Sina Massoumi 
  
Noël Challamel 
  
Jean Lerbet 
  
Dynamic Analysis of Granular Chain Using Cosserat Discrete Modeling

Keywords: Cosserat continuum, Discrete Cosserat formulation, Gradient elasticity, Timoshenko beam

This paper deals with the free vibration of a beam which is discretized by finite rigid granular elements and compared its exact solution to continuum local elasticity. This problem, which can be considered as a simple model to rigorously study the effect of the microstructure on the dynamic behavior of a equivalent continuum structural model, can be referred to Cosserat discrete chain or a lattice elastic model with shear interaction. This micro structured system consists of uniform grains elastically connected by shear and rotation springs. First the critical frequencies of the system which change the nature of the results, are obtained. Next, the natural frequencies of such as granular model are analytically calculated whatever the considered modes for the granular beam resting on two supports, starting from the resolution of the linear difference eigenvalue problem. It is shown that the discrete equations of this granular system, for an infinite number of grains, converge to the differential equations of the Bresse-Timoshenko beam resting on Winkler foundation (such a Bresse-Timoshenko beam can be also classified as a continuous Cosserat beam model). A gradient Bresse-Timoshenko model is constructed from continualization of the difference equations of the granular system. This continuous gradient elasticity Cosserat model is obtained from a polynomial or a rational expansion of the pseudodifferential operators, stemming from the continuualization process. The natural frequencies of the continuous gradient Cosserat models are compared with those of the discrete Cosserat model associated with the granular chain. Scale effects of the granular chain are clearly captured by the continuous gradient elasticity model. The results clarify the dependency of the beam dynamic responses to the beam length ratio.

Introduction

In order to adapt a theory of continuous media to granular materials, it is necessary to introduce independent degrees of freedom of rotation, in addition to those conventional translation. Indeed, the relative movements between the microstructure and the average macroscopic deformations can be apprehended by additional degrees of freedom. Such enriched kinematics leads to non-classical continuous media or Cosserat-type theories [START_REF] Cosserat | Théorie des corps déformables[END_REF], [START_REF] Nowacki | The linear theory of micropolar elasticity[END_REF] which introduce intrinsic length scales via higher order gradients or additional degrees of freedom. Conversely, the classical mechanics of continuous media does not incorporate a rotational interaction between the particles, and does not allow to understand the size effects in these media. The Bresse-Timoshenko beam model admits kinematics with two independent fields of transverse displacement and rotation [START_REF] Bresse | Cours de mécanique appliquée -Résistance des matériaux et stabilité des constructions 1859[END_REF], [START_REF] Timoshenko | On the correction for shear of the differential equation for transverse vibrations of prismatic bars[END_REF]. The exact calculation of natural frequencies for a Bresse-Timoshenko beam with any boundary conditions and in elastic interaction with a rigid medium was obtained by Wang and Stephens [START_REF] Wang | Natural frequencies of Timoshenko beams on Pasternak foundation[END_REF], [START_REF] Manevich | Dynamics of Timoshenko beam on linear and nonlinear foundation: phase relations, significance of the second spectrum, stability[END_REF]. Timoshenko beam is an example of Cosserat one-dimensional continuum considering the independent double rotation-displacement kinematics. The present study focuses on the vibration of the granular beam model resting on a linear Winkler foundation. Note that the difference equations of this granular chain coincide with the difference equations of the granular model of Pasternak and Mühlhaus [START_REF] Pasternak | Generalized homogenization procedures for granular materials[END_REF] in the absence of elastic foundation, while differ from the ones of Duan et al [START_REF] Duan | Development of analytical vibration solutions for microstructured beam model to calibrate length scale coefficient in nonlocal Timoshenko beams[END_REF] or Bacigalupo and Gambarotta [START_REF] Bacigalupo | Generalized micropolar continualization of 1D beam lattices[END_REF].

Granular Model

A granular beam of length L resting on two simple supports is modeled by a finite number of grains interacting together. Such a model could be presented by considering the microstructured granular chain comprising n+1 rigid grain with diameter a (a=L/n) that are connected by n shear and rotational springs, as shown in figure 1. The Lagrangian relation of the granular system may be defined as
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𝐿𝐿 . G is the shear modulus; A is the cross-sectional area of the beam and Ks is an equivalent shear correction coefficient. C is the rotational stiffness and can be expressed as 𝐶𝐶 = 𝐸𝐸𝐸𝐸 𝑎𝑎 = 𝑛𝑛𝐸𝐸𝐸𝐸 𝐿𝐿 , where E is Young's modulus and I is the second moment of area. K=ka is the discrete stiffness of the elastic support.

From the Euler-Lagrange of the granular system by assuming a harmonic motion 𝑊𝑊 𝑖𝑖 = 𝑤𝑤 𝑖𝑖 𝑒𝑒 𝑗𝑗𝑗𝑗𝑗𝑗 and 𝛩𝛩 𝑖𝑖 = 𝜃𝜃 𝑖𝑖 𝑒𝑒 𝑗𝑗𝑗𝑗𝑗𝑗 with j 2 =-1, the following deflection equation could be obtained 
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The fourth-order difference equation ( 2) is equivalent to the one of Challamel et al. [START_REF] Challamel | Buckling of granular systems with discrete and gradient elasticity Cosserat continua[END_REF] in the static range (𝜔𝜔 = 0).

Considering infinite number of grains (𝑛𝑛 → ∞) for the continuum beam, the fourth-order differential equation valid for a Bresse-Timoshenko beam on Winkler elastic foundation is given by ( 4) which also could be compared well by [START_REF] Wang | Natural frequencies of Timoshenko beams on Pasternak foundation[END_REF], [START_REF] Manevich | Dynamics of Timoshenko beam on linear and nonlinear foundation: phase relations, significance of the second spectrum, stability[END_REF].

𝒅𝒅 𝟒𝟒 𝒘𝒘 𝒅𝒅𝒅𝒅 𝟒𝟒 + � 𝝆𝝆𝝎𝝎 𝟐𝟐 𝑬𝑬 �𝟏𝟏 + 𝑬𝑬 𝒌𝒌 𝒔𝒔 𝑮𝑮 � - 𝒌𝒌 𝒌𝒌 𝒔𝒔 𝑮𝑮𝑮𝑮 � 𝒅𝒅 𝟐𝟐 𝒘𝒘 𝒅𝒅𝒅𝒅 𝟐𝟐 -( 𝝆𝝆𝝎𝝎 𝟐𝟐 𝑬𝑬 � 𝑮𝑮 𝑬𝑬 + 𝒌𝒌 𝒌𝒌 𝒔𝒔 𝑮𝑮𝑮𝑮 - 𝝆𝝆𝝎𝝎 𝟐𝟐 𝒌𝒌 𝒔𝒔 𝑮𝑮 � - 𝒌𝒌 𝑬𝑬𝑬𝑬 )]𝒘𝒘 = 𝟎𝟎 (4) 

Exact solution

For simply supported boundary conditions by assuming 𝑤𝑤 0 = 0 ; 𝛿𝛿 1 𝛩𝛩 0 = 0 and 𝑤𝑤 𝑛𝑛 = 0 ; 𝛿𝛿 1 𝛩𝛩 𝑛𝑛 = 0 the frequencies of the discrete system could be obtained by [START_REF] Wang | Natural frequencies of Timoshenko beams on Pasternak foundation[END_REF]. The results are shown in figure 2. 
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 1 Figure 1. A discrete shear granular chain composed of n+1 grain

Figure 2 .

 2 Figure 2. Comparison of the natural frequencies for the discrete exact and continuum solutions with respect to the mode number (p) and grain number (n ∈ {5, 50}) for μ s = 4.28, r * = 0.029 and k * = 15 CONCLUSIONS This paper investigates the macroscopic free vibration behavior of a discrete granular system resting on a Winkler elastic foundation. It is shown that the discrete deflection equation of this granular system (Cosserat chain) is mathematically equivalent to the finite difference formulation of a shear deformable Bresse-Timoshenko beam resting on Winkler foundation. Next, the natural frequencies of such a granular model with simply supported ends are first analytically investigated, whatever considered modes through the resolution of a linear difference equation. The scale effects of the granular chain are clearly captured by the continuous gradient elasticity model. This scale effect is related to the grain size with respect to the total length of the Cosserat chain.
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