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I. INTRODUCTION

N order to adapt a theory of continuous media to granular materials, it is necessary to introduce independent degrees of freedom of rotation, in addition to those conventional translation. Indeed, the relative movements between the microstructure and the average macroscopic deformations can be apprehended by additional degrees of freedom. Such enriched kinematics leads to non-classical continuous media (Cosserat-type theories [START_REF] Cosserat | Théorie des corps déformables[END_REF], [START_REF] Nowacki | The linear theory of micropolar elasticity[END_REF]). Voigt [START_REF] Voigt | Theoritical studies on the elasticity relationships of cristals[END_REF] was one of the pioneers in the development of these enriched environments. He showed the existence of stress-couples in these materials. Cosserat's continuum theories belong to the wider class of generalized continuas which introduce intrinsic length scales via higher order gradients or additional degrees of freedom ([4]- [START_REF] Forest | Generalized continua[END_REF]). Conversely, the classical mechanics of continuous media does not incorporate a rotational interaction between the particles, and does not allow to understand the size effects in these media. Furthermore, the Bresse-Timoshenko beam model takes into account shear stiffness and the rotational inertia of the section ( [START_REF] Bresse | Cours de mécanique appliquée -Résistance des matériaux et stabilité des constructions 1859[END_REF]- [START_REF] Timoshenko | On the transverse vibration of bars with uniform crosssection[END_REF]). The effect of shear and rotary inertia can be significant F. A. Sina Massoumi is with the University of Paris-Saclay, Univ Evry, LAMME, CNRS, 23 bvd de France, 91037 Évry Cedex, France (e-mail: sina.massoumi@etud.univ-evry.fr).
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in the case of the calculation of natural frequencies for short beams or for which the shear modulus is sufficiently weak. The Bresse-Timoshenko beam model is also a generalization of the Euler-Bernoulli model, and admits kinematics with two independent fields, a field of transverse displacement and a field of rotation. Timoshenko [START_REF] Timoshenko | On the correction for shear of the differential equation for transverse vibrations of prismatic bars[END_REF], [START_REF] Timoshenko | On the transverse vibration of bars with uniform crosssection[END_REF] calculated the exact natural frequencies for such a beam with two degrees of freedom resting on two simple supports. The calculation of natural frequencies for a Bresse-Timoshenko beam with any boundary conditions and in elastic interaction with a rigid medium is also obtained by Wang and Stephens [START_REF] Wang | Natural frequencies of Timoshenko beams on Pasternak foundation[END_REF], Manevich [START_REF] Manevich | Dynamics of Timoshenko beam on linear and nonlinear foundation: phase relations, significance of the second spectrum, stability[END_REF]- [START_REF] Elishakoff | Handbook on Timoshenko-Ehrenfest and Uflyand-Mindlin plate theories[END_REF]. Another essential point is the equivalency of the theories of continuous beams of a one-dimensional Cosserat medium and a classical Bresse-Timoshenko medium. In fact, a Timoshenko beam is an example of a Cosserat one-dimensional continuum considering the independent double rotation-displacement kinematics (see [START_REF] Rubin | On the quest for the best Timoshenko shear coefficient[END_REF], [START_REF] Exadaktylos | Overview of Micro-Elasticity theories with emphasis on strain gradient elasticity: Part I -Theoretical considerations[END_REF]). There is therefore a link maintained between the one-dimensional granular media of Cosserat and the media of Bresse-Timoshenko. The present study focuses on the vibration of the granular beam model resting on a linear Winkler foundation [START_REF] Winkler | Die Lehre von der Elasticit€at und Festigkeit[END_REF]. Note that the difference equations of this granular chain coincide with the difference equations of the granular model of Pasternak and Mühlhaus [START_REF] Pasternak | Generalized homogenization procedures for granular materials[END_REF] in the absence of elastic foundation, but differ from the difference equations of the discrete model with shear studied by Duan et al [START_REF] Duan | Development of analytical vibration solutions for microstructured beam model to calibrate length scale coefficient in nonlocal Timoshenko beams[END_REF] or the model formulated more recently by Bacigalupo and Gambarotta [START_REF] Bacigalupo | Generalized micropolar continualization of 1D beam lattices[END_REF]. This paper is organized as follows. First, a discrete granular model is introduced from the elements interaction considering rotation and shear. Then, from the dynamic analysis of the beam, the deflection equations for the discrete granular beam and the continuum beam are obtained. The exact solution for the granular deflection equation leads to a fourth order linear difference equation. For the continuum model asymptotically by considering an infinite number of grains, the governed equation would lead to a fourth order linear differential equation. The natural frequencies are obtained for the both model and are compared together.

II. GRANULAR MODEL

A granular beam of length L resting on two simple supports is modeled by a finite number of grains interacting together.
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𝑈𝑈 = U s + 𝑼𝑼 𝒃𝒃 + 𝑼𝑼 𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾 (1) 
where U s , U b and U Winkler are respectively the strain energy due to deformed shear, rotational springs and Winkler elastic foundations and are defined as follows

U s = 1 2 � S �W i+1 -W i -a 𝛩𝛩 i+1 + 𝛩𝛩 i 2 � 2 n-1 i=0 (2) 𝑼𝑼 𝒃𝒃 = 𝟏𝟏 𝟐𝟐 � 𝑪𝑪(𝜣𝜣 𝑾𝑾+𝟏𝟏 -𝜣𝜣 𝑾𝑾 ) 𝟐𝟐 𝑾𝑾-𝟏𝟏 𝑾𝑾=𝟎𝟎 (3) 
𝑼𝑼 𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾 = 𝟏𝟏 𝟐𝟐 � 𝑲𝑲𝑾𝑾 𝑾𝑾 𝟐𝟐 𝑾𝑾 𝑾𝑾=𝟎𝟎 ( 4 
)
where S is the shear stiffness and defined by 𝑆𝑆 =

𝐾𝐾 𝑠𝑠 𝐺𝐺𝐺𝐺 𝑎𝑎 = 𝑛𝑛𝐾𝐾 𝑠𝑠 𝐺𝐺𝐺𝐺
𝐿𝐿 . G is the shear modulus; A is the cross-sectional area of the beam and Ks is an equivalent shear correction coefficient. C is the rotational stiffness and can be expressed as 𝐶𝐶 = 𝐸𝐸𝐸𝐸 𝑎𝑎 = 𝑛𝑛𝐸𝐸𝐸𝐸 𝐿𝐿 , where E is Young's modulus and I is the second moment of area. K=ka is the discrete stiffness of the elastic support and is attached to the center of each grain.

The kinematic variables are measured at nodes i located at the center of each grain, which is consistent with the approach followed for instance by Pasternak and Mühlhaus [START_REF] Pasternak | Generalized homogenization procedures for granular materials[END_REF].

The total kinetic energy of the granular model may be expressed as follows:

𝑇𝑇 = 1 2 � 𝑚𝑚 𝑖𝑖 𝑊𝑊 ̇𝑖𝑖2 𝑛𝑛 𝑖𝑖=0 + 1 2 � 𝐼𝐼 𝑚𝑚 𝑖𝑖 𝛩𝛩 ̇𝑖𝑖 2 𝑛𝑛 𝑖𝑖=0 (5) 
where 𝐼𝐼 𝑚𝑚 0 = 𝐼𝐼 𝑚𝑚 𝑛𝑛 = 1 2 𝐼𝐼 𝑚𝑚 𝑖𝑖 and 𝐼𝐼 𝑚𝑚 𝑖𝑖 = 𝜌𝜌𝐸𝐸𝐿𝐿 𝑛𝑛 = 𝜌𝜌𝐼𝐼𝐼𝐼 for i in [1,n-1] are the second moment of inertia of the beam segment and. 𝑚𝑚 𝑖𝑖 is the mass term for each grain that is defined for the inter grains by 𝑚𝑚 𝑖𝑖 = 𝜌𝜌𝐼𝐼 and the half value for the boundaries.

The Lagrangian relation of the granular system may be defined as 𝐿𝐿 = 𝑇𝑇 -(𝑈𝑈 𝑠𝑠 + 𝑈𝑈 𝑏𝑏 + 𝑈𝑈 𝑊𝑊𝑖𝑖𝑛𝑛𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 ). The Euler-Lagrange of such a granular system are given by 

Using ( 6) based on the energy function leads to the following difference equation system

𝐾𝐾 𝑠𝑠 𝐺𝐺𝐺𝐺(𝛿𝛿 2 𝑊𝑊) -𝐾𝐾 𝑠𝑠 𝐺𝐺𝐺𝐺(𝛿𝛿 1 𝜃𝜃) -𝑘𝑘𝑊𝑊 𝑖𝑖 -𝜌𝜌𝐺𝐺𝑊𝑊 ̈𝑖𝑖 = 0 𝐸𝐸𝐼𝐼(𝛿𝛿 2 𝜃𝜃) + 𝐾𝐾 𝑠𝑠 𝐺𝐺𝐺𝐺(𝛿𝛿 1 𝑊𝑊) -𝐾𝐾 𝑠𝑠 𝐺𝐺𝐺𝐺(𝛿𝛿 0 𝜃𝜃) -𝜌𝜌𝐼𝐼𝜃𝜃 𝚤𝚤 ̈= 0 (7)
Considering two fictitious grains connected by two shear and rotational springs to the first and last grains and also by introducing the following pseudo-difference operators

𝛿𝛿 0 𝑊𝑊 𝑖𝑖 = 𝑊𝑊 𝑖𝑖+1 +2𝑊𝑊 𝑖𝑖 +𝑊𝑊 𝑖𝑖-1 4 , 𝛿𝛿 1 𝑊𝑊 𝑖𝑖 = 𝑊𝑊 𝑖𝑖+1 -𝑊𝑊 𝑖𝑖-1 2𝑎𝑎 , 𝛿𝛿 2 𝑊𝑊 𝑖𝑖 = 𝑊𝑊 𝑖𝑖+1 -2𝑊𝑊 𝑖𝑖 +𝑊𝑊 𝑖𝑖-1 𝑎𝑎 2 (8)
Assuming a harmonic motion 𝑊𝑊 𝑖𝑖 = 𝑤𝑤 𝑖𝑖 𝑒𝑒 𝑗𝑗𝑗𝑗𝑑𝑑 and 𝛩𝛩 𝑖𝑖 = 𝜃𝜃 𝑖𝑖 𝑒𝑒 𝑗𝑗𝑗𝑗𝑑𝑑 with j 2 =-1, (7) may be written in a matrix form

� 𝑬𝑬𝑬𝑬𝜹𝜹 𝟐𝟐 -𝑲𝑲 𝒔𝒔 𝑮𝑮𝑮𝑮𝜹𝜹 𝟎𝟎 + 𝝆𝝆𝑬𝑬𝝎𝝎 𝟐𝟐 𝑲𝑲 𝒔𝒔 𝑮𝑮𝑮𝑮𝜹𝜹 𝟏𝟏 𝑲𝑲 𝒔𝒔 𝑮𝑮𝑮𝑮𝜹𝜹 𝟏𝟏 𝑾𝑾-𝑲𝑲 𝒔𝒔 𝑮𝑮𝑮𝑮𝜹𝜹 𝟐𝟐 -𝝆𝝆𝑮𝑮𝝎𝝎 𝟐𝟐 � � 𝜽𝜽 𝒘𝒘 � 𝑾𝑾 = � 𝟎𝟎 𝟎𝟎 � (9) 
These difference equations system (9) have been obtained by Pasternak and Mühlhaus [START_REF] Pasternak | Generalized homogenization procedures for granular materials[END_REF] when neglecting the elastic Winkler foundation (k=0). With consideration of an infinite number of grains (𝑛𝑛 → ∞) referring to the continuum beam, it converges to the coupled system differential equations of [START_REF] Wang | Natural frequencies of Timoshenko beams on Pasternak foundation[END_REF] which has been obtained by Bresse (1859) and Timoshenko in absence of Winkler foundation (k=0) and assuming the shear correction factor be unity (Ks=1). This equation valid for a Bresse-Timoshenko beam on elastic foundation have been also obtained by Wang and Stephens [START_REF] Wang | Natural frequencies of Timoshenko beams on Pasternak foundation[END_REF] and Manevich [START_REF] Manevich | Dynamics of Timoshenko beam on linear and nonlinear foundation: phase relations, significance of the second spectrum, stability[END_REF].

� 𝑬𝑬𝑬𝑬𝝏𝝏 𝒙𝒙 𝟐𝟐 -𝑲𝑲 𝒔𝒔 𝑮𝑮𝑮𝑮 + 𝝆𝝆𝑬𝑬𝝎𝝎 𝟐𝟐 𝑲𝑲 𝒔𝒔 𝑮𝑮𝑮𝑮𝝏𝝏 𝒙𝒙 𝑲𝑲 𝒔𝒔 𝑮𝑮𝑮𝑮𝝏𝝏 𝒙𝒙 𝑾𝑾-𝑲𝑲 𝒔𝒔 𝑮𝑮𝑮𝑮𝝏𝝏 𝒙𝒙 𝟐𝟐 -𝝆𝝆𝑮𝑮𝝎𝝎 𝟐𝟐 � � 𝜽𝜽 𝒘𝒘 � = � 𝟎𝟎 𝟎𝟎 � (10) 
It is possible to introduce the following pseudo-differential operators

𝜹𝜹 𝟎𝟎 = 𝑾𝑾 𝒂𝒂𝝏𝝏 𝒙𝒙 + 𝟐𝟐 + 𝑾𝑾 -𝒂𝒂𝝏𝝏 𝒙𝒙 𝟒𝟒 = 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝟐𝟐 ( 𝒂𝒂𝝏𝝏 𝒙𝒙 𝟐𝟐 ) 𝜹𝜹 𝟏𝟏 = 𝑾𝑾 𝒂𝒂𝝏𝝏 𝒙𝒙 -𝑾𝑾 -𝒂𝒂𝝏𝝏 𝒙𝒙 𝟐𝟐𝒂𝒂 = 𝐜𝐜𝐬𝐬𝐬𝐬𝐜𝐜 (𝒂𝒂𝝏𝝏 𝒙𝒙 ) 𝒂𝒂 𝜹𝜹 𝟐𝟐 = 𝑾𝑾 𝒂𝒂𝝏𝝏 𝒙𝒙 -𝟐𝟐 + 𝑾𝑾 -𝒂𝒂𝝏𝝏 𝒙𝒙 𝒂𝒂 𝟐𝟐 = 𝟒𝟒 𝒂𝒂 𝟐𝟐 𝐜𝐜𝐬𝐬𝐬𝐬𝐜𝐜 𝟐𝟐 ( 𝒂𝒂𝝏𝝏 𝒙𝒙 𝟐𝟐 ) (11) 
The relation could be obtained between these operators as

𝜹𝜹 𝟐𝟐 𝜹𝜹 𝟎𝟎 = 𝜹𝜹 𝟎𝟎 𝜹𝜹 𝟐𝟐 = 𝜹𝜹 𝟏𝟏 𝟐𝟐 (12) 
With consideration determinant of the matrix in [START_REF] Wang | Natural frequencies of Timoshenko beams on Pasternak foundation[END_REF] equal to zero and using the property of ( 12) gives the fourth-order difference equation for the deflection as follows:

[𝑬𝑬𝑬𝑬𝜹𝜹 𝟐𝟐 𝟐𝟐 + �𝝆𝝆𝑬𝑬𝝎𝝎 𝟐𝟐 - 𝑾𝑾𝑬𝑬𝑬𝑬 𝑲𝑲 𝒔𝒔 𝑮𝑮𝑮𝑮 + 𝑬𝑬𝑬𝑬𝝆𝝆𝝎𝝎 𝟐𝟐 𝑲𝑲 𝒔𝒔 𝑮𝑮 � 𝜹𝜹 𝟐𝟐 + (𝑾𝑾 -𝝆𝝆𝑮𝑮𝝎𝝎 𝟐𝟐 )𝜹𝜹 𝟎𝟎 - 𝑾𝑾𝝆𝝆𝑬𝑬𝝎𝝎 𝟐𝟐 𝑲𝑲 𝒔𝒔 𝑮𝑮𝑮𝑮 + 𝝆𝝆 𝟐𝟐 𝑬𝑬𝝎𝝎 𝟒𝟒 𝑲𝑲 𝒔𝒔 𝑮𝑮 ]𝒘𝒘 𝑾𝑾 = 𝟎𝟎 (13) 
Equation ( 13) is slightly different from the fourth-order difference equation obtained by Duan et al. [START_REF] Duan | Development of analytical vibration solutions for microstructured beam model to calibrate length scale coefficient in nonlocal Timoshenko beams[END_REF] for (k=0).

Considering infinite number of grains (𝑛𝑛 → ∞) for the continuum beam, the fourth-order differential equation valid for a Bresse-Timoshenko beam on Winkler elastic foundation is given by ( 14) which also could be compared well by [START_REF] Wang | Natural frequencies of Timoshenko beams on Pasternak foundation[END_REF], [START_REF] Manevich | Dynamics of Timoshenko beam on linear and nonlinear foundation: phase relations, significance of the second spectrum, stability[END_REF] and [START_REF] Cheng | Dynamic Timoshenko beam-columns on elastic media[END_REF].

𝒅𝒅 𝟒𝟒 𝒘𝒘 𝒅𝒅𝒙𝒙 𝟒𝟒 + � 𝝆𝝆𝝎𝝎 𝟐𝟐 𝑬𝑬 �𝟏𝟏 + 𝑬𝑬 𝑾𝑾 𝒔𝒔 𝑮𝑮 � - 𝑾𝑾 𝑾𝑾 𝒔𝒔 𝑮𝑮𝑮𝑮 � 𝒅𝒅 𝟐𝟐 𝒘𝒘 𝒅𝒅𝒙𝒙 𝟐𝟐 -( 𝝆𝝆𝝎𝝎 𝟐𝟐 𝑬𝑬 � 𝑮𝑮 𝑬𝑬 + 𝑾𝑾 𝑾𝑾 𝒔𝒔 𝑮𝑮𝑮𝑮 - 𝝆𝝆𝝎𝝎 𝟐𝟐 𝑾𝑾 𝒔𝒔 𝑮𝑮 � - 𝑾𝑾 𝑬𝑬𝑬𝑬 )]𝒘𝒘 = 𝟎𝟎 (14) 

III. EXACT SOLUTION

A. Resolution of The Difference Equation

The exact solution for the fourth-order linear difference eigenvalue problem of ( 13) is investigated (see [START_REF] Goldberg | Introduction to Difference Equations: with Illustrative Examples from Economics, Psychology, and Sociology[END_REF], [START_REF] Elaydi | An Introduction to Difference Equations[END_REF] for the general solution of linear difference equations).

The boundary conditions of the system could be supposed as follows [START_REF] Hunt | Force-chain buckling in granular media: a structural mechanics perspective[END_REF]:

𝑮𝑮𝑨𝑨 𝑾𝑾 = 𝟎𝟎 ∶ 𝒘𝒘 𝟎𝟎 = 𝟎𝟎 ; 𝜹𝜹 𝟐𝟐 𝒘𝒘 𝟎𝟎 = 𝟎𝟎 𝑮𝑮𝑨𝑨 𝑾𝑾 = 𝑾𝑾 ∶ 𝒘𝒘 𝑾𝑾 = 𝟎𝟎 ; 𝜹𝜹 𝟐𝟐 𝒘𝒘 𝑾𝑾 = 𝟎𝟎 (15)
The non-dimensional quantities may be introduced

𝜴𝜴 𝟐𝟐 = 𝝎𝝎 𝟐𝟐 𝝆𝝆𝑮𝑮𝑳𝑳 𝟒𝟒 𝑬𝑬𝑬𝑬 , 𝝁𝝁 𝒔𝒔 = 𝑬𝑬 𝑲𝑲 𝒔𝒔 𝑮𝑮 , 𝑾𝑾 = � 𝑬𝑬 𝑮𝑮 , 𝑾𝑾 * = 𝑾𝑾 𝑳𝑳 , 𝑾𝑾 * = 𝑾𝑾𝑳𝑳 𝟒𝟒 𝑬𝑬𝑬𝑬 ( 16 
)
𝛺𝛺 is a dimensionless frequency; 𝜇𝜇 𝑠𝑠 is inversely proportional to the shear stiffness; and 𝑟𝑟 * is proportional to the rotatory inertia. The solution of the linear difference equation is thought in the 𝑤𝑤 𝑖𝑖 = 𝐵𝐵𝜆𝜆 𝑖𝑖 form, where B is a constant. Therefore, the characteristic equation could be obtained as

(𝝀𝝀 + 𝟏𝟏 𝝀𝝀 ) 𝟐𝟐 + �𝝀𝝀 + 𝟏𝟏 𝝀𝝀 � 𝝐𝝐 + 𝝉𝝉 = 𝟎𝟎 (17) 
where the parameters 𝜖𝜖 and 𝜏𝜏 can be defined as 

Equation ( 19) admits four solutions written

𝝀𝝀 𝟏𝟏,𝟐𝟐 = -𝝐𝝐 + √𝝐𝝐 𝟐𝟐 -𝟒𝟒 𝝉𝝉 𝟒𝟒 ± � ( 𝝐𝝐 -√𝝐𝝐 𝟐𝟐 -𝟒𝟒 𝝉𝝉 𝟒𝟒 ) 𝟐𝟐 -𝟏𝟏 (20) 
𝝀𝝀 𝟑𝟑,𝟒𝟒 = -𝝐𝝐 -√𝝐𝝐 𝟐𝟐 -𝟒𝟒 𝝉𝝉 𝟒𝟒 ± 𝒋𝒋 � 𝟏𝟏 -( 𝝐𝝐 + √𝝐𝝐 𝟐𝟐 -𝟒𝟒 𝝉𝝉 𝟒𝟒 ) 𝟐𝟐 (21) 
where 𝑗𝑗 2 = -1. On the other hand, it is important to notice that according to [START_REF] Bacigalupo | Generalized micropolar continualization of 1D beam lattices[END_REF] the results of 𝜆𝜆 + 1 𝜆𝜆 are in the ranges of (-∞, -2] or [2, +∞).

The limited cases when 𝜆𝜆 + 1 𝜆𝜆 = ±2 would be happened for 𝜆𝜆 = ±1 which refers to the critical frequencies. The critical frequencies of the system are inconsistent condition with the general supposed form of the deflection and would be obtained by assuming:

𝝉𝝉 = ±𝟐𝟐𝝐𝝐 -𝟒𝟒 (22) 
Replacing 𝜏𝜏 and 𝜖𝜖 by using [START_REF] Duan | Development of analytical vibration solutions for microstructured beam model to calibrate length scale coefficient in nonlocal Timoshenko beams[END_REF] ones could be obtained as:

( 𝑾𝑾 * 𝟐𝟐 𝜴𝜴 𝒄𝒄𝑾𝑾 𝟐𝟐 𝑾𝑾 𝟐𝟐 -𝟒𝟒)( 𝝁𝝁 𝒔𝒔 𝑾𝑾 * 𝟐𝟐 𝑾𝑾 𝟐𝟐 (𝜴𝜴 𝒄𝒄𝑾𝑾 𝟐𝟐 -𝑾𝑾 * ) -𝟒𝟒) = 𝟎𝟎 ( 23 
) 𝟏𝟏 𝑾𝑾 𝟒𝟒 ((𝜴𝜴 𝒄𝒄𝑾𝑾 𝟐𝟐 -𝑾𝑾 * )(𝝁𝝁 𝒔𝒔 𝑾𝑾 * 𝟒𝟒 𝜴𝜴 𝒄𝒄𝑾𝑾 𝟐𝟐 -𝟏𝟏)) = 𝟎𝟎 (24) 
Therefore, two branches of critical frequencies would be obtained as follows

𝜴𝜴 𝒄𝒄𝑾𝑾 𝟏𝟏,𝟏𝟏 = 𝟐𝟐𝑾𝑾 𝑾𝑾 * , 𝜴𝜴 𝒄𝒄𝑾𝑾 𝟏𝟏,𝟐𝟐 = � 𝟒𝟒𝑾𝑾 𝟐𝟐 𝝁𝝁 𝒔𝒔 𝑾𝑾 * 𝟐𝟐 + 𝑾𝑾 * (25) 
𝜴𝜴 𝒄𝒄𝑾𝑾 𝟐𝟐,𝟏𝟏 = √𝑾𝑾 * , 𝜴𝜴 𝒄𝒄𝑾𝑾 𝟐𝟐,𝟐𝟐 = � 𝟏𝟏 𝝁𝝁 𝒔𝒔 𝑾𝑾 * 𝟒𝟒 (26)
The critical frequencies of the first branch depend on the grain number (microstructure parameter), mechanical properties and beam geometry (macrostructure parameters) while the second branch critical frequencies are only defined as a function of the beam mechanical properties and geometry. On the other hand, comparing these critical values with the those of the Timoshenko continuum beam resting on the Winkler foundations [START_REF] Wang | Natural frequencies of Timoshenko beams on Pasternak foundation[END_REF], leads to the equivalency of the second branch critical values (26) to the Timoshenko continuum beam's. For infinite number of grains, since the first branch critical frequencies (𝛺𝛺 𝑐𝑐𝑊𝑊 1,1 and 𝛺𝛺 𝑐𝑐𝑊𝑊 1,2 ) leads to infinite values and consequently disappear, so only the second branch would remain. These critical values could be shown as follows

𝝎𝝎 𝒄𝒄𝑾𝑾 2,1 = 𝝎𝝎 𝒄𝒄𝑾𝑾 𝑻𝑻𝑾𝑾𝑻𝑻𝑻𝑻𝒔𝒔𝑻𝑻𝑾𝑾𝑾𝑾𝑾𝑾𝑻𝑻 𝟏𝟏 = � 𝑾𝑾 𝝆𝝆𝑮𝑮 , 𝝎𝝎 𝒄𝒄𝑾𝑾 𝟐𝟐,𝟐𝟐 = 𝝎𝝎 𝒄𝒄𝑾𝑾 𝑻𝑻𝑾𝑾𝑻𝑻𝑻𝑻𝒔𝒔𝑻𝑻𝑾𝑾𝑾𝑾𝑾𝑾𝑻𝑻 𝟐𝟐 = � 𝑲𝑲 𝒔𝒔 𝑮𝑮𝑮𝑮 𝝆𝝆𝑬𝑬 (27) 
It can be obtained, the behavior of the beam deflection solution would be separated by the critical frequencies into different regimes and depending on the frequencies values, the results would be in distinct manner.

For finite number of grains, four regimes would be occurred categorized as follows: when 0 < 𝛺𝛺 < 𝛺𝛺 𝑐𝑐𝑊𝑊 2,2 there are two exponential terms and two travelling waves since 𝜆𝜆 1,2 are real and 𝜆𝜆 3,4 are imaginary. In this case the deflection equation form would be obtained from (38).

When 𝛺𝛺 𝑐𝑐𝑊𝑊 2,2 < 𝛺𝛺 < 𝛺𝛺 𝑐𝑐𝑊𝑊 1,2 , 𝜆𝜆 1,2,3,4 are all imaginary and therefore all terms represent travelling waves and for this case the deflection equation form would be obtained from (39) .

For 𝛺𝛺 𝑐𝑐𝑊𝑊 1,2 < 𝛺𝛺 < 𝛺𝛺 𝑐𝑐𝑊𝑊 1,1 again there are two exponential terms and two travelling waves since 𝜆𝜆 1,2 are imaginary and 𝜆𝜆 3,4 are real and the deflection equation form would be obtained from (40).

Finally, for 𝛺𝛺 𝑐𝑐𝑊𝑊 1,2 < 𝛺𝛺 , since all parameters of 𝜆𝜆 1,2,3,4 are real, thus whole terms represent exponential terms which leads to the deflection equation form of (41).

For specific value of grain number ( 𝑛𝑛 𝑠𝑠 ) 𝛺𝛺 𝑐𝑐𝑊𝑊 1,1 and 𝛺𝛺 𝑐𝑐𝑊𝑊 2,2 would be equal together. This leads to the reduction of the four regimes to three.

𝑾𝑾 𝒔𝒔 = 1 2𝑾𝑾 * �𝝁𝝁𝒔𝒔 = 𝐿𝐿 2 � 𝑲𝑲 𝒔𝒔 𝑮𝑮𝑮𝑮 𝐸𝐸𝐼𝐼 (28) 
The results are shown for a case study of 50 grains and the dimensionless parameters of 𝜇𝜇 𝑠𝑠 = 4.28, 𝑟𝑟 * = 0.029, 𝑘𝑘 * = 15 in figure 2. In this example the values of the critical frequencies are respectively 𝛺𝛺 𝑐𝑐𝑊𝑊 1,1 = 3464.1 , 𝛺𝛺 𝑐𝑐𝑊𝑊 1,2 = 1673.7 , 𝛺𝛺 𝑐𝑐𝑊𝑊 2,2 = 3.87 and 𝛺𝛺 𝑐𝑐𝑊𝑊 2,2 = 579.8. For infinite number of grains, since the first two critical values converge to the infinite, so the previous different regimes reduce to two regimes: when 0 < 𝛺𝛺 < 𝛺𝛺 𝑐𝑐𝑊𝑊 2,2 there are two exponential terms and two travelling waves as 𝜆𝜆 1,2 are real and 𝜆𝜆 3,4 are imaginary and thus the deflection equation form would be obtained from (38).

When 𝛺𝛺 𝑐𝑐𝑊𝑊 2,2 < 𝛺𝛺 , all 𝜆𝜆 1,2,3,4 are all imaginary and all terms of represent travelling waves. This case leads to the deflection equation form of (39). These two regimes correspond to the ones obtained for the continuum beam of Timoshenko resting on Winkler foundations. Therefore, 𝜆𝜆 1,2 can be rewritten for 𝛺𝛺 < 𝛺𝛺 𝑐𝑐𝑊𝑊 2,2 and 𝛺𝛺 𝑐𝑐𝑊𝑊 1,2 < 𝛺𝛺 ([23] for a similar presentation applied to the finite difference formulation of Euler-Bernoulli beams) as

𝝀𝝀 𝟏𝟏,𝟐𝟐 = 𝒄𝒄𝑻𝑻𝒔𝒔𝑻𝑻 𝝑𝝑 ± 𝒔𝒔𝑾𝑾𝑾𝑾𝑻𝑻 𝝑𝝑 (29) 
where

𝒄𝒄𝑻𝑻𝒔𝒔 𝝋𝝋 = -𝝐𝝐 𝟒𝟒 - 𝟏𝟏 𝟐𝟐 � � -𝝐𝝐 𝟐𝟐 � 𝟐𝟐 -𝝉𝝉 (30) 
𝒄𝒄𝑻𝑻𝒔𝒔𝑻𝑻 𝝑𝝑 = -𝝐𝝐 𝟒𝟒 + 𝟏𝟏 𝟐𝟐 � � -𝝐𝝐 𝟐𝟐 � 𝟐𝟐 -𝝉𝝉 = -𝝐𝝐 𝟐𝟐 -𝒄𝒄𝑻𝑻𝒔𝒔𝝋𝝋 (31) 
while 𝜆𝜆 1,2 would be obtained for

𝛺𝛺 𝑐𝑐𝑊𝑊 2,2 < 𝛺𝛺 < 𝛺𝛺 𝑐𝑐𝑊𝑊 1,2 𝝀𝝀 𝟏𝟏,𝟐𝟐 = 𝒄𝒄𝑻𝑻𝒔𝒔𝝑𝝑 ± 𝒋𝒋𝒔𝒔𝑾𝑾𝑾𝑾𝝑𝝑 (32) 
where

𝒄𝒄𝑻𝑻𝒔𝒔 𝝑𝝑 = -𝝐𝝐 𝟒𝟒 + 𝟏𝟏 𝟐𝟐 � � -𝝐𝝐 𝟐𝟐 � 𝟐𝟐 -𝝉𝝉 (33) 
On the other hand, 𝜆𝜆 3,4 would be defined for 𝛺𝛺 < 𝛺𝛺 𝑐𝑐𝑊𝑊 1,1 by

𝝀𝝀 𝟑𝟑,𝟒𝟒 = 𝒄𝒄𝑻𝑻𝒔𝒔𝝋𝝋 ± 𝒋𝒋𝒔𝒔𝑾𝑾𝑾𝑾𝝋𝝋 (34) 
where

𝝋𝝋 = 𝒂𝒂𝑾𝑾𝒄𝒄𝒄𝒄𝑻𝑻𝒔𝒔 ( -𝝐𝝐 𝟒𝟒 - 𝟏𝟏 𝟐𝟐 � � -𝝐𝝐 𝟐𝟐 � 𝟐𝟐 -𝝉𝝉) (35) 
And for

𝛺𝛺 𝑐𝑐𝑊𝑊 1,1 < 𝛺𝛺 𝝀𝝀 𝟑𝟑,𝟒𝟒 = 𝒄𝒄𝑻𝑻𝒔𝒔𝑻𝑻𝝋𝝋 ± 𝒔𝒔𝑾𝑾𝑾𝑾𝑻𝑻𝝋𝝋 (36) 
𝝋𝝋 = 𝒂𝒂𝑾𝑾𝒄𝒄𝒄𝒄𝑻𝑻𝒔𝒔𝑻𝑻 ( -𝝐𝝐 𝟒𝟒 - 𝟏𝟏 𝟐𝟐 � � -𝝐𝝐 𝟐𝟐 � 𝟐𝟐 -𝝉𝝉) (37) 
There are three possible general solutions for 𝑤𝑤 𝑖𝑖 depending on the critical values of the frequencies which may be represented as

𝑤𝑤 𝑖𝑖 = 𝐺𝐺 1 cos 𝑖𝑖𝑖𝑖 + 𝐺𝐺 2 sin 𝑖𝑖𝑖𝑖 + 𝐺𝐺 3 cosh 𝑖𝑖𝑖𝑖 + 𝐺𝐺 4 sinh 𝑖𝑖𝑖𝑖 (𝛺𝛺 < 𝛺𝛺 𝑐𝑐𝑊𝑊 2,2 ) (38) 
𝑤𝑤 𝑖𝑖 = 𝐵𝐵 1 cos 𝑖𝑖𝑖𝑖 + 𝐵𝐵 2 sin 𝑖𝑖𝑖𝑖 + 𝐵𝐵 3 cos 𝑖𝑖𝑖𝑖 + 𝐵𝐵 4 sin 𝑖𝑖𝑖𝑖 (𝛺𝛺 𝑐𝑐𝑊𝑊 2,2 < 𝛺𝛺 < 𝛺𝛺 𝑐𝑐𝑊𝑊 1,1 ) (39) 
𝑤𝑤 𝑖𝑖 = 𝐶𝐶 1 cosh 𝑖𝑖𝑖𝑖 + 𝐶𝐶 2 sinh 𝑖𝑖𝑖𝑖 + 𝐶𝐶 3 cos 𝑖𝑖𝑖𝑖 + 𝐶𝐶 4 sin 𝑖𝑖𝑖𝑖

(𝛺𝛺 𝑐𝑐𝑊𝑊 1,1 < 𝛺𝛺 < 𝛺𝛺 𝑐𝑐𝑊𝑊 1,2 ) (40) 
𝑤𝑤 𝑖𝑖 = 𝐷𝐷 1 cosh 𝑖𝑖𝑖𝑖 + 𝐷𝐷 2 sinh 𝑖𝑖𝑖𝑖 + 𝐷𝐷 3 cosh 𝑖𝑖𝑖𝑖 + 𝐷𝐷 4 sinh 𝑖𝑖𝑖𝑖 (𝛺𝛺 𝑐𝑐𝑊𝑊 1,2 < 𝛺𝛺 ) (41) 
Considering simply supported boundary conditions, the deflection of each grain could be obtained by following equation while

𝛺𝛺 < 𝛺𝛺 𝑐𝑐𝑊𝑊 1,2 𝒘𝒘 𝑾𝑾 = 𝐁𝐁 𝐜𝐜𝐬𝐬𝐬𝐬 � 𝑾𝑾𝒊𝒊𝒊𝒊 𝑾𝑾 � ( 42 
)
where p is the mode number or natural number (1 

The sensitivity analysis is performed for the granular chain by assuming the following set of dimensionless parameters 𝜇𝜇 𝑠𝑠 = 4.28, 𝑟𝑟 * = 0.029, 𝑘𝑘 * = 15 (48)

In figure 4, the frequency results obtained by the exact solution of the discrete lattice model have been compared with those of Duan et al. [START_REF] Duan | Development of analytical vibration solutions for microstructured beam model to calibrate length scale coefficient in nonlocal Timoshenko beams[END_REF] for four grain number values (n=5; n=20; n=35; n=50). For some values of mode number (p) and grain number (n), the two branch frequencies of Duan et al. [START_REF] Duan | Development of analytical vibration solutions for microstructured beam model to calibrate length scale coefficient in nonlocal Timoshenko beams[END_REF] contain real and imaginary part that physically doesn't have any sense. Therefore, this model can't cover all eigenfrequencies existed for the granular beam for certain amounts of mode number (p) and grain number (n). The results for the two branches of eigenfrequencies have been shown in figure 5, both for the equivalent continuum beam and the exact discrete one with respect to the mode number (p) and for four grain number values (n=5; n=20; n=35; n=50). It can be concluded that the increase rate in the frequencies of the second branch is more pronounced in comparison with the first branch. Furthermore, the exact solution of the discrete model always predicts lower frequencies than the continuum one. As it is expected by increasing the ratio of n/p the results of the discrete model converge to the continuous ones. The coincidence of the results could be considered happen for the second branch when the ratio of n/p is typically higher than approximate value of 5 while this approximate limit value is typically 3 for the first branch. In figure 6, the effect of length ratio (beam thickness/beam length) regarding to the grain number has been studied for two typical mode number (p=1 and p=10). The minimum values of required grain number (n*) have been also determined and reported when the difference of the discrete and continuum results start to be smaller than 1%. It can be concluded generally that in order to achieve the continuum results from discrete solution, whether the length ratio decrease or the mode number increase, the grain number value needs to increase. 
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  A. Sina Massoumi, Second B. Noël Challamel, Third C. Jean Lerbet Discrete and gradient Elasticity Cosserat Modeling of Granular Chains I Such a model could be presented by considering the microstructured granular chain comprising n+1 rigid grain with diameter a (a=L/n) that are connected by n shear and rotational springs, as shown in figure 1. It is assumed that the elastic support springs are located at the center of each rigid grain. Each grain has two degrees of freedom which are denoted by Wi for the deflection and 𝛩𝛩 𝑖𝑖 for the rotation. This model is slightly different with the one of Challamel et al. (2014) where the nodal kinematics and the Winkler elastic foundation are located at the grain interface. The aim of this paper consists in finding the vibration equation of this granular chain and then trying to obtain the natural frequencies.

Fig. 1 A

 1 Fig. 1 A discrete shear granular chain composed of n+1 grains of diameter a and mass m; L=n.a

�

  with 𝑖𝑖 = 0, 1, 2, … , 𝑛𝑛

Fig. 2

 2 Fig. 2 Schematic behavior of the wave vector regarding to the eigen frequencies for finite grain number (n=50). The left and right panels correspond to the real and imaginary part of the wave vector.

Fig. 4 2 -

 42 Fig. 4 Comparison of the natural frequencies for the proposed lattice model and the model of Duan et al. (2013) by using lattice exact solution with respect to the mode number (p) and grain number (n ∈ {5, 20, 35, 50}) for μ s = 4.28, r * = 0.029 and k * = 0

Fig. 5 15 Fig. 6

 5156 Fig. 5 Comparison of the natural frequencies for the discrete exact and continuum solutions with respect to the mode number (p) and grain number (n ∈ {5, 20, 35, 50}) for μ s = 4.28, r * = 0.029 and k * = 15
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											Solving the quartic equation of (46) leads to the eigenfrequency
											values of the continuous beam that would be obtained again by
											(44) and with 𝛾𝛾 expressed as follows:
											𝜸𝜸 = � 𝟐𝟐𝝁𝝁 𝒔𝒔 𝑾𝑾 * 𝟐𝟐 (𝟏𝟏 + 𝝁𝝁 𝒔𝒔 ) + 𝒊𝒊 𝟐𝟐 𝒊𝒊 𝟐𝟐	𝑾𝑾 * 𝟐𝟐	+	𝟏𝟏 𝟐𝟐𝝁𝝁 𝒔𝒔 𝑾𝑾 * 𝟒𝟒 ± �( 𝟐𝟐𝝁𝝁 𝒔𝒔 𝑾𝑾 * 𝟐𝟐 (𝟏𝟏 + 𝝁𝝁 𝒔𝒔 ) + 𝒊𝒊 𝟐𝟐 𝒊𝒊 𝟐𝟐	𝑾𝑾 * 𝟐𝟐	+	𝟏𝟏 𝟐𝟐𝝁𝝁 𝒔𝒔 𝑾𝑾
											Using non-
	dimensional eigenfrequency parameters and (35)
	�	𝝁𝝁 𝒔𝒔 𝑾𝑾 * 𝟒𝟒 𝑾𝑾 𝟒𝟒 � 𝜴𝜴 𝟒𝟒 + �	𝟐𝟐𝑾𝑾 * 𝟐𝟐 𝑾𝑾 𝟐𝟐 �𝟏𝟏 + 𝝁𝝁 𝒔𝒔 -	𝟏𝟏 𝟒𝟒𝑾𝑾 * 𝟐𝟐 𝑾𝑾 𝟐𝟐 � 𝒄𝒄𝑻𝑻𝒔𝒔 � 𝒊𝒊𝒊𝒊 𝑾𝑾	� -	𝑾𝑾 𝟒𝟒 𝝁𝝁 𝒔𝒔 𝑾𝑾 * 𝟒𝟒 𝑾𝑾 *	(43)
			-	𝟏𝟏 𝟐𝟐𝑾𝑾 𝟒𝟒 -	𝟐𝟐𝑾𝑾 * 𝟐𝟐 𝑾𝑾 𝟐𝟐 (𝟏𝟏 + 𝝁𝝁 𝒔𝒔 )� 𝜴𝜴 𝟐𝟐	
			+ �𝟐𝟐(-	𝑾𝑾 * 𝟐𝟐 𝑾𝑾 * 𝝁𝝁 𝒔𝒔 𝑾𝑾 𝟐𝟐 +	𝑾𝑾 * 𝟒𝟒𝑾𝑾 𝟒𝟒			
			-𝟒𝟒) 𝒄𝒄𝑻𝑻𝒔𝒔 � 𝒊𝒊𝒊𝒊 𝑾𝑾 + 𝟒𝟒(𝒄𝒄𝑻𝑻𝒔𝒔 � 𝒊𝒊𝒊𝒊 𝑾𝑾 �) 𝟐𝟐 � = 𝟎𝟎 � + 𝑾𝑾 * 𝟐𝟐𝑾𝑾 𝟒𝟒 +	𝟐𝟐𝑾𝑾 * 𝟐𝟐 𝑾𝑾 * 𝝁𝝁 𝒔𝒔 𝑾𝑾 𝟐𝟐	+ 𝟒𝟒

* 𝟒𝟒 ) 𝟐𝟐 + ⋯ )

supported ends are first analytically investigated, whatever considered modes through the resolution of a linear difference equation. The scale effects of the granular chain are clearly captured by the continuous gradient elasticity model. This scale effect is related to the grain size with respect to the total length of the Cosserat chain.