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I. INTRODUCTION

Percutaneous needle insertion procedures are popular medical interventions because they minimize the patient trauma reducing his/her recovery time. Although these procedures are generally performed manually, they remain challenging because they require a high targeting accuracy in a deformable environment. Liver procedures are specially challenging given its elasticity. In fact, physicians need for robotic assistance in these procedures has been reported [START_REF] De Jong | Needle placement errors: Do we need steerable needles in interventional radiology?[END_REF].

Many studies have proposed robotic assistance to needle steering [START_REF] Siepel | Needle and Biopsy Robots: a Review[END_REF]. Some works target the robot-assisted needle steering problem using simplified models that do not include needle-tissue interactions. They are efficient and fast enough to meet the robotic control time requirements, but they have a low accuracy [START_REF] Webster | Nonholonomic modeling of needle steering[END_REF] due to the fact that non-linearity of the needle-tissue interactions are not modelled. In order to account for this complex behavior, a physicsbased simulation can be integrated into the control loop to estimate tissue deformations caused by the needle motion. In particular, methods that use a finite element simulation to compute the inverse kinematics of deformable needle (denoted here as inverse finite element method I-FEM) have been able to reach a sub-milimetric precision in aiming target located deep inside soft tissues. [START_REF] Adagolodjo | Inverse real-time Finite Element simulation for robotic control of flexible needle insertion in deformable tissues[END_REF]- [START_REF] Baksic | Robotic needle insertion in moving soft tissues using constraint-based inverse Finite Element simulation[END_REF]. These methods however require high computational cost and thus introduce delay in the robotic command, reducing its stability. Only after significant computational time reduction, the method is able to perform stable needle insertions under external perturbations (simulated respiratory motion) [START_REF] Baksic | Robotic needle insertion in moving soft tissues using constraint-based inverse Finite Element simulation[END_REF].

In this paper, we propose to use Machine Learning (ML) to control the needle movements while performing a needle insertion. In a previous preliminary analysis [START_REF] Perrusi | Robotic needle steering in deformable tissues with extreme learning machines[END_REF], we have showed that Extreme Learning Machines (ELM) neural networks are able to learn from I-FEM and provide robotic commands at a faster rate. The idea of training ML methods with synthetic data generated from highly accurate finite element simulations has been recently investigated in many works, to tackle the lack of patient data which usually characterizes the medical domain [START_REF] Mendizabal | Data-Driven Simulation for Augmented Surgery[END_REF]- [START_REF] Tagliabue | Data-driven intra-operative estimation of anatomical attachments for autonomous tissue dissection[END_REF]. This paper presents an extended description of the method and explores the solution robustness to variable tissue elasticity parameters and different trajectory shapes.

II. BACKGROUND

Introduced in [START_REF] Adagolodjo | Inverse real-time Finite Element simulation for robotic control of flexible needle insertion in deformable tissues[END_REF], the I-FEM method is able to compensate for tissue deformation by including a FE simulation into the control loop. The needle insertion problem is formulated as a minimization of the objective function e. The needle tissue interaction imposes a non-linear relationship between e and the robot end-effector pose X . The FE simulation is then used to linearize this relationship computing the so-called Jacobian of the simulation:

J∆X = ∆e (1) 
An end-effector reference T can then be computed as a solution to the linearized inverse problem:

T = X -J † (k e) (2) 
where J † is a damped pseudo-inverse of J, is the Hadamard product and k is a gain vector for weighting each objective function separately (see [START_REF] Baksic | Robotic needle insertion in moving soft tissues using constraint-based inverse Finite Element simulation[END_REF] for details).

The number of objective functions may vary along the needle insertion given the current state of the procedure, either inside or outside the tissue. In this study, only solutions for when the needle is inside will be addressed, since they're the most challenging. A first objective

e p = n traj -n tip (3) 
minimizes the error between the needle tip position n tip and a target position that moves along a pre-defined trajectory n traj as seen in Figure 1. Other two objectives enforce a remotecenter-of-motion (RCM) at the level of the insertion point to prevent tissue damage. Because these are not useful for the comprehension of the paper contribution, they will not be further explained. For more precision see [START_REF] Baksic | Robotic needle insertion in moving soft tissues using constraint-based inverse Finite Element simulation[END_REF].

III. METHODS

In this study, synthetic data extracted from multiple I-FEM simulations is used to train an ELM neural network to perform needle steering in deformable tissues. For the sake of simplicity, in this work we assume that the entry-point position is a-priori known and fixed. While the I-FEM uses two additional objective functions to avoid tissue damage at the entry-point, it is not expected that the ELM solves for these objectives. Instead, a RCM is imposed to the needle, by automatically computing the end-effector orientation required to make the needle go through the initial entry point position.

A. Dataset Generation

A database of multiple I-FEM needle insertion simulations into a rectangular geometry of dimensions 36 × 62 × 122mm is used to train the ELM neural network. To generate the trajectories, which are straight, we consider a regular XY grid at Z = 122 mm composed of 105 points equally spaced along the XY surface. Each point in the grid corresponds to the end point of a different trajectory, while the initial point is always the same (the fixed entry point). Figure 1 presents an overview of an example simulation.

At each simulation time-step, sample data described in Table I are exported and from each trajectory more than 10 4 samples can be generated. After the samples extraction, we conduct a performances analysis to choose the optimal database size which has been found out to be N = 10 4 samples with 90% of them in the train set and 10% of them in the test set.

In order to prevent over-fitting, some variability is introduced in the target position such that the network has the possibility to learn how to compensate for possible bigger mismatches between n tip (i) and n traj (i). Uniform noise ũ(i) between ±0.25mm is added to the trajectory target position: n traj (i) = n traj (i) + ũ(i). This perturbed position is used as the input of the I-FEM method, its objective function is thus e p (i) = n traj (i) -n tip (i) .

TABLE I VARIABLES EXPORTED FROM EACH SIMULATION TIME-STEP i DIRECTLY (TOP) AND DERIVED (BOTTOM).

Symbol Description P(i)

Robotic end-effector position T(i)

Target pose commanded by I-FEM n(i)

Needle tip position n traj (i)

Trajectory target point position with uniform noise ∆P(i)

3D position displacement to reach T(i) from P(i) ep(i)

3D distance vector between n traj (i) and n(i)

Thus, the I-FEM model is used to compute the target command T to place the needle tip in correspondence with the desired n traj (i) with constant operational space velocity of 1 cm s -1 . The tissue's parameters were set to mimic the human liver, with a Young Modulus (YM) of 6.3kP a and a Poisson ratio of 0.4. FE models use linear co-rotational formulation of elasticity [START_REF] Faure | SOFA: A Multi-Model Framework for Interactive Physical Simulation[END_REF]. The needle is modeled as serially linked beamelements following Timoshenko's formulation. The needletissue FE interaction follows a Lagrange constraint formulation [START_REF] Duriez | Interactive simulation of flexible needle insertions based on constraint models[END_REF]. A similar setup was validated in simulation and during a physical experiments [START_REF] Adagolodjo | Robotic Insertion of Flexible Needle in Deformable Structures Using Inverse Finite-Element Simulation[END_REF].

B. Neural Network Architecture

Inspired by analogous applications in different fields of medical robotics [START_REF] Xu | Data-driven methods towards learning the highly nonlinear inverse kinematics of tendon-driven surgical manipulators[END_REF] [14], the ELM is a viable model to learn the non-linear relationship between robot position and needle tip target. It is a feed forward neural network with a single hidden layer:

H = g(wX + b) (4) 
Hβ = Y (5)
Where g() is the activation function, w is the input layer weights matrix, X are the neural network inputs, b is the vector of the biases summed to the hidden neurons, β is output layer weights matrix and Y are the neural network outputs. The only hyper-parameters to consider are M number of nodes in the hidden layer and the type of activationfunction. In this study it is implemented with M = 25 and sigmoid activation functions. For an i'th sample, model inputs are the robot end-effector 3D position P(i) and the tip to target objective e p (i). The ELM is trained to map the inputs x(i) = P(i) e p (i) T into 3D displacements of the robotic end-effector:

y(i) = [∆P(i)].

IV. EXPERIMENTS AND RESULTS

A. Experiments

The experiments require the trained ELM to command the robot to steer the needle in a realistic FE simulation. In order to address if the ELM is capable of generalizing its predictions to previously unseen scenarios, two experiments are proposed.

In a first case, the ELM will be tested against 500 previously unseen trajectories, containing a set of 100 straight trajectories (LIN) and another set 400 curved trajectories (CUR). CUR trajectories were generated by applying a sinusoidal overlay to LIN trajectories in different directions of the global reference frame. A second experiment addresses the ELM robustness to different tissue properties. The ELM network is trained using samples related to a tissue with a constant YM of 6.3kP a. In this second experiment, instead, we test the model performances using tissues with a YM varying in the range of the human liver, from 5.5kP a to 6.3kP a [START_REF] Roulot | Liver stiffness values in apparently healthy subjects: Influence of gender and metabolic syndrome[END_REF]. Smaller YM implies more significant deformations which can lead to higher final errors.

B. Validation Protocol

As performance metrics, both the success rate and the tip to target root-mean square-error (RMSE) along the needle insertion will be considered. For a given trajectory interpolated in N p target points, the root mean square error is defined as

RM SE tra = Np i=0 (n tip (i + 1) -n traj (i)) 2 N p (6) 
Another important metric is the success rate: S = Ns /Ntraj, where N traj is the total number of trajectories and N s is the number of cases in which the ELM is able to drive the needle without introducing instabilities in the simulation.

C. Results and Discussion

Both the ELM and the I-FEM are able to successfully perform the needle insertion along the 500 insertions of the LIN and CUR sets (S 1 = 100%). Their results are reported in Figure 2. Although I-FEM presents lower errors in the LIN set when compared to the ELM, this relationship is reversed for the CUR set, where the ELM is more precise. Statistical analysis comparing both RM SE sets rejects the hypothesis that both measurements come from a same distribution (p value < 0.01, two-tailed sign test). This result indicates that the addition of uniform noise to n traj at data generation time is able to prevent over-fitting and allows the ELM to generalize to previously unseen trajectories from both LIN and CUR sets.

In the second experiment, where YM changes, not all the trajectories are successfully followed. The ELM-driven simulation is stable for S 2 = 98% of the trajectories. Failure cases are trajectories with end-points close to the tissue's borders, which is expected to be the most sensitive region for the model, since the training data is more sparse for these positions. Figure 2 presents quantitative results for the successful scenarios. Statistical analysis comparing the ELM performances when YM is constant or variable, cannot reject the null hypothesis that measurements come from distributions with same mean (p value > 0.05, Mann Whitney U test). Although no conclusions can be drawn on the significance of the results, Figure 2 shows that the results obtained with variable YM are aligned with those with constant YM, and outperform I-FEM on the CUR sets.

From the results it is clear that ELM precision is submillimetric along all the trajectories, thus compatible to clinical practice. A thorough comparison to I-FEM precision still needs to be addressed, since the ELM still does not solve for the needle orientation nor the entry-point RCM constraints, which are highly non-linear. For all the experiments the computational time advantage of the ELM is maintained, leading to an average reduction of 60% (see [START_REF] Perrusi | Robotic needle steering in deformable tissues with extreme learning machines[END_REF] for details).

V. CONCLUSIONS

The use of ELM to perform needle steering into soft tissue simulations presents promising perspectives. Results of both experiments show the method is stable and more precise than I-FEM for previously unseen curved trajectories. In future works the ELM will be adapted to fit scenarios with entry point variability, as it is only implicitly considered in the current formulation. A detailed comparison between I-FEM and the ELM including entry-point constraints and tissue stress will also be addressed. Finally, an experimental validation in an anatomical phantom will be performed to address the method's viability in physical scenarios.
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 1 Fig. 1. Example of a FE simulation of a needle insertion through an entrypoint along a linear trajectory. For a given time-step i, figure shows the robot position P(i), needle tip position n tip (i), trajectory point n traj (i) sliding trough the pink trajectory. After noise addition, a modified target point ñtraj (i) is also shown in the image.

Fig. 2 .

 2 Fig. 2. Needle precision comparison along linear (LIN) and curved (CUR) trajectories and their union (ALL).