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Abstract— The present study theoretically investigates the free 

vibration problem of a discrete granular system. This micro structured 
system consists of uniform grains elastically connected by shear and 
rotation springs. Such a granular structural system is confined by 
discrete elastic interactions, to take into account the lateral granular 
contributions. This discrete repetitive system could be considered as a 
discrete Cosserat chain or a lattice elastic model with shear interaction. 
First, from the vibration equation governing the model, the natural 
frequencies are exactly calculated for the simply supports boundary 
conditions. Then it is shown that the discrete equations of this granular 
system, for an infinite number of grains, converge to the differential 
equations of the Bresse-Timoshenko beam resting on Winkler 
foundation. A gradient Bresse-Timoshenko model is constructed from 
continualization of the difference equations of the granular system. 
The natural frequencies of the continuous gradient Cosserat models are 
compared with those of the discrete Cosserat model associated with 
the granular chain. Scale effects and wave dispersion characteristics of 
the granular chain are clearly captured by the continuous gradient 
elasticity model. 

 
Keywords— Cosserat continuum, Gradient elasticity, Granular 

medium, Timoshenko beam, Vibration analysis.  

I. INTRODUCTION 
N order to adapt a theory of continuous media to granular 
materials, it is necessary to introduce independent degrees of 

freedom of rotation, in addition to those conventional 
translation. Indeed, the relative movements between the 
microstructure and the average macroscopic deformations can 
be apprehended by additional degrees of freedom. Such 
enriched kinematics leads to non-classical continuous media 
(Cosserat-type theories [1], [2]). Voigt [3] was one of the 
pioneers in the development of these enriched environments. 
He showed the existence of stress-couples in these materials. 
Cosserat's continuum theories belong to the wider class of 
generalized continuas which introduce intrinsic length scales 
via higher order gradients or additional degrees of freedom ([4]-
[6]). Conversely, the classical mechanics of continuous media 
does not incorporate a rotational interaction between the 
particles, and does not allow to understand the size effects in 
these media. 
Furthermore, the Bresse-Timoshenko beam model takes into 
account shear stiffness and the rotational inertia of the section 
([7]-[9]). The effect of shear and rotary inertia can be significant 
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in the case of the calculation of natural frequencies for short 
beams or for which the shear modulus is sufficiently weak. The 
Bresse-Timoshenko beam model is also a generalization of the 
Euler-Bernoulli model, and admits kinematics with two 
independent fields, a field of transverse displacement and a 
field of rotation. Timoshenko [8], [9] calculated the exact 
natural frequencies for such a beam with two degrees of 
freedom resting on two simple supports. The calculation of 
natural frequencies for a Bresse-Timoshenko beam with any 
boundary conditions and in elastic interaction with a rigid 
medium is also obtained by Wang and Stephens [10], Manevich 
[11]-[13]. 
Another essential point is the equivalency of the theories of 
continuous beams of a one-dimensional Cosserat medium and 
a classical Bresse-Timoshenko medium. In fact, a Timoshenko 
beam is an example of a Cosserat one-dimensional continuum 
considering the independent double rotation-displacement 
kinematics (see [14], [15]). There is therefore a link maintained 
between the one-dimensional granular media of Cosserat and 
the media of Bresse-Timoshenko. The present study focuses on 
the vibration of the granular beam model resting on a linear 
Winkler foundation [16]. Note that the difference equations of 
this granular chain coincide with the difference equations of the 
granular model of Pasternak and Mühlhaus [17] in the absence 
of elastic foundation, but differ from the difference equations 
of the discrete model with shear studied by Duan et al [18] or 
the model formulated more recently by Bacigalupo and 
Gambarotta [19]. 
This paper is organized as follows. First, a discrete granular 
model is introduced from the elements interaction considering 
rotation and shear. Then, from the dynamic analysis of the 
beam, the deflection equations for the discrete granular beam 
and the continuum beam are obtained. The exact solution for 
the granular deflection equation leads to a fourth order linear 
difference equation. For the continuum model asymptotically 
by considering an infinite number of grains, the governed 
equation would lead to a fourth order linear differential 
equation. The natural frequencies are obtained for the both 
model and are compared together.  

II. GRANULAR MODEL 
A granular beam of length L resting on two simple supports 

is modeled by a finite number of grains interacting together. 
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Such a model could be presented by considering the 
microstructured granular chain comprising n+1 rigid grain with 
diameter a (a=L/n) that are connected by n shear and rotational 
springs, as shown in figure 1. It is assumed that the elastic 
support springs are located at the center of each rigid grain. 
Each grain has two degrees of freedom which are denoted by Wi 
for the deflection and 𝛩𝛩𝑖𝑖 for the rotation. This model is slightly 
different with the one of Challamel et al. (2014) where the nodal 
kinematics and the Winkler elastic foundation are located at the 
grain interface. The aim of this paper consists in finding the 
vibration equation of this granular chain and then trying to 
obtain the natural frequencies. 
 

 
Fig. 1 A discrete shear granular chain composed of n+1 grains of 

diameter a and mass m; L=n.a 

The total energy function of the system is given by 

𝑈𝑈 = Us + 𝑼𝑼𝒃𝒃 + 𝑼𝑼𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾 (1) 

where Us, Ub and UWinkler are respectively the strain energy due 
to deformed shear, rotational springs and Winkler elastic 
foundations and are defined as follows 

Us =
1
2
� S �Wi+1 − Wi − a

𝛩𝛩i+1 + 𝛩𝛩i
2

�
2n−1

i=0

 
(2) 

𝑼𝑼𝒃𝒃 =
𝟏𝟏
𝟐𝟐
�𝑪𝑪(𝜣𝜣𝑾𝑾+𝟏𝟏 − 𝜣𝜣𝑾𝑾)𝟐𝟐
𝑾𝑾−𝟏𝟏

𝑾𝑾=𝟎𝟎

 
(3) 

𝑼𝑼𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾 =
𝟏𝟏
𝟐𝟐
�𝑲𝑲𝑾𝑾𝑾𝑾

𝟐𝟐
𝑾𝑾

𝑾𝑾=𝟎𝟎

 
(4) 

where S is the shear stiffness and defined by 𝑆𝑆 = 𝐾𝐾𝑠𝑠𝐺𝐺𝐺𝐺
𝑎𝑎

= 𝑛𝑛𝐾𝐾𝑠𝑠𝐺𝐺𝐺𝐺
𝐿𝐿

. G 
is the shear modulus; A is the cross-sectional area of the beam 
and Ks is an equivalent shear correction coefficient. C is the 
rotational stiffness and can be expressed as 𝐶𝐶 = 𝐸𝐸𝐸𝐸

𝑎𝑎
= 𝑛𝑛𝐸𝐸𝐸𝐸

𝐿𝐿
, where 

E is Young’s modulus and I is the second moment of area. K=ka 
is the discrete stiffness of the elastic support and is attached to 
the center of each grain. 

The kinematic variables are measured at nodes i located at 
the center of each grain, which is consistent with the approach 
followed for instance by Pasternak and Mühlhaus [17].  

The total kinetic energy of the granular model may be 
expressed as follows: 

𝑇𝑇 =
1
2
�𝑚𝑚𝑖𝑖�̇�𝑊𝑖𝑖

2
𝑛𝑛

𝑖𝑖=0

+
1
2
�𝐼𝐼𝑚𝑚𝑖𝑖�̇�𝛩𝑖𝑖

2
𝑛𝑛

𝑖𝑖=0

 
(5) 

where  𝐼𝐼𝑚𝑚0 = 𝐼𝐼𝑚𝑚𝑛𝑛 = 1
2
𝐼𝐼𝑚𝑚𝑖𝑖and 𝐼𝐼𝑚𝑚𝑖𝑖 = 𝜌𝜌𝐸𝐸𝐿𝐿

𝑛𝑛
= 𝜌𝜌𝐼𝐼𝐼𝐼 for i in [1,n-1] are the 

second moment of inertia of the beam segment and. 𝑚𝑚𝑖𝑖 is the 
mass term for each grain that is defined for the inter grains by 
𝑚𝑚𝑖𝑖 = 𝜌𝜌𝐼𝐼 and the half value for the boundaries. 

The Lagrangian relation of the granular system may be 
defined as 𝐿𝐿 = 𝑇𝑇 − (𝑈𝑈𝑠𝑠 + 𝑈𝑈𝑏𝑏 + 𝑈𝑈𝑊𝑊𝑖𝑖𝑛𝑛𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊). The Euler-Lagrange of 
such a granular system are given by 

𝜕𝜕𝐿𝐿
𝜕𝜕𝑊𝑊𝑖𝑖

= 𝑑𝑑
𝑑𝑑𝑑𝑑
� 𝜕𝜕𝐿𝐿
𝜕𝜕�̇�𝑊𝑖𝑖

�  ;    𝜕𝜕𝐿𝐿
𝜕𝜕𝛩𝛩𝑖𝑖

= 𝑑𝑑
𝑑𝑑𝑑𝑑
� 𝜕𝜕𝐿𝐿
𝜕𝜕�̇�𝛩𝑖𝑖
�  with 𝑖𝑖 = 0, 1, 2, … , 𝑛𝑛 (6) 

Using (6) based on the energy function leads to the following 
difference equation system  

𝐾𝐾𝑠𝑠𝐺𝐺𝐺𝐺(𝛿𝛿2𝑊𝑊) − 𝐾𝐾𝑠𝑠𝐺𝐺𝐺𝐺(𝛿𝛿1𝜃𝜃) − 𝑘𝑘𝑊𝑊𝑖𝑖 − 𝜌𝜌𝐺𝐺�̈�𝑊𝑖𝑖 = 0
𝐸𝐸𝐼𝐼(𝛿𝛿2𝜃𝜃) + 𝐾𝐾𝑠𝑠𝐺𝐺𝐺𝐺(𝛿𝛿1𝑊𝑊) − 𝐾𝐾𝑠𝑠𝐺𝐺𝐺𝐺(𝛿𝛿0𝜃𝜃) − 𝜌𝜌𝐼𝐼𝜃𝜃�̈�𝚤 = 0

 (7) 

Considering two fictitious grains connected by two shear and 
rotational springs to the first and last grains and also by 
introducing the following pseudo-difference operators 

𝛿𝛿0𝑊𝑊𝑖𝑖 = 𝑊𝑊𝑖𝑖+1+2𝑊𝑊𝑖𝑖+𝑊𝑊𝑖𝑖−1

4
, 𝛿𝛿1𝑊𝑊𝑖𝑖 = 𝑊𝑊𝑖𝑖+1−𝑊𝑊𝑖𝑖−1

2𝑎𝑎
 , 𝛿𝛿2𝑊𝑊𝑖𝑖 = 𝑊𝑊𝑖𝑖+1−2𝑊𝑊𝑖𝑖+𝑊𝑊𝑖𝑖−1

𝑎𝑎2
 (8) 

Assuming a harmonic motion 𝑊𝑊𝑖𝑖 = 𝑤𝑤𝑖𝑖𝑒𝑒𝑗𝑗𝑗𝑗𝑑𝑑 and 𝛩𝛩𝑖𝑖 = 𝜃𝜃𝑖𝑖𝑒𝑒𝑗𝑗𝑗𝑗𝑑𝑑 with 
j2=-1, (7) may be written in a matrix form 

�𝑬𝑬𝑬𝑬𝜹𝜹𝟐𝟐 − 𝑲𝑲𝒔𝒔𝑮𝑮𝑮𝑮𝜹𝜹𝟎𝟎 + 𝝆𝝆𝑬𝑬𝝎𝝎𝟐𝟐 𝑲𝑲𝒔𝒔𝑮𝑮𝑮𝑮𝜹𝜹𝟏𝟏
𝑲𝑲𝒔𝒔𝑮𝑮𝑮𝑮𝜹𝜹𝟏𝟏 𝑾𝑾−𝑲𝑲𝒔𝒔𝑮𝑮𝑮𝑮𝜹𝜹𝟐𝟐 − 𝝆𝝆𝑮𝑮𝝎𝝎𝟐𝟐��

𝜽𝜽
𝒘𝒘�𝑾𝑾

= �𝟎𝟎𝟎𝟎� (9) 

These difference equations system (9) have been obtained 
by Pasternak and Mühlhaus [17] when neglecting the elastic 
Winkler foundation (k=0). With consideration of an infinite 
number of grains (𝑛𝑛 → ∞)  referring to the continuum beam, it 
converges to the coupled system differential equations of (10) 
which has been obtained by Bresse (1859) and Timoshenko in 
absence of Winkler foundation (k=0) and assuming the shear 
correction factor be unity (Ks=1). This equation valid for a 
Bresse-Timoshenko beam on elastic foundation have been also 
obtained by Wang and Stephens [10] and Manevich [11]. 

�𝑬𝑬𝑬𝑬𝝏𝝏𝒙𝒙
𝟐𝟐 − 𝑲𝑲𝒔𝒔𝑮𝑮𝑮𝑮 + 𝝆𝝆𝑬𝑬𝝎𝝎𝟐𝟐 𝑲𝑲𝒔𝒔𝑮𝑮𝑮𝑮𝝏𝝏𝒙𝒙
𝑲𝑲𝒔𝒔𝑮𝑮𝑮𝑮𝝏𝝏𝒙𝒙 𝑾𝑾−𝑲𝑲𝒔𝒔𝑮𝑮𝑮𝑮𝝏𝝏𝒙𝒙𝟐𝟐 − 𝝆𝝆𝑮𝑮𝝎𝝎𝟐𝟐��

𝜽𝜽
𝒘𝒘� = �𝟎𝟎𝟎𝟎�   (10) 

It is possible to introduce the following pseudo-differential 
operators 

𝜹𝜹𝟎𝟎 =
𝑾𝑾𝒂𝒂𝝏𝝏𝒙𝒙 + 𝟐𝟐 + 𝑾𝑾−𝒂𝒂𝝏𝝏𝒙𝒙

𝟒𝟒
= 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝟐𝟐  (

𝒂𝒂𝝏𝝏𝒙𝒙
𝟐𝟐

) 

𝜹𝜹𝟏𝟏 =
𝑾𝑾𝒂𝒂𝝏𝝏𝒙𝒙 − 𝑾𝑾−𝒂𝒂𝝏𝝏𝒙𝒙

𝟐𝟐𝒂𝒂
=
𝐜𝐜𝐬𝐬𝐬𝐬𝐜𝐜 (𝒂𝒂𝝏𝝏𝒙𝒙)

𝒂𝒂
  

𝜹𝜹𝟐𝟐 =
𝑾𝑾𝒂𝒂𝝏𝝏𝒙𝒙 − 𝟐𝟐 + 𝑾𝑾−𝒂𝒂𝝏𝝏𝒙𝒙

𝒂𝒂𝟐𝟐
=

𝟒𝟒
𝒂𝒂𝟐𝟐
𝐜𝐜𝐬𝐬𝐬𝐬𝐜𝐜𝟐𝟐  (

𝒂𝒂𝝏𝝏𝒙𝒙
𝟐𝟐

) 

 

 

 

(11) 

The relation could be obtained between these operators as 



 

 

𝜹𝜹𝟐𝟐𝜹𝜹𝟎𝟎 = 𝜹𝜹𝟎𝟎𝜹𝜹𝟐𝟐 = 𝜹𝜹𝟏𝟏𝟐𝟐   (12) 

With consideration determinant of the matrix in (10) equal to 
zero and using the property of (12) gives the fourth-order 
difference equation for the deflection as follows: 

[𝑬𝑬𝑬𝑬𝜹𝜹𝟐𝟐𝟐𝟐 + �𝝆𝝆𝑬𝑬𝝎𝝎𝟐𝟐 −
𝑾𝑾𝑬𝑬𝑬𝑬
𝑲𝑲𝒔𝒔𝑮𝑮𝑮𝑮

+
𝑬𝑬𝑬𝑬𝝆𝝆𝝎𝝎𝟐𝟐

𝑲𝑲𝒔𝒔𝑮𝑮
�𝜹𝜹𝟐𝟐 + (𝑾𝑾 − 𝝆𝝆𝑮𝑮𝝎𝝎𝟐𝟐)𝜹𝜹𝟎𝟎

−
𝑾𝑾𝝆𝝆𝑬𝑬𝝎𝝎𝟐𝟐

𝑲𝑲𝒔𝒔𝑮𝑮𝑮𝑮
+
𝝆𝝆𝟐𝟐𝑬𝑬𝝎𝝎𝟒𝟒

𝑲𝑲𝒔𝒔𝑮𝑮
]𝒘𝒘𝑾𝑾 = 𝟎𝟎 

(13) 

Equation (13) is slightly different from the fourth-order 
difference equation obtained by Duan et al. [18] for (k=0).  

Considering infinite number of grains (𝑛𝑛 → ∞) for the 
continuum beam, the fourth-order differential equation valid for 
a Bresse-Timoshenko beam on Winkler elastic foundation is 
given by (14) which also could be compared well by [10], [11] 
and [20]. 

𝒅𝒅𝟒𝟒𝒘𝒘
𝒅𝒅𝒙𝒙𝟒𝟒

+ �
𝝆𝝆𝝎𝝎𝟐𝟐

𝑬𝑬
�𝟏𝟏 +

𝑬𝑬
𝑾𝑾𝒔𝒔𝑮𝑮

� −
𝑾𝑾

𝑾𝑾𝒔𝒔𝑮𝑮𝑮𝑮
�
𝒅𝒅𝟐𝟐𝒘𝒘
𝒅𝒅𝒙𝒙𝟐𝟐

− (
𝝆𝝆𝝎𝝎𝟐𝟐

𝑬𝑬
�
𝑮𝑮
𝑬𝑬

+
𝑾𝑾

𝑾𝑾𝒔𝒔𝑮𝑮𝑮𝑮
−
𝝆𝝆𝝎𝝎𝟐𝟐

𝑾𝑾𝒔𝒔𝑮𝑮
� −

𝑾𝑾
𝑬𝑬𝑬𝑬

)]𝒘𝒘 = 𝟎𝟎 

(14) 

III. EXACT SOLUTION 

A. Resolution of The Difference Equation 

The exact solution for the fourth-order linear difference 
eigenvalue problem of (13)  is investigated (see [21], [22] for 
the general solution of linear difference equations).  

The boundary conditions of the system could be supposed as 
follows [25]: 

𝑮𝑮𝑨𝑨  𝑾𝑾 = 𝟎𝟎 ∶    𝒘𝒘𝟎𝟎 = 𝟎𝟎 ;  𝜹𝜹𝟐𝟐𝒘𝒘𝟎𝟎 = 𝟎𝟎  

𝑮𝑮𝑨𝑨  𝑾𝑾 = 𝑾𝑾 ∶   𝒘𝒘𝑾𝑾 = 𝟎𝟎 ;  𝜹𝜹𝟐𝟐𝒘𝒘𝑾𝑾 = 𝟎𝟎 

(15) 

The non-dimensional quantities may be introduced  

𝜴𝜴𝟐𝟐 = 𝝎𝝎𝟐𝟐𝝆𝝆𝑮𝑮𝑳𝑳𝟒𝟒

𝑬𝑬𝑬𝑬
  ,  𝝁𝝁𝒔𝒔 = 𝑬𝑬

𝑲𝑲𝒔𝒔 𝑮𝑮
  , 𝑾𝑾 = �𝑬𝑬

𝑮𝑮
  ,  𝑾𝑾∗ = 𝑾𝑾

𝑳𝑳
  ,  𝑾𝑾∗ = 𝑾𝑾𝑳𝑳𝟒𝟒

𝑬𝑬𝑬𝑬
 (16) 

𝛺𝛺 is a dimensionless frequency; 𝜇𝜇𝑠𝑠 is inversely proportional to 
the shear stiffness; and 𝑟𝑟∗ is proportional to the rotatory inertia. 
The solution of the linear difference equation is thought in the 
𝑤𝑤𝑖𝑖 = 𝐵𝐵𝜆𝜆𝑖𝑖  form, where B is a constant. Therefore, the 
characteristic equation could be obtained as 

(𝝀𝝀 +
𝟏𝟏
𝝀𝝀

)𝟐𝟐 + �𝝀𝝀 +
𝟏𝟏
𝝀𝝀
� 𝝐𝝐 + 𝝉𝝉 = 𝟎𝟎 (17) 

 

where the parameters 𝜖𝜖 and 𝜏𝜏 can be defined as 

𝝐𝝐 = �
𝑾𝑾∗𝟐𝟐𝜴𝜴𝟐𝟐

𝑾𝑾𝟐𝟐
�𝟏𝟏 + 𝝁𝝁𝒔𝒔 −

𝟏𝟏
𝟒𝟒𝑾𝑾∗𝟐𝟐𝑾𝑾𝟐𝟐

� −
𝑾𝑾∗𝟐𝟐𝑾𝑾∗𝝁𝝁𝒔𝒔
𝑾𝑾𝟐𝟐

+
𝑾𝑾∗

𝟒𝟒𝑾𝑾𝟒𝟒
− 𝟒𝟒�,  (18) 

 𝝉𝝉 = �
𝑾𝑾∗𝟐𝟐𝜴𝜴𝟐𝟐

𝑾𝑾𝟒𝟒
�−𝝁𝝁𝒔𝒔𝑾𝑾∗𝟐𝟐𝑾𝑾∗ + 𝝁𝝁𝒔𝒔𝑾𝑾∗𝟐𝟐𝜴𝜴𝟐𝟐� + 𝟐𝟐 �

𝑾𝑾∗

𝟒𝟒𝑾𝑾𝟒𝟒
−
𝜴𝜴𝟐𝟐

𝟒𝟒𝑾𝑾𝟒𝟒
�

− 𝟐𝟐(
𝑾𝑾∗𝟐𝟐𝜴𝜴𝟐𝟐

𝑾𝑾𝟐𝟐
(𝟏𝟏 + 𝝁𝝁𝒔𝒔) −

𝑾𝑾∗𝟐𝟐𝑾𝑾∗𝝁𝝁𝒔𝒔
𝑾𝑾𝟐𝟐

) + 𝟒𝟒�  

 

Solving (17) leads to the following equation  

𝝀𝝀 +
𝟏𝟏
𝝀𝝀

=
−𝝐𝝐 ± √𝝐𝝐𝟐𝟐 − 𝟒𝟒 𝝉𝝉

𝟐𝟐
  

(19) 

 

Equation (19) admits four solutions written  

𝝀𝝀𝟏𝟏,𝟐𝟐 =
−𝝐𝝐 + √𝝐𝝐𝟐𝟐 − 𝟒𝟒 𝝉𝝉

𝟒𝟒
± �(

𝝐𝝐 − √𝝐𝝐𝟐𝟐 − 𝟒𝟒 𝝉𝝉
𝟒𝟒

)𝟐𝟐 − 𝟏𝟏 
(20) 

𝝀𝝀𝟑𝟑,𝟒𝟒 =
−𝝐𝝐 − √𝝐𝝐𝟐𝟐 − 𝟒𝟒 𝝉𝝉

𝟒𝟒
± 𝒋𝒋�𝟏𝟏 − (

𝝐𝝐 + √𝝐𝝐𝟐𝟐 − 𝟒𝟒 𝝉𝝉
𝟒𝟒

)𝟐𝟐 
(21) 

where 𝑗𝑗2 = −1. On the other hand, it is important to notice that 
according to (19) the results of 𝜆𝜆 + 1

𝜆𝜆
  are in the ranges of 

(−∞, −2] or [2, +∞). 

The limited cases when 𝜆𝜆 + 1
𝜆𝜆
 = ±2 would be happened for 𝜆𝜆 =

±1  which refers to the critical frequencies. The critical 
frequencies of the system are inconsistent condition with the 
general supposed form of the deflection and would be obtained 
by assuming: 

𝝉𝝉 = ±𝟐𝟐𝝐𝝐 − 𝟒𝟒 (22) 

Replacing 𝜏𝜏  and 𝜖𝜖 by using (18) ones could be obtained as: 

(
𝑾𝑾∗𝟐𝟐𝜴𝜴𝒄𝒄𝑾𝑾

𝟐𝟐

𝑾𝑾𝟐𝟐
− 𝟒𝟒)(

𝝁𝝁𝒔𝒔𝑾𝑾∗𝟐𝟐

𝑾𝑾𝟐𝟐
(𝜴𝜴𝒄𝒄𝑾𝑾

𝟐𝟐 − 𝑾𝑾∗) − 𝟒𝟒) = 𝟎𝟎 
(23) 

𝟏𝟏
𝑾𝑾𝟒𝟒

((𝜴𝜴𝒄𝒄𝑾𝑾
𝟐𝟐 − 𝑾𝑾∗)(𝝁𝝁𝒔𝒔 𝑾𝑾∗𝟒𝟒𝜴𝜴𝒄𝒄𝑾𝑾

𝟐𝟐 − 𝟏𝟏)) = 𝟎𝟎 (24) 

Therefore, two branches of critical frequencies would be 
obtained as follows 

𝜴𝜴𝒄𝒄𝑾𝑾𝟏𝟏,𝟏𝟏 =  
𝟐𝟐𝑾𝑾
𝑾𝑾∗

     ,     𝜴𝜴𝒄𝒄𝑾𝑾𝟏𝟏,𝟐𝟐 = �
𝟒𝟒𝑾𝑾𝟐𝟐

𝝁𝝁𝒔𝒔𝑾𝑾∗𝟐𝟐
+ 𝑾𝑾∗ 

(25) 

𝜴𝜴𝒄𝒄𝑾𝑾𝟐𝟐,𝟏𝟏 = √𝑾𝑾∗      ,     𝜴𝜴𝒄𝒄𝑾𝑾𝟐𝟐,𝟐𝟐 = �
𝟏𝟏

𝝁𝝁𝒔𝒔𝑾𝑾∗𝟒𝟒
 

(26) 

The critical frequencies of the first branch depend on the 
grain number (microstructure parameter), mechanical 
properties and beam geometry (macrostructure parameters) 
while the second branch critical frequencies are only defined as 
a function of the beam mechanical properties and geometry. On 
the other hand, comparing these critical values with the those of 
the Timoshenko continuum beam resting on the Winkler 
foundations [10], leads to the equivalency of the second branch 
critical values (26) to the Timoshenko continuum beam’s. For 



 

 

infinite number of grains, since the first branch critical 
frequencies (𝛺𝛺𝑐𝑐𝑊𝑊1,1 and 𝛺𝛺𝑐𝑐𝑊𝑊1,2) leads to infinite values and 
consequently disappear, so only the second branch would 
remain. These critical values could be shown as follows 

𝝎𝝎𝒄𝒄𝑾𝑾2,1 = 𝝎𝝎𝒄𝒄𝑾𝑾𝑻𝑻𝑾𝑾𝑻𝑻𝑻𝑻𝒔𝒔𝑻𝑻𝑾𝑾𝑾𝑾𝑾𝑾𝑻𝑻 𝟏𝟏 = �
𝑾𝑾
𝝆𝝆𝑮𝑮

      ,     

𝝎𝝎𝒄𝒄𝑾𝑾𝟐𝟐,𝟐𝟐 = 𝝎𝝎𝒄𝒄𝑾𝑾𝑻𝑻𝑾𝑾𝑻𝑻𝑻𝑻𝒔𝒔𝑻𝑻𝑾𝑾𝑾𝑾𝑾𝑾𝑻𝑻 𝟐𝟐 = �
𝑲𝑲𝒔𝒔  𝑮𝑮𝑮𝑮
𝝆𝝆𝑬𝑬

 

(27) 

It can be obtained, the behavior of the beam deflection solution 
would be separated by the critical frequencies into different 
regimes and depending on the frequencies values, the results 
would be in distinct manner. 

For finite number of grains, four regimes would be occurred 
categorized as follows: when 0 < 𝛺𝛺 < 𝛺𝛺𝑐𝑐𝑊𝑊2,2  there are two 
exponential terms and two travelling waves since 𝜆𝜆1,2 are real 
and 𝜆𝜆3,4 are imaginary. In this case the deflection equation form 
would be obtained from (38). 

When 𝛺𝛺𝑐𝑐𝑊𝑊2,2 < 𝛺𝛺 < 𝛺𝛺𝑐𝑐𝑊𝑊1,2  , 𝜆𝜆1,2,3,4  are all imaginary and 
therefore all terms represent travelling waves and for this case 
the deflection equation form would be obtained from (39) . 

For  𝛺𝛺𝑐𝑐𝑊𝑊1,2 < 𝛺𝛺 < 𝛺𝛺𝑐𝑐𝑊𝑊1,1  again there are two exponential terms 
and two travelling waves since 𝜆𝜆1,2 are imaginary and 𝜆𝜆3,4 are 
real and the deflection equation form would be obtained from 
(40). 

Finally, for 𝛺𝛺𝑐𝑐𝑊𝑊1,2 < 𝛺𝛺 , since all parameters of 𝜆𝜆1,2,3,4 are real, 
thus whole terms represent exponential terms which leads to the 
deflection equation form of (41). 

For specific value of grain number (𝑛𝑛𝑠𝑠)  𝛺𝛺𝑐𝑐𝑊𝑊1,1  and 𝛺𝛺𝑐𝑐𝑊𝑊2,2 
would be equal together. This leads to the reduction of the four 
regimes to three. 

𝑾𝑾𝒔𝒔 =  
1

2𝑾𝑾∗�𝝁𝝁𝒔𝒔
 =

𝐿𝐿
2
�𝑲𝑲𝒔𝒔 𝑮𝑮𝑮𝑮

𝐸𝐸𝐼𝐼
  

(28) 

The results are shown for a case study of 50 grains and the 
dimensionless parameters of  𝜇𝜇𝑠𝑠 = 4.28,  𝑟𝑟∗ = 0.029,  𝑘𝑘∗ = 15 in 
figure 2. In this example the values of the critical frequencies 
are respectively 𝛺𝛺𝑐𝑐𝑊𝑊1,1 = 3464.1 , 𝛺𝛺𝑐𝑐𝑊𝑊1,2 = 1673.7 , 𝛺𝛺𝑐𝑐𝑊𝑊2,2 = 3.87 

and  𝛺𝛺𝑐𝑐𝑊𝑊2,2 = 579.8. 

 
Fig. 2 Schematic behavior of the wave vector regarding to the eigen 
frequencies for finite grain number (n=50). The left and right panels 

correspond to the real and imaginary part of the wave vector. 

For infinite number of grains, since the first two critical 
values converge to the infinite, so the previous different 
regimes reduce to two regimes: when 0 < 𝛺𝛺 < 𝛺𝛺𝑐𝑐𝑊𝑊2,2  there are 
two exponential terms and two travelling waves as 𝜆𝜆1,2 are real 
and 𝜆𝜆3,4 are imaginary and thus the deflection equation form 
would be obtained from (38).  

When 𝛺𝛺𝑐𝑐𝑊𝑊2,2 < 𝛺𝛺 , all 𝜆𝜆1,2,3,4 are all imaginary and all terms of 
represent travelling waves. This case leads to the deflection 
equation form of (39). These two regimes correspond to the 
ones obtained for the continuum beam of Timoshenko resting 
on Winkler foundations. 

Therefore,  𝜆𝜆1,2  can be rewritten for 𝛺𝛺 < 𝛺𝛺𝑐𝑐𝑊𝑊2,2  and 𝛺𝛺𝑐𝑐𝑊𝑊1,2 < 𝛺𝛺 
([23] for a similar presentation applied to the finite difference 
formulation of Euler-Bernoulli beams) as 

𝝀𝝀𝟏𝟏,𝟐𝟐 = 𝒄𝒄𝑻𝑻𝒔𝒔𝑻𝑻 𝝑𝝑 ± 𝒔𝒔𝑾𝑾𝑾𝑾𝑻𝑻 𝝑𝝑 (29) 

where  

𝒄𝒄𝑻𝑻𝒔𝒔 𝝋𝝋 =
−𝝐𝝐
𝟒𝟒
−
𝟏𝟏
𝟐𝟐
��

−𝝐𝝐
𝟐𝟐

 �
𝟐𝟐
− 𝝉𝝉 

(30) 

𝒄𝒄𝑻𝑻𝒔𝒔𝑻𝑻 𝝑𝝑 =
−𝝐𝝐
𝟒𝟒

+
𝟏𝟏
𝟐𝟐
��

−𝝐𝝐
𝟐𝟐

 �
𝟐𝟐
− 𝝉𝝉 =

−𝝐𝝐
𝟐𝟐
− 𝒄𝒄𝑻𝑻𝒔𝒔𝝋𝝋 

(31) 

while 𝜆𝜆1,2 would be obtained for 𝛺𝛺𝑐𝑐𝑊𝑊2,2 < 𝛺𝛺 < 𝛺𝛺𝑐𝑐𝑊𝑊1,2 

𝝀𝝀𝟏𝟏,𝟐𝟐 = 𝒄𝒄𝑻𝑻𝒔𝒔𝝑𝝑 ± 𝒋𝒋𝒔𝒔𝑾𝑾𝑾𝑾𝝑𝝑   (32) 

where 



 

 

𝒄𝒄𝑻𝑻𝒔𝒔 𝝑𝝑 =
−𝝐𝝐
𝟒𝟒

+
𝟏𝟏
𝟐𝟐
��
−𝝐𝝐
𝟐𝟐

 �
𝟐𝟐
− 𝝉𝝉 

(33) 

On the other hand, 𝜆𝜆3,4 would be defined for 𝛺𝛺 < 𝛺𝛺𝑐𝑐𝑊𝑊1,1 by  

𝝀𝝀𝟑𝟑,𝟒𝟒 = 𝒄𝒄𝑻𝑻𝒔𝒔𝝋𝝋 ± 𝒋𝒋𝒔𝒔𝑾𝑾𝑾𝑾𝝋𝝋 (34) 

where 

𝝋𝝋 = 𝒂𝒂𝑾𝑾𝒄𝒄𝒄𝒄𝑻𝑻𝒔𝒔 (
−𝝐𝝐
𝟒𝟒
−
𝟏𝟏
𝟐𝟐
��

−𝝐𝝐
𝟐𝟐

 �
𝟐𝟐
− 𝝉𝝉) 

(35) 

And for 𝛺𝛺𝑐𝑐𝑊𝑊1,1 < 𝛺𝛺  

𝝀𝝀𝟑𝟑,𝟒𝟒 = 𝒄𝒄𝑻𝑻𝒔𝒔𝑻𝑻𝝋𝝋 ± 𝒔𝒔𝑾𝑾𝑾𝑾𝑻𝑻𝝋𝝋 (36) 

𝝋𝝋 = 𝒂𝒂𝑾𝑾𝒄𝒄𝒄𝒄𝑻𝑻𝒔𝒔𝑻𝑻 (
−𝝐𝝐
𝟒𝟒
−
𝟏𝟏
𝟐𝟐
��
−𝝐𝝐
𝟐𝟐

 �
𝟐𝟐
− 𝝉𝝉) 

(37) 

There are three possible general solutions for 𝑤𝑤𝑖𝑖 depending on 
the critical values of the frequencies which may be represented 
as 

 𝑤𝑤𝑖𝑖 = 𝐺𝐺1 cos 𝑖𝑖𝑖𝑖 + 𝐺𝐺2 sin 𝑖𝑖𝑖𝑖 + 𝐺𝐺3 cosh 𝑖𝑖𝑖𝑖 +  𝐺𝐺4 sinh 𝑖𝑖𝑖𝑖    

(𝛺𝛺 < 𝛺𝛺𝑐𝑐𝑊𝑊2,2 ) 

(38) 

𝑤𝑤𝑖𝑖 = 𝐵𝐵1 cos 𝑖𝑖𝑖𝑖 + 𝐵𝐵2 sin 𝑖𝑖𝑖𝑖 + 𝐵𝐵3 cos 𝑖𝑖𝑖𝑖 + 𝐵𝐵4 sin 𝑖𝑖𝑖𝑖  

  (𝛺𝛺𝑐𝑐𝑊𝑊2,2 < 𝛺𝛺 < 𝛺𝛺𝑐𝑐𝑊𝑊1,1  ) 

(39) 

𝑤𝑤𝑖𝑖 = 𝐶𝐶1 cosh 𝑖𝑖𝑖𝑖 + 𝐶𝐶2 sinh 𝑖𝑖𝑖𝑖 + 𝐶𝐶3 cos 𝑖𝑖𝑖𝑖 +  𝐶𝐶4 sin 𝑖𝑖𝑖𝑖  

  (𝛺𝛺𝑐𝑐𝑊𝑊1,1 < 𝛺𝛺 < 𝛺𝛺𝑐𝑐𝑊𝑊1,2  ) 

(40) 

𝑤𝑤𝑖𝑖 = 𝐷𝐷1 cosh 𝑖𝑖𝑖𝑖 +  𝐷𝐷2 sinh 𝑖𝑖𝑖𝑖 +  𝐷𝐷3 cosh 𝑖𝑖𝑖𝑖 +  𝐷𝐷4 sinh 𝑖𝑖𝑖𝑖  

(𝛺𝛺𝑐𝑐𝑊𝑊1,2 < 𝛺𝛺 )  

(41) 

Considering simply supported boundary conditions, the 
deflection of each grain could be obtained by following 
equation while 𝛺𝛺 < 𝛺𝛺𝑐𝑐𝑊𝑊1,2 

𝒘𝒘𝑾𝑾 = 𝐁𝐁 𝐜𝐜𝐬𝐬𝐬𝐬 �
𝑾𝑾𝒊𝒊𝒊𝒊
𝑾𝑾
� (42) 

where p is the mode number or natural number (1 ≤ 𝑝𝑝 < 𝑛𝑛 for 
𝑤𝑤𝑖𝑖) and i is the grain number (0 ≤ 𝑖𝑖 ≤ 𝑛𝑛). Using non-
dimensional eigenfrequency parameters and (35)  

�
𝝁𝝁𝒔𝒔𝑾𝑾∗𝟒𝟒

𝑾𝑾𝟒𝟒
�𝜴𝜴𝟒𝟒 + �

𝟐𝟐𝑾𝑾∗𝟐𝟐

𝑾𝑾𝟐𝟐
�𝟏𝟏 + 𝝁𝝁𝒔𝒔 −

𝟏𝟏
𝟒𝟒𝑾𝑾∗𝟐𝟐𝑾𝑾𝟐𝟐

� 𝒄𝒄𝑻𝑻𝒔𝒔 �
𝒊𝒊𝒊𝒊
𝑾𝑾
� −

𝝁𝝁𝒔𝒔𝑾𝑾∗𝟒𝟒𝑾𝑾∗

𝑾𝑾𝟒𝟒

−
𝟏𝟏
𝟐𝟐𝑾𝑾𝟒𝟒

−
𝟐𝟐𝑾𝑾∗𝟐𝟐

𝑾𝑾𝟐𝟐
(𝟏𝟏 + 𝝁𝝁𝒔𝒔)�𝜴𝜴𝟐𝟐

+ �𝟐𝟐(−
𝑾𝑾∗𝟐𝟐𝑾𝑾∗𝝁𝝁𝒔𝒔
𝑾𝑾𝟐𝟐

+
𝑾𝑾∗

𝟒𝟒𝑾𝑾𝟒𝟒

− 𝟒𝟒) 𝒄𝒄𝑻𝑻𝒔𝒔 �
𝒊𝒊𝒊𝒊
𝑾𝑾
�+

𝑾𝑾∗

𝟐𝟐𝑾𝑾𝟒𝟒
+
𝟐𝟐𝑾𝑾∗𝟐𝟐𝑾𝑾∗𝝁𝝁𝒔𝒔

𝑾𝑾𝟐𝟐
+ 𝟒𝟒

+ 𝟒𝟒(𝒄𝒄𝑻𝑻𝒔𝒔 �
𝒊𝒊𝒊𝒊
𝑾𝑾
�)𝟐𝟐� = 𝟎𝟎 

(43) 

 

The natural frequencies of the granular chain represented in 
figure 1 could be presented in a single form 

𝝎𝝎 =
𝜸𝜸
𝑳𝑳𝟐𝟐
�
𝑬𝑬𝑬𝑬
𝝆𝝆𝑮𝑮

   
(44) 

where the dimensionless parameter 𝛾𝛾 would be substituted by 
the following equation: 

𝜸𝜸 = �−
𝑾𝑾𝟐𝟐

𝝁𝝁𝒔𝒔𝑾𝑾∗𝟐𝟐
�𝟏𝟏 + 𝝁𝝁𝒔𝒔 −

𝟏𝟏
𝟒𝟒𝑾𝑾∗𝟐𝟐𝑾𝑾𝟐𝟐

�𝒄𝒄𝑻𝑻𝒔𝒔�
𝒊𝒊𝒊𝒊
𝑾𝑾 �+

𝑾𝑾∗

𝟐𝟐 +
𝟏𝟏

𝟒𝟒𝝁𝝁𝒔𝒔𝑾𝑾∗𝟒𝟒
+

𝑾𝑾𝟐𝟐

𝝁𝝁𝒔𝒔𝑾𝑾∗𝟐𝟐
(𝟏𝟏 + 𝝁𝝁𝒔𝒔) ±�(

𝑾𝑾𝟐𝟐

𝝁𝝁𝒔𝒔𝑾𝑾∗𝟐𝟐
)𝟐𝟐 + ⋯ .   

(45) 

By considering low mode number (p<<n) and for the continuum 
case when 𝑛𝑛 → ∞, the assumption of  𝑐𝑐𝑐𝑐𝑐𝑐 �𝑝𝑝𝑝𝑝

𝑛𝑛
�~1− 1

2
(𝑝𝑝𝑝𝑝
𝑛𝑛

)2 could 
be applied to (43). This leads to 

𝜴𝜴𝟒𝟒 − �
𝒊𝒊𝟐𝟐𝒊𝒊𝟐𝟐

𝝁𝝁𝒔𝒔𝑾𝑾∗𝟐𝟐
(𝟏𝟏 + 𝝁𝝁𝒔𝒔) +𝑾𝑾∗ +

𝟏𝟏
𝝁𝝁𝒔𝒔𝑾𝑾∗𝟒𝟒

�𝜴𝜴𝟐𝟐

+ �(
𝑾𝑾∗𝒊𝒊𝟐𝟐𝒊𝒊𝟐𝟐

𝑾𝑾∗𝟐𝟐
+
𝒊𝒊𝟒𝟒𝒊𝒊𝟒𝟒

𝝁𝝁𝒔𝒔𝑾𝑾∗𝟒𝟒
) +

𝑾𝑾∗

𝝁𝝁𝒔𝒔𝑾𝑾∗𝟒𝟒
� = 𝟎𝟎 

(46) 

Solving the quartic equation of (46) leads to the eigenfrequency 
values of the continuous beam that would be obtained again by 
(44) and with 𝛾𝛾 expressed as follows: 

𝜸𝜸 = � 𝒊𝒊𝟐𝟐𝒊𝒊𝟐𝟐

𝟐𝟐𝝁𝝁𝒔𝒔𝑾𝑾∗𝟐𝟐
(𝟏𝟏 + 𝝁𝝁𝒔𝒔) +

𝑾𝑾∗

𝟐𝟐
+

𝟏𝟏
𝟐𝟐𝝁𝝁𝒔𝒔𝑾𝑾∗𝟒𝟒

± �(
𝒊𝒊𝟐𝟐𝒊𝒊𝟐𝟐

𝟐𝟐𝝁𝝁𝒔𝒔𝑾𝑾∗𝟐𝟐
(𝟏𝟏 + 𝝁𝝁𝒔𝒔) +

𝑾𝑾∗

𝟐𝟐
+

𝟏𝟏
𝟐𝟐𝝁𝝁𝒔𝒔𝑾𝑾∗𝟒𝟒

)𝟐𝟐 + ⋯ )   
(47) 

The sensitivity analysis is performed for the granular chain 
by assuming the following set of dimensionless parameters 

𝜇𝜇𝑠𝑠 = 4.28,  𝑟𝑟∗ = 0.029,  𝑘𝑘∗ = 15 (48) 

In figure 4, the frequency results obtained by the exact solution 
of the discrete lattice model have been compared with those of 
Duan et al. [18] for four grain number values (n=5; n=20; n=35; 
n=50). For some values of mode number (p) and grain number 
(n), the two branch frequencies of Duan et al. [18] contain real 
and imaginary part that physically doesn’t have any sense. 
Therefore, this model can’t cover all eigenfrequencies existed 
for the granular beam for certain amounts of mode number (p) 
and grain number (n). 



 

 

 
Fig. 4 Comparison of the natural frequencies for the proposed lattice 

model and the model of Duan et al. (2013) by using lattice exact 
solution with respect to the mode number (p) and grain number (n ∈

{5, 20, 35, 50}) for μs = 4.28, r∗ = 0.029 and k∗ = 0 

 

B. Continuum Solution 

In the limit case for the continuum beam, the fourth-order 
differential equation including the Winkler elastic foundation 
could be considered in dimensionless form 

𝑑𝑑4𝑤𝑤�
𝑑𝑑�̅�𝑥4

+ �𝑟𝑟∗2𝛺𝛺2(1 + 𝜇𝜇𝑠𝑠) − 𝑟𝑟∗2𝑘𝑘∗𝜇𝜇𝑠𝑠�
𝑑𝑑2𝑤𝑤�
𝑑𝑑�̅�𝑥2

− �𝑟𝑟∗2𝛺𝛺2 �𝜇𝜇𝑠𝑠𝑟𝑟∗2𝑘𝑘∗ +
1
𝑟𝑟∗2

− 𝜇𝜇𝑠𝑠𝑟𝑟∗2𝛺𝛺2�

− 𝑘𝑘∗�𝑤𝑤� = 0  

(49) 

Equation (49) is obtained by Wang and Stephens [10] and the 
non-dimensional parameters can be introduced 

𝒙𝒙� = 𝒙𝒙
𝑳𝑳
  ,  𝒘𝒘� = 𝒘𝒘

𝑳𝑳
 , 𝒅𝒅

𝟐𝟐𝒘𝒘�
𝒅𝒅𝑿𝑿𝟐𝟐

= 𝑳𝑳 𝒅𝒅𝟐𝟐𝒘𝒘
𝒅𝒅𝒙𝒙𝟐𝟐

  ,  𝒅𝒅
𝟒𝟒𝒘𝒘�
𝒅𝒅𝑿𝑿𝟒𝟒

= 𝑳𝑳𝟑𝟑 𝒅𝒅
𝟒𝟒𝒘𝒘
𝒅𝒅𝒙𝒙𝟒𝟒

 (50) 

For simply supported beam, the solution can be proposed by the 
form 𝑤𝑤�(�̅�𝑥) = sin(𝑝𝑝𝜋𝜋�̅�𝑥). Substituting in (49) leads to the 
following quartic frequency equation. 

�𝝁𝝁𝒔𝒔𝑾𝑾∗𝟒𝟒�𝜴𝜴𝟒𝟒 − �𝑾𝑾∗𝟐𝟐 �𝝁𝝁𝒔𝒔𝑾𝑾∗𝟐𝟐𝑾𝑾∗ +
𝟏𝟏
𝑾𝑾∗
� + 𝑾𝑾∗𝟐𝟐𝒊𝒊𝟐𝟐𝒊𝒊𝟐𝟐(𝟏𝟏 + 𝝁𝝁𝒔𝒔)�𝜴𝜴𝟐𝟐

+ �𝑾𝑾∗𝟐𝟐𝑾𝑾∗𝝁𝝁𝒔𝒔𝒊𝒊𝟐𝟐𝒊𝒊𝟐𝟐 + 𝑾𝑾∗ + 𝒊𝒊𝟒𝟒𝒊𝒊𝟒𝟒� = 𝟎𝟎 

(51) 

The results for the two branches of eigenfrequencies have been 
shown in figure 5, both for the equivalent continuum beam and 
the exact discrete one with respect to the mode number (p) and 
for four grain number values (n=5; n=20; n=35; n=50). It can 
be concluded that the increase rate in the frequencies of the 
second branch is more pronounced in comparison with the first 
branch. Furthermore, the exact solution of the discrete model 
always predicts lower frequencies than the continuum one. As 
it is expected by increasing the ratio of n/p the results of the 
discrete model converge to the continuous ones. The 
coincidence of the results could be considered happen for the 
second branch when the ratio of n/p is typically higher than 
approximate value of 5 while this approximate limit value is 

typically 3 for the first branch. In figure 6, the effect of length 
ratio (beam thickness/beam length) regarding to the grain 
number has been studied for two typical mode number (p=1 and 
p=10). The minimum values of required grain number (n*) have 
been also determined and reported when the difference of the 
discrete and continuum results start to be smaller than 1%. It can 
be concluded generally that in order to achieve the continuum 
results from discrete solution, whether the length ratio decrease 
or the mode number increase, the grain number value needs to 
increase.  

 
Fig. 5 Comparison of the natural frequencies for the discrete exact 
and continuum solutions with respect to the mode number (p) and 

grain number (n ∈ {5, 20, 35, 50}) for μs = 4.28, r∗ = 0.029 and  k∗ =
15 

 
Fig. 6 Analysis of the grain number effect on the frequencies with 
respect to the length ratio (r∗0 = 0.029) for μs = 4.28 and k∗ = 15 

IV. CONCLUSION 

This paper investigates the macroscopic free vibration 
behavior of a discrete granular system resting on a Winkler 
elastic foundation. This microstructured system consists of 
uniform grains elastically connected by shear and rotation 
springs. It is shown that the discrete deflection equation of this 
granular system (Cosserat chain) is mathematically equivalent 
to the finite difference formulation of a shear deformable 
Bresse-Timoshenko beam resting on Winkler foundation. Next, 
the natural frequencies of such a granular model with simply 



 

 

supported ends are first analytically investigated, whatever 
considered modes through the resolution of a linear difference 
equation. The scale effects of the granular chain are clearly 
captured by the continuous gradient elasticity model. This scale 
effect is related to the grain size with respect to the total length 
of the Cosserat chain.  
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