simulation into the
control loop. The needle insertion problem is formulated as
a minimization of the objective function e. The needle tissue
interaction imposes a non-linear relationship between e and the
robot end-effector pose

(
X
)
. The FE simulation is then used

to linearize this relationship computing the so-called Jacobian
of the simulation:

J∆X = ∆e (1)

An end-effector reference T can then be computed as a
solution to the linearized inverse problem:

T = X − J†(k� e) (2)

where J† is a damped pseudo-inverse of J, � is the Hadamard
product and k is a gain vector for weighting each objective
function separately (see [6] for details).

The number of objective functions may vary along the
needle insertion given the current state of the procedure, either
inside or outside the tissue. In this study, only solutions for
when the needle is inside will be addressed, since they’re the
most challenging. A first objective

ep = ntraj − ntip (3)

minimizes the error between the needle tip position ntip and a
target position that moves along a pre-defined trajectory ntraj

as seen in Figure 1. Other two objectives enforce a remote-
center-of-motion (RCM) at the level of the insertion point
to prevent tissue damage. Because these are not useful for
the comprehension of the paper contribution, they will not be
further explained. For more precision see [6].

III. METHODS

In this study, synthetic data extracted from multiple I-
FEM simulations is used to train an ELM neural network to
perform needle steering in deformable tissues. For the sake
of simplicity, in this work we assume that the entry-point
position is a-priori known and fixed. While the I-FEM uses
two additional objective functions to avoid tissue damage at
the entry-point, it is not expected that the ELM solves for
these objectives. Instead, a RCM is imposed to the needle, by
automatically computing the end-effector orientation required
to make the needle go through the initial entry point position.

A. Dataset Generation

A database of multiple I-FEM needle insertion simulations
into a rectangular geometry of dimensions 36× 62× 122mm
is used to train the ELM neural network. To generate the
trajectories, which are straight, we consider a regular XY grid
at Z = 122 mm composed of 105 points equally spaced along
the XY surface. Each point in the grid corresponds to the end
point of a different trajectory, while the initial point is always
the same (the fixed entry point). Figure 1 presents an overview
of an example simulation.

At each simulation time-step, sample data described in Table
I are exported and from each trajectory more than 104 samples
can be generated. After the samples extraction, we conduct
a performances analysis to choose the optimal database size
which has been found out to be N = 104 samples with 90%
of them in the train set and 10% of them in the test set.

In order to prevent over-fitting, some variability is intro-
duced in the target position such that the network has the
possibility to learn how to compensate for possible bigger
mismatches between ntip(i) and ntraj(i). Uniform noise ũ(i)
between ±0.25mm is added to the trajectory target position:
ñtraj(i) = ntraj(i) + ũ(i). This perturbed position is used as
the input of the I-FEM method, its objective function is thus
ẽp(i) = ñtraj(i)− ntip(i) .

TABLE I
VARIABLES EXPORTED FROM EACH SIMULATION TIME-STEP i DIRECTLY

(TOP) AND DERIVED (BOTTOM).

Symbol Description
P(i) Robotic end-effector position
T(i) Target pose commanded by I-FEM
n(i) Needle tip position
ñtraj(i) Trajectory target point position with uniform noise
∆P(i) 3D position displacement to reach T(i) from P(i)
ẽp(i) 3D distance vector between ñtraj(i) and n(i)

Thus, the I-FEM model is used to compute the target
command T to place the needle tip in correspondence with
the desired ñtraj(i) with constant operational space velocity of
1 cm s−1. The tissue’s parameters were set to mimic the human
liver, with a Young Modulus (YM) of 6.3kPa and a Poisson
ratio of 0.4. FE models use linear co-rotational formulation of
elasticity [11]. The needle is modeled as serially linked beam-
elements following Timoshenko’s formulation. The needle-
tissue FE interaction follows a Lagrange constraint formulation
[12]. A similar setup was validated in simulation and during
a physical experiments [5].

B. Neural Network Architecture

Inspired by analogous applications in different fields of
medical robotics [13] [14], the ELM is a viable model to learn
the non-linear relationship between robot position and needle
tip target. It is a feed forward neural network with a single
hidden layer:

H = g(wX + b) (4)

Hβ = Y (5)



Where g() is the activation function, w is the input layer
weights matrix, X are the neural network inputs, b is the
vector of the biases summed to the hidden neurons, β is
output layer weights matrix and Y are the neural network
outputs. The only hyper-parameters to consider areM number
of nodes in the hidden layer and the type of activation-
function. In this study it is implemented with M = 25 and
sigmoid activation functions. For an i’th sample, model inputs
are the robot end-effector 3D position P(i) and the tip to
target objective ep(i). The ELM is trained to map the inputs
x(i) =

[
P(i) ep(i)

]T
into 3D displacements of the robotic

end-effector: y(i) = [∆P(i)].

IV. EXPERIMENTS AND RESULTS

A. Experiments

The experiments require the trained ELM to command the
robot to steer the needle in a realistic FE simulation. In order
to address if the ELM is capable of generalizing its predictions
to previously unseen scenarios, two experiments are proposed.

In a first case, the ELM will be tested against 500 previously
unseen trajectories, containing a set of 100 straight trajectories
(LIN) and another set 400 curved trajectories (CUR). CUR
trajectories were generated by applying a sinusoidal overlay to
LIN trajectories in different directions of the global reference
frame. A second experiment addresses the ELM robustness
to different tissue properties. The ELM network is trained
using samples related to a tissue with a constant YM of
6.3kPa. In this second experiment, instead, we test the model
performances using tissues with a YM varying in the range of
the human liver, from 5.5kPa to 6.3kPa [15]. Smaller YM
implies more significant deformations which can lead to higher
final errors.

B. Validation Protocol

As performance metrics, both the success rate and the tip
to target root-mean square-error (RMSE) along the needle
insertion will be considered. For a given trajectory interpolated
in Np target points, the root mean square error is defined as

RMSEtra =

√√√√∑Np

i=0(ntip(i + 1) − ntraj(i))2

Np

(6)

Another important metric is the success rate: S = Ns/Ntraj ,
where Ntraj is the total number of trajectories and Ns is the
number of cases in which the ELM is able to drive the needle
without introducing instabilities in the simulation.

C. Results and Discussion

Both the ELM and the I-FEM are able to successfully
perform the needle insertion along the 500 insertions of the
LIN and CUR sets (S1 = 100%). Their results are reported
in Figure 2. Although I-FEM presents lower errors in the LIN
set when compared to the ELM, this relationship is reversed
for the CUR set, where the ELM is more precise. Statistical
analysis comparing both RMSE sets rejects the hypothe-
sis that both measurements come from a same distribution

Fig. 2. Needle precision comparison along linear (LIN) and curved (CUR)
trajectories and their union (ALL).

(pvalue < 0.01, two-tailed sign test). This result indicates
that the addition of uniform noise to ntraj at data generation
time is able to prevent over-fitting and allows the ELM to
generalize to previously unseen trajectories from both LIN and
CUR sets.

In the second experiment, where YM changes, not all
the trajectories are successfully followed. The ELM-driven
simulation is stable for S2 = 98% of the trajectories. Failure
cases are trajectories with end-points close to the tissue’s
borders, which is expected to be the most sensitive region
for the model, since the training data is more sparse for
these positions. Figure 2 presents quantitative results for the
successful scenarios. Statistical analysis comparing the ELM
performances when YM is constant or variable, cannot reject
the null hypothesis that measurements come from distributions
with same mean (pvalue > 0.05, Mann Whitney U test).
Although no conclusions can be drawn on the significance
of the results, Figure 2 shows that the results obtained with
variable YM are aligned with those with constant YM, and
outperform I-FEM on the CUR sets.

From the results it is clear that ELM precision is sub-
millimetric along all the trajectories, thus compatible to clin-
ical practice. A thorough comparison to I-FEM precision still
needs to be addressed, since the ELM still does not solve for
the needle orientation nor the entry-point RCM constraints,
which are highly non-linear. For all the experiments the com-
putational time advantage of the ELM is maintained, leading
to an average reduction of 60% (see [7] for details).

V. CONCLUSIONS

The use of ELM to perform needle steering into soft tissue
simulations presents promising perspectives. Results of both
experiments show the method is stable and more precise than I-
FEM for previously unseen curved trajectories. In future works
the ELM will be adapted to fit scenarios with entry point
variability, as it is only implicitly considered in the current
formulation. A detailed comparison between I-FEM and the
ELM including entry-point constraints and tissue stress will
also be addressed. Finally, an experimental validation in an
anatomical phantom will be performed to address the method’s
viability in physical scenarios.



REFERENCES

[1] T. L. De Jong, N. J. van de Berg, L. Tas, A. Moelker, J. Dankelman,
and J. J. van den Dobbelsteen, “Needle placement errors: Do we
need steerable needles in interventional radiology?,” Medical Devices:
Evidence and Research, vol. 11, pp. 259–265, 2018.

[2] F. J. Siepel, B. Maris, M. K. Welleweerd, V. Groenhuis, P. Fiorini, and
S. Stramigioli, “Needle and Biopsy Robots: a Review,” Current Robotics
Reports, pp. 73–84, 2021. Publisher: Current Robotics Reports.

[3] R. J. Webster, J. S. Kim, N. J. Cowan, G. S. Chirikjian, and A. M.
Okamura, “Nonholonomic modeling of needle steering,” International
Journal of Robotics Research, vol. 25, no. 5-6, pp. 509–525, 2006.
ISBN: 0278364906065.

[4] Y. Adagolodjo, L. Goffin, M. De Mathelin, and H. Courtecuisse, “Inverse
real-time Finite Element simulation for robotic control of flexible needle
insertion in deformable tissues,” IEEE International Conference on
Intelligent Robots and Systems, vol. 2016-Novem, pp. 2717–2722, 2016.
ISBN: 9781509037629.

[5] Y. Adagolodjo, L. Goffin, M. De Mathelin, and H. Courtecuisse,
“Robotic Insertion of Flexible Needle in Deformable Structures Using
Inverse Finite-Element Simulation,” IEEE Transactions on Robotics,
vol. 35, no. 3, pp. 697–708, 2019.

[6] P. Baksic, H. Courtecuisse, C. Duriez, and B. Bayle, “Robotic needle
insertion in moving soft tissues using constraint-based inverse Finite
Element simulation,” ICRA 2020-IEEE International Conference on
Robotics and Automation, pp. 1–7, 2020.

[7] P. H. S. Perrusi, A. Cazzaniga, P. Baksic, and E. Tagliabue, “Robotic
needle steering in deformable tissues with extreme learning machines,”
in Proceedings of AUTOMED 2021, p. 3, 2021.

[8] A. Mendizabal, E. Tagliabue, T. Hoellinger, J.-N. Brunet, S. Niko-
laev, and S. Cotin, “Data-Driven Simulation for Augmented Surgery,”
in Developments and Novel Approaches in Biomechanics and
Metamaterials (B. E. Abali and I. Giorgio, eds.), pp. 71–96, Cham:
Springer International Publishing, 2020.

[9] M. Pfeiffer, C. Riediger, S. Leger, J.-P. Kühn, D. Seppelt, R.-T. Hoff-
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