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Abstract: In the context of few-shot learning, one cannot measure the generalization ability of a
trained classifier using validation sets, due to the small number of labeled samples. In this paper, we
are interested in finding alternatives to answer the question: is my classifier generalizing well to new
data? We investigate the case of transfer-based few-shot learning solutions, and consider three set-
tings: (i) supervised where we only have access to a few labeled samples, (ii) semi-supervised where
we have access to both a few labeled samples and a set of unlabeled samples and (iii) unsupervised
where we only have access to unlabeled samples. For each setting, we propose reasonable measures
that we empirically demonstrate to be correlated with the generalization ability of the considered
classifiers. We also show that these simple measures can predict the generalization ability up to a
certain confidence. We conduct our experiments on standard few-shot vision datasets.

Keywords: few-shot learning; generalization; supervised learning; semi-supervised learning; transfer
learning; unsupervised learning

1. Introduction

In recent years, Artificial Intelligence algorithms, especially Deep Neural Networks
(DNNs), have achieved outstanding performance in various domains such as vision [1],
audio [2], games [3] or natural language processing [4]. They are now applied in a wide
range of fields including help in diagnosis in medicine [5], object detection [6], user behavior
study [7] or even art restoration [8].

In many cases, the problem at hand is a classification problem. It consists in learning
to label data using a set of training examples. In practice, there is a risk of overfitting [9],
that is to say that the classifier may focus on certain specificities of the training examples
and not be able to generalize well to new ones. That is why its ability to generalize is often
evaluated on another set of labeled examples called validation set [10].

Problematically, stressing the generalization ability of a classifier using a validation
set requires having access to a large quantity of labeled data. Yet annotating data typically
costs money or requires the help of human experts. Even more inconvenient, in some cases
the acquisition of data is in itself costly. An extreme case is when one has only access to a
few labeled samples, referred to as few-shot [11,12] in the literature. In such a case, trained
classifiers are even more likely to suffer from overfitting due to the small diversity of
training data. The non-accessibility to a validation set to evaluate generalization becomes
thus even more critical.

The objective of this paper is to address the following problem: can the generalization
ability of a few-shot classifier be estimated without using a validation set?

Throughout this work, we propose to experimentally study several measures. We
select the ones that are the most correlated with the performance of few-shot classifiers
on a validation set. Then, we evaluate the ability of the selected measures to predict the
difficulty of a few-shot task.

In the Experiments reported in Section 5, we only consider the case of transfer-based
few-shot classifiers (no meta-learning). These solutions are typically based on the idea of
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training generic feature extractors from large generic datasets, which are then used directly
as a preprocessing step when facing a new few-shot task. We study multiple few-shot
learning classification problems (varying the size of the training set and the number of
classes) under 3 settings (supervised, semi-supervised and unsupervised).

Our work comes with the following contributions:

• To the best of our knowledge, we propose the first benchmark of generalization
measures in the context of transfer-based few-shot learning.

• We conduct experiments to stress the ability of the measures to correctly predict
generalization using different settings related to few-shot: (i) supervised, where we
only have access to a few labeled samples, (ii) semi-supervised, where we have access
to both a few labeled samples and a set of unlabeled samples and (iii) unsupervised,
where no label is provided.

The paper is organized as follows. Section 2 is dedicated to a review of the related
work. In Section 3, we introduce the formalism and methodologies of few-shot learning.
In Section 4, we propose measures to predict the accuracy of a classifier trained with few
labeled samples. The measures are assessed in the experiments of Section 5 (Code at
https://github.com/mbonto/fewshot_generalization). Section 6 is a conclusions.

2. Related Work

In this paper, we address the difficulty of predicting the generalization ability of a
few-shot classifier. In this section, we detail some of the works related to this issue.

2.1. Few-Shot Learning

As training a DNN on few data samples from scratch typically leads to overfitting,
other learning strategies have been developed. All these strategies share the idea of building
a general-purpose representation of the data. In the literature, many strategies are based
on transfer learning, where a DNN, called backbone, is pretrained on a huge annotated
dataset. The backbone is used as a feature extractor for the few-shot task. The huge dataset
is composed of what are called base classes whereas the classes considered in the few-shot
task are called novel classes.

2.1.1. With Meta-Learning

A first group of strategies uses meta-learning. It consists in using entire tasks as
training examples. Some optimization-based works propose to learn a good initialization
of the weights of the DNN over several training tasks, so that a new task can be learned
with only a few gradient steps [13,14]. In metric-based works [15–19], the idea is to learn to
embed the data samples in a space where classes are easily separable. Thus, once a new
task occurs, the features of the novel samples are projected into this embedding (without
any learning) and a simple classifier is trained to recognize the novel classes from these
features. As the number of parameters to learn is reduced, the risk of overfitting is lower.
There are many variants in the literature. For instance, in [15], the authors assume that
there is an embedding space where each class is represented by one point. Thus, a DNN is
trained over several training tasks to work with a distance-based classifier, in which each
class is represented by the average of its projected data samples. When a new task comes,
the representations of the samples are extracted from the DNN, and the labels of the new
samples are attributed according to the class of the closest representative.

2.1.2. Without Meta-Learning

In a recent line of work, some methods do not focus on learning a relevant embedding
from training tasks but on learning a relevant embedding from a single classification task
involving all training classes at once [11,12,20,21]. First, a DNN is trained to minimize a
classification loss on base classes. A regularization term such as self-supervision [11,21] or
Manifold Mixup [11] is sometimes added to the loss to learn more robust features. Then,
the features of the samples of the few-shot task are extracted from the DNN (often using the

https://github.com/mbonto/fewshot_generalization
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features of its penultimate layer, just before the classifier). Finally, a simple classifier, such
as a Nearest Class Mean [12] or a Cosine Classifier [11], is trained on the extracted features
to distinguish between classes. In [12], the authors show that simple transformations,
such as normalizing extracted features with their L2-norm, help the classifier generalizing
better. Using self-supervision and Manifold Mixup, the article [11] achieves state-of-the-art
performance on benchmark datasets. That is a first reason explaining why, in this article,
we allow to restrict our study to few-shot learning solutions based on pretrained feature
extractors. The second reason is about computational constraints: unlike meta-learning
methods, the same DNN can be reused without additional training in all experiments.

2.2. Better Backbone Training

In transfer-based few-shot learning, the challenge is to learn representations on train-
ing classes which are suitable for novel classes. Indeed, the generalization ability of a
classifier is linked to the distribution of the representatives of the data samples in the
feature space. However, it is not easy to estimate whether the learned embedding space
suits novel classes well.

2.2.1. Learning Diverse Visual Features

The generalization ability of the classifiers depends on the relevance of the extracted
features for a new task. Inspired by works in deep metric learning, the authors of [22]
propose to learn representations capturing general aspects of data. They optimize a
DNN to perform a range of tasks enhancing class-discriminative, class-shared, intra-class
and sample-specific features. Although they do not apply their method to few-shot tasks,
it could help improving the generalization. Similarly, self-supervised learning and Manifold
Mixup used in [11] improve the performance on few-shot tasks.

2.2.2. Using Additional Unlabeled Data Samples

Another way to learn richer representations is to use additional unlabeled samples.
Any unlabeled sample can be used to to better separate the novel classes by inferring more
adapted representations of the data. In the literature, two settings are studied. In the setting
we consider in this article, the unlabeled samples are the samples on which the accuracy of
the classifier will be evaluated. In the other setting, the unlabeled samples are just seen
as additional samples and they are not used to test the classifier. In [23], both settings are
considered. The researchers look for a linear projection which maximizes the probability of
being in the correct class. More precisely, first an unsupervised low-dimensional projection
(PCA or ICA) is applied on the features to reduce their noise. Then, the samples are
clustered using either a Bayesian K-Means or a Mean-Shift approach followed by a NCM
classifier. In [24], the features of the data samples are diffused though a similarity graph
computed from the few-shot samples and from the unlabeled samples before being used
in a classifier. As these works use additional information, the generalization performance
is increased.

2.2.3. Learning Good Representations

Learning efficient representations has always been a concern for deep learning [25].
Invariant Risk Minimization [26] and ν-Information [27] have been proposed as theoretical
frameworks to detail the properties a good representation should exhibit when connected
to a (mostly linear) classifier. Other works focus on maximizing the mutual information
(following InfoMax principle) such as Deep Infomax [28]. Losses (like in [22] or in [29])
are designed to enforce some geometry in latent space based on similarity measures.
Robust few-shot learning for user-provided data [30] is proposed to handle outliers within
training samples.
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2.3. Evaluating the Generalization Ability

The generalization ability of a few-shot classifier can be improved by designing more
relevant representations of data. However, this ability is ill-evaluated in few-shot learning.
Indeed, in standard deep learning, the generalization ability is usually estimated on a
validation set. Here in few-shot learning, we do not have enough samples to afford to
split the training data into a training set and a validation set. Thus, the question of interest
in this study, which has not been handled so far in the few-shot literature, is not how to
improve the generalization performance but really how to evaluate it. Note that some
authors have also been interested in the possibility of evaluating the generalization without
relying on a validation set. For instance, in [31,32], the authors try to understand the
generalization of DNNs from the training set and the DNNs parameters. Contrary to these
studies, we do not consider the backbones parameters or the data on which they have been
trained. We only look at the features distribution of the few-shot task samples obtained
from the backbones.

3. Background

This section is intended as a reference for the rest of the article. The formalism behind
few-shot classification is provided. The three considered settings—supervised, semi-
supervised and unsupervised, are detailed. For each setting, the studied classifiers are
also introduced.

3.1. Few-Shot Classification: A Transfer-Based Approach

In this work, we only study the few-shot solutions in which a DNN, pretrained on
a large training dataset, is used to extract general-purpose features from the data of the
considered few shot task. This network is usually called the backbone. The classes used to
train the backbone are called base classes.

Once the backbone has been trained, we are facing a few-shot task where the objective
is to learn to discriminate between novel classes, provided only a few samples of those.
In the following, we denote Cb the number of base classes and Cn that of novel classes.
Note that typically Cn � Cb.

The backbone can be formalized as a function g, such that g = cWb ◦ fθ . See Figure 1
for an illustration. In our case, cWb is a Cb-way classifier whose parameters are Wb and
fθ is a convolutional Neural Network. Note that typically fθ outputs the penultimate
representation within the backbone when processing an input element. Denoting x a data
sample from the few-shot task, its features f ∈ Rd are extracted as follows: f = fθ(x).
The features fθ(x) are part of the feature space F . To solve the few-shot task, a Cn-way
classifier is trained on top of the extracted features. The predicted label associated with a
data sample is denoted ỹ while its true label is denoted y.
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Figure 1. Illustration of the transfer-based few-shot learning principle.
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3.2. Studied Settings

In our work, we consider three different settings: a supervised setting, an unsuper-
vised setting and a semi-supervised setting.
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In the supervised setting, we consider N-way K-shot tasks. The number N refers to
the number of classes to discriminate from, and K to the number of labeled samples we are
given for each class. Denote by xij the i-th labeled element of class j, then the training set is
written as:

Ssupervised =
{
(xij, yj)|1 ≤ i ≤ K, 1 ≤ j ≤ N

}
. (1)

In the unsupervised setting, we consider N-way Q-query tasks. We are given Q
unlabeled samples for each of the N considered classes. Considering that ⊥ refers to the
fact the labels are unknown, the training set is written as:

Sunsupervised =
{
(xij,⊥)|1 ≤ i ≤ Q, 1 ≤ j ≤ N

}
. (2)

Finally, in the semi-supervised setting, we consider N-way K-shot Q-query tasks.
Some training samples are labeled, others are not. The training set is:

Ssemi = Ssupervised ∪ Sunsupervised . (3)

For evaluation purposes, in all settings, there are as many unlabeled samples per class.
This methodology is used in several research papers (e.g., in [23,24]).

3.3. Studied Classifiers

We now introduce the classifiers we consider in the scope of this paper.

3.3.1. Supervised Setting

A classifier that performs well in many cases in the supervised setting is the logistic
regression (LR). Given the number of features d, the weight matrix W ∈ Rd×N and the
matrix containing the features of all data samples F ∈ R(NK)×d, the output of the LR,
denoted P ∈ R(NK)×N , is:

P = softmax(FW) , (4)

where p[i, c] is the probability that the sample i belongs to class c. Weights are learned
using backpropagation to minimize a cross-entropy loss.

3.3.2. Semi-Supervised Setting

In the semi-supervised setting, we consider a recent classifier reaching state-of-the-art
performance on competitive benchmarks [24]. The features extracted from a backbone are
diffused through a cosine similarity graph G before being processed by a usual LR. In the
following, the classifier is described more formally.

Let us point out that, as in all backbones we use the features are extracted after a ReLU
function, all vectors in F contain non-negative values. Consequently, the output of the
cosine similarity function ranges from 0 (orthogonal vectors) to 1 (aligned vectors). Given
fi, fj ∈ F , the cosine similarity function is defined as:

cos(fi, fj) =
fᵀi fj

‖fi‖2
∥∥fj
∥∥

2

. (5)

The cosine similarity graphs G = 〈V , E , W〉 consist in a set of vertices V connected by
a set of edges E . The weights of the edges are stored in the adjacency matrix W. Given two
vertices i, j and their feature vectors fi, fj, the adjacency matrix W is defined as:

W[i, j] =

{
cos(fi, fj) if {i, j} ∈ E
0 otherwise

. (6)
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after removing self-loops, only the k-th largest values per row are kept. Then, given the
diagonal degree matrix D, the resulting matrix is normalized as follows:

E = D−
1
2 WD−

1
2 , where D[i, i] = ∑

j
W[i, j] . (7)

Given F ∈ R(NK+NQ)×d the matrix containing the features of all data samples, I the
identity matrix, and two constant α, κ, the new features are obtained by propagating the
extracted features as follows:

Fdiffused = (αI + E)κF . (8)

More details can be found in the original paper [24].

3.3.3. Unsupervised Setting

The unsupervised setting is less studied in the few-shot literature. We hypothesize
that, when features are well adapted to a N-way task, each class is associated with a cluster
in the feature space. In that case, a standard clustering method consists in using a N-means
algorithm. In order to compare results with the semi-supervised setting in a fair manner,
we also propagate the features extracted from backbones through a cosine similarity graph
as detailed in the semi-supervised setting.

4. Predictive Measures

Now that we have introduced the classifiers considered in the three settings, the
next step is to propose reasonable measures to evaluate their generalization abilities. An
overview of the proposed measures is given in Table 1. More details are given in the
next paragraphs.

Table 1. Table summarizing the solutions considered to predict the generalization ability of a classifier trained on few
examples. The solutions are measures designed to quantify how well a trained model generalizes to unseen data.

SETTINGS

Supervised Semi-Supervised Unsupervised
N-Way K-Shot N-Way K-Shot N-Way Q-Query *

Q-Query *

SO
LU

T
IO

N
S

Using available labels and features of data samples

Training loss of the logistic regression X X ×
Similarities between labeled samples X X ×

Confidence in the output of the logistic regression × X ×
Using only data relationships

Eigenvalues of a graph Laplacian X X X

Davies-Bouldin score after a N-means algorithm X X X

* Query samples are accessible during training without their labels.

4.1. Supervised Setting

In the supervised setting, the classifier we consider is a logistic regression (LR). We pro-
pose two measures to estimate how well the trained LR generalizes to unseen data. The first
one is the LR training loss obtained at the end of the training process. The second one is
based on the similarities between labeled data samples, and is therefore agnostic of the
choice of the LR as classifier.
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4.1.1. LR Training Loss

The LR is trained to minimize the cross-entropy loss, see Definition 1. During training,
this loss is supposed to converge to zero. Assuming that harder the task is, slower the
convergence is, the value of the loss at the end of the training should give some insights
about the difficulty of the task.

Definition 1 (LR loss). Given yic the number (0 or 1) indicating if the label of the data sample i is
c and pic the output of the LR indicating the probability of i being labeled c, the loss is defined as:

LR loss =
−1
NK

NK

∑
i=1

N

∑
c=1

yic log pic . (9)

4.1.2. Similarity

Recent Works [12,24] have shown that state-of-the-art performance can be achieved by
comparing distances to a centroid defined for each class. The difficulty of the clustering can
be measured by comparing the intra-class similarity to the inter-class similarity. In our case,
we have chosen the cosine similarity measuring the cosine of the angle between two vectors
(see Equation (5)) because it does not require to define arbitrary parameters (contrary to
a RBF kernel). As the feature vectors are extracted from the backbones after a ReLU
function, the cosine similarity is naturally between 0 (orthogonal vectors) and 1 (perfectly
aligned). This choice is also justified by the fact that in few-shot learning, it is usual to
divide the feature vectors by their norms to improve the performances [11,12]. After that
preprocessing step, the norms of the feature vectors no longer carry relevant information.
The notions of intra-class and inter-classes similarities are defined in Definition 2 and 3.
If a class c only contains one shot, we set intra(c) = 1. The proposed measure is detailed in
Definition 4.

Definition 2 (Intra-class similarity). The cosine similarity within a class c is:

intra(c) =
1

K(K− 1) ∑
i

yi=c

∑
j 6=i

yj=c

cos(fi, fj) . (10)

Definition 3 (Inter-classes similarity). The cosine similarity through classes c and c̃ is:

inter(c, c̃) =
1

K2 ∑
i

yi=c

∑
j

yj=c̃

cos(fi, fj) . (11)

Definition 4 (Similarity). The proposed similarity measure is:

similarity =
1
N

N

∑
c=1

(
intra(c)−max

c 6=c̃
(inter(c, c̃))

)
. (12)

4.2. Unsupervised Setting

In the unsupervised setting, the goal is to estimate the quality of the clustering. To this
end, we consider two measures. The first one is a measure of relative similarity between
clusters. The other one is an indirect measure of the connectivity of components in a
graph whose vertices are training samples and edges represent the similarity between
those samples.

4.2.1. Davies-Bouldin Score after a N-means Algorithm

Assuming the data samples within the classes to be similar enough, we expect each
learned cluster to represent a class. A measure of relative similarity within clusters and
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between clusters, such as the classical Davies-Bouldin (DB) score [33], gives an insight
about the difficulty of the clustering. Consequently, it may measure how easy it is to
generalize to new samples. In Definition 5, we detail the Davies-Bouldin (DB) score. Lower
is the score, better is the clustering. It varies between 0 and +∞.

Definition 5 (DB score). Denote the centroid of a cluster C µc, such that µc =
1
|C| ∑i∈C fi. The

average distance between the samples in C and the centroid of their cluster µc is:

δc =
1
|C| ∑

i∈C
‖fi − µc‖2 . (13)

Then, the DB score is given as:

DB score =
1
N

N

∑
c=1

max
c̃ 6=c

(
δc + δc̃

‖µc − µc̃‖2

)
. (14)

4.2.2. Laplacian Eigenvalues

Consider a graph where each vertex represents a data sample and where the edges
are weighted proportionally to the similarity between the samples. Now, consider that
only the biggest edges are kept. In the perfect case where samples from distinct classes are
very dissimilar, it is expected that this graph yields at least as many connected components
as the number of classes in the considered problem. A measure of the fact that a graph
contains at least N connected components is given by the amplitude of the N-th lower
eigenvalue (egv N) of its Laplacian [34]. See Definition 6.

Definition 6 (Egv N). We consider the graph G = 〈V , E , W〉 where V is the set of data samples.
The adjacency matrix W is obtained by first considering the cosine similarity between these samples,
removing self-loops, and keeping only the k-th largest values on each line/column. The Laplacian of
the graph is given by L = D−W, where D is the degree matrix of the graph: D is a diagonal matrix
where Dii = ∑NQ

j=1 Wij. The measure we consider is the amplitude of the N-th lower eigenvalue
of L.

4.3. Semi-Supervised Setting

In the semi-supervised setting, the classifier we consider is the adapted LR detailed
in Section 3. We propose a measure based on the confidence of the LR decision on the
unlabeled samples.

The confidence can be obtained by looking at the distance between the provided
output and a one-hot-bit encoded version of this output. In more details, for each unlabeled
sample, the classifier outputs the probability it belongs to a particular class. As we do not
know the label of the sample, we cannot look at the probability the classifier gives to its
real class. However, we propose to report the maximal probability the classifier attributes
to the classes (see Definition 7). If the maximal probability is far from one, we can interpret
it as the classifier is unsure of its output. So, lower the maximal probability is, harder the
task should be for the considered sample.

Definition 7 (LR confidence). Let pic denote the probability that the data sample i is labeled c.

LR confidence =
−1
NQ

NQ

∑
i=1

log max
c

(pic) . (15)

In the next section, we empirically evaluate the relevance of the proposed measures to
estimate the performance of the classifiers on new samples.
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5. Experiments

In this section, we evaluate the ability of the previously proposed measures to predict
the generalization of a transfer-based trained few-shot classifier. First, we describe the
datasets, backbones and evaluation metrics used throughout the experiments. Then,
for each setting, we report the correlation between the proposed measures and the accuracy
of classifiers measured on a validation set. In Section 5.7, we look at the more difficult
problem of using the proposed measures to predict the performance of a few-shot classifier.
In Section 5.8, we propose an experiment where we actively label samples that are predicted
to be the hardest to predict, resulting in an overall increased accuracy. Finally, in Section 5.9,
we explore less standard settings where the number of samples to predict for each class
is unbalanced.

5.1. Datasets

We consider two datasets. The first one is mini-ImageNet [16]. It has been generated
from the bigger ImageNet database [35]. It is split into 64, 16 and 20 classes, in which
600 images are available. The first split is used to train the backbone, the second to validate
its generalization ability and the third one to generate the few-shot tasks. The second
dataset is tiered-ImageNet [36]. The splits contain 351, 97 and 160 classes, with roughly
about 1000 samples each. It is also extracted from ImageNet. The interest of tiered-
ImageNet is that the semantic of classes has been studied with WordNet [37] to ensure
that the considered splits contain semantically different classes. In both datasets, as in
numerous studies [12], the images are resized to 84 × 84 pixels.

When generating a few-shot task, N classes are uniformly drawn at random in the last
introduced split. The K and Q samples to generate from each class are uniformly drawn
without replacement. To assess the generalization performance in the supervised setting,
we measure the performance on 50 samples uniformly drawn from the remaining items for
each considered class (that is to say items that were not drawn to be part of the K-shot).
In the unsupervised and semi-supervised settings, the performance is measured on the Q
unlabeled samples per class.

5.2. Backbones

We consider two backbones. The first one is a Wide Residual Network [38] (wideresnet)
of 28 layers and width factor 10 described in [11]. It has been trained on mini-ImageNet
with a classification loss (classification error), an auxiliary loss (self-supervised loss) and
fine-tuned using manifold mix-up [39]. Its results are among the best reported in the
literature. The second backbone is a DenseNet [40] (densenet) trained on tiered-ImageNet
from [12]. As advised in the original papers, all feature vectors are divided by their L2-norm:
given f ∈ F , f← f

‖f‖2
.

5.3. Evaluation Metrics

In the supervised and semi-supervised setting, the performance is evaluated with the
accuracy on the query samples. In the unlabeled setting, the quality of the clustering is
evaluated with an Adjusted Rand Index (ARI). This index ranges from 0 to 1, 1 meaning that
the data samples are exactly clustered according to their labels, and 0 that the clustering
is at chance level. As we have observed that the relations between the measures and
the performance on the test sets are rather linear (see Figures 3 and 5), we report in
Sections 5.4–5.6 the absolute values of the Pearson correlation coefficients between the
measures and the performance in the three settings.

5.4. Correlations in the Supervised Setting

Considering N-way K-shot tasks, we look at the linear correlation between the mea-
sures and the accuracy of the LR on new samples. Precisely, on 50 data samples per class
not used during training. In the case of the unsupervised measures (Egv N, DB score),
we consider that all training samples are unlabeled. In Figure 2, we perform experiments
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on mini-ImageNet ((a) and (b)) and on tiered-ImageNet ((c) and (d)). In (a) and (c), we
consider 5-way tasks and depict the evolution of the correlation as a function of the number
of shots per class. In (b) and (d), we consider 5-shot tasks and make the number of classes
varying. As in 1-shot tasks, the DB score is always 0, we do not report a correlation measure.
Note that in Appendix B, the accuracies of the LR are reported.
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Figure 2. Supervised setting. Study of the linear correlations between the measures and the accuracy
of a LR computed on a test set. In (a,b), the data come from mini-ImageNet. Their features are
extracted with wideresnet. In (c,d), the data come from tiered-ImageNet. Their features are extracted
with densenet. See Section 5 for details. By default, 5-way 5-shot tasks are generated. In (a,c),
the number of shots varies. In (b,d), the number of classes varies. Each point is obtained over
10,000 random tasks.

In all experiments, we observe that the measures adapted to the supervised setting
(i.e., LR loss and Similarity) perform better than the measures designed for an unsupervised
setting. That is not surprising because the supervised measures exploits the additional
information given by the labels. The best correlation is always obtained with the LR loss.
The linear correlation seems to be lower when the tasks are harder (more classes, less shots).
The only exception is in the case of the egv N where the correlation decreases with the
number of shots. Recall that the egv N measures how well the graph can be split into N
communities: zero when there is at least N connected components, and higher when there
is no sparse cut into N components. One possible explanation might be that with a higher
number of shots, the data tends to be split into more than N communities, which does not
damage the performance. Thus, the egv N is always null, which is not informative.

To further investigate what happens, we generate in Figure 3 two plots using data
samples from mini-ImageNet. Each point represents a task, with the LR loss on the x-axis
and the accuracy on the y-axis. In (a), 5-way 5-shot tasks are considered. In (b), 5-way
1-shot tasks. In 5-way 5-shot, the relation between both variables is rather linear. Without
surprise, in 5-way 1-shot, the LR loss is less representative of the accuracy. With 1 sample
per class, it is very hard to detect the hardest tasks.
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Figure 3. Supervised setting. Each point represents a task. We plot the accuracy of a LR in function
of the loss of the LR on the training samples. In (a), we consider 10,000 random 5-way 5-shot tasks.
In (b), we consider 10,000 random 5-way 1-shot tasks. The data samples come from mini-ImageNet.
Their features are extracted with wideresnet.

5.5. Correlations in the Unsupervised Setting

Considering N-way Q-query tasks, we report the linear correlations between the
unsupervised measures and the adjusted rand index (ARI) of the N-means algorithm.
The ARI is computed on the NQ unlabeled samples on which the N-means algorithm has
been trained. In Figure 4, we perform experiments on mini-ImageNet ((a) and (b)) and
on tiered-ImageNet ((c) and (d)). In (a) and (c), we consider 5-way tasks. The number of
queries varies. In (b) and (d), we consider 35-query tasks. The number of classes N varies.
In Appendix B, the average ARI of the N-means algorithm are reported.
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Figure 4. Unsupervised setting. Study of linear correlations between the measures and the ARI of a
N-means algorithm. The ARI is computed on the NQ unlabeled samples available during training.
In (a,b), the data come from mini-ImageNet. Their features are extracted with wideresnet. In (c,d),
the data come from tiered-ImageNet. Their features are extracted with densenet. All features are
diffused through a similarity graph. See Section 3 for details. By default, 5-way 35-query tasks are
generated. In (a,c), the number of queries varies. In (b,d), the number of classes varies. Each point is
obtained over 10,000 random tasks.

In all experiments, the DB-score is the best. Using 20 samples per class enables to
increase the correlation up to 0.64 on mini-ImageNet and up to 0.72 on tiered-ImageNet.
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As the complexity of the tasks increases (more classes, less queries), our measures are less
representative of the problems.

In this experiment, we do not have access to the labels of the samples during the
training but, we make sure that each class contains as many samples. In Section 5.9, we
explore the impact of an unbalanced distribution. We also propose an additional experiment
to see if the N-th eigenvalue is really the one giving the best correlation among all other
eigenvalues. In Appendix C, we also report an experiment showing the influence of the
number of nearest neighbors kept in the graph used to compute the eigenvalue.

5.6. Correlations in the Semi-Supervised Setting

We consider N-way K-shot Q-query tasks. The query samples are available without
their labels during training. We study the linear correlation between the LR confidence and
the accuracy of the LR on the query samples. In practice, on NQ samples. We also look
at the correlations obtained with the measures defined on supervised and unsupervised
inputs. In the unsupervised case, we consider all training samples as unlabeled samples.
In Figure 5, we perform experiments on mini-ImageNet ((a–d)) and on tiered-ImageNet
((e–h)). In (a) and (e), we consider 5-way 5-shot tasks. The number of queries varies. In (b)
and (f), we consider 5-way 30-query tasks. The number of shots varies. In (c) and (g),
we consider 5-shot 30-query tasks. The number of classes varies. In (d) and (h), there
are two scatter plots. Each point represents a task, with the LR confidence on the x-axis
and the accuracy on the y-axis. In both cases, 5-way 5-shot 30-query tasks are considered.
In Appendix B, the average accuracies of the LR for each data point are reported.

0 20 40 60 80
0

0.2
0.4
0.6
0.8

1

(a)

M
in

i-
Im

ag
eN

et
Li

ne
ar

co
rr

el
at

io
n

0 2 4 6 8 10
0

0.2
0.4
0.6
0.8

1

(b)
2 4 6 8 10

0
0.2
0.4
0.6
0.8

1

(c)
0.4 0.6 0.8 1

40

60

80

100

(d)

A
cc

ur
ac

y
(%

)

0 20 40 60 80
0

0.2
0.4
0.6
0.8

1

Number of unlabeled
samples per class Q

(e)

Ti
er

ed
-I

m
ag

eN
et

Li
ne

ar
co

rr
el

at
io

n

LR loss Similarity Egv N DB score LR confidence

0 2 4 6 8 10
0

0.2
0.4
0.6
0.8

1

Number of shots
per class K

(f)

2 4 6 8 10
0

0.2
0.4
0.6
0.8

1

Number of ways N

(g)

0.4 0.6 0.8 1
40

60

80

100

LR confidence

(h)

A
cc

ur
ac

y
(%

)

Figure 5. Semi-supervised setting. Study of linear correlations between the measures and the accuracy of a LR on the NQ
unlabeled samples available during training. In (a–d), the data samples come from mini-ImageNet. Their features are
extracted with wideresnet and diffused through a similarity graph. In (e–h), the samples come from tiered-ImageNet. Their
features are extracted with densenet and diffused though a similarity graph. See Section 3 for details. By default, 5-way
5-shot 30-query tasks are generated. In (a,e), the number of queries varies. In (b,f), the number of shots varies. In (c,g), the
number of classes varies. Each point is obtained over 10,000 random tasks. In (d,h), each point represents a task. We plot the
accuracy of the LR in function of the LR confidence. In (d), 5-way 5-shot 30-query tasks are generated from mini-ImageNet.
In (h), 5-way 5-shot 30-query tasks are generated from tiered-ImageNet.

We observe that the LR confidence, a measure adapted to the semi-supervised setting,
outperforms the supervised and the unsupervised measures. The more queries there are,
the better the correlation is, with a threshold around 15 additional unlabeled samples per
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class. The correlation depends less on the number of shots and classes. The supervised
measures seem to depend on the number of unlabeled samples per class Q. This is, in part,
an artifact due to the fact that the accuracies are computed on the number of queries NQ.
If Q is small, the range of possible accuracies is reduced, so the computed correlation is
affected. We also observe that the correlation between the supervised measures and the
accuracy are higher than in the supervised setting for the small K. This is due to the fact
that the features are previously diffused on a similarity graph.

The LR confidence uses more information than the unsupervised measures (labels)
and the supervised measures (more data). As a small number of shots does not reduce
the linear correlation, we assume that this is due to the diffusion of the features before the
training of the LR.

As in the unsupervised setting, we use as many unlabeled samples per class during
training. The impact of an unbalanced distribution is explored in Section 5.9.

5.7. Predicting Task Accuracy

In the previous experiments, we focused on a statistical measure of correlation be-
tween the proposed measures and the generalization abilities of the considered classifiers.
In practice, the question of interest is rather to be able to predict the generalization of a
given classifier. To this end, we consider that there are two types of few-shot tasks: hard
and easy. The tasks with an accuracy below 80% are considered to be hard and the ones
above 80% are easy, 80% being an arbitrary choice. In each setting, we wonder whether the
predictive measures enable to distinguish between hard and easy tasks.

In practice, we divide the mini-ImageNet split into two sets. Both containing 10 classes.
On both sets, 10,000 5-way 5-shot (30-query) tasks are randomly generated. In the unsuper-
vised case, we consider all training samples as unlabeled samples. In Figure 6, we plot the
ROC curve using the first set of tasks. Here, 1—specificity refers to the proportion of tasks
predicted as being hard among the easy tasks. The sensibility refers to the proportion of
tasks predicted as being hard among the hard tasks. After choosing the threshold value, we
report a confusion matrix on the second set. Each row of the confusion matrix is normalized,
so that its first (resp. second) row indicates the percentage of tasks predicted hard or easy
among the hard (resp. easy) tasks.
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Figure 6. Task prediction. The ROC curves are computed over 10 classes of mini-ImageNet. The tables
are computed on 10 other classes, applying the threshold value denoted by a red point on the curves.
Features are extracted with wideresnet. In both cases, 10, 000 5-way 5-shot (30-query) are randomly
generated. In (a), the variable is the LR loss, in (b), the DB-score, and in (c), the LR confidence.
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Figure 6. Task prediction. The ROC curves are computed over 10 classes of mini-ImageNet. The tables
are computed on 10 other classes, applying the threshold value denoted by a red point on the curves.
Features are extracted with wideresnet. In both cases, 10,000 5-way 5-shot (30-query) are randomly
generated. In (a), the variable is the LR loss, in (b), the DB-score, and in (c), the LR confidence.

Supervised setting: In Figure 6a, the ROC curve is built by varying a threshold value
over the LR loss. When selecting a threshold value at (0.29, 0.81), we obtain a confusion
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matrix on the second set where 1—specificity becomes 0.14 and sensibility becomes 0.45.
As both variables are lower, the chosen threshold does not apply to the second set.

Unsupervised setting: In Figure 6b, the ROC curve is built by varying a threshold
value over the DB-score. When selecting a threshold value at (0.30, 0.81), we show on the
confusion matrix that 1—specificity becomes 0.64 and sensibility becomes 0.95. Here, both
variables are higher. Once again, the chosen threshold does not apply to the second set.

Semi-supervised setting: In Figure 6c, the ROC curve is built by varying a threshold
value over the LR confidence. We select the threshold value at (0.16, 0.81). In the confusion
matrix, 1—specificity becomes 0.18 and sensibility becomes 0.76. Both variables are similar
on the two sets. So, the chosen threshold value generalizes to the second set.

The chosen threshold does not generalize in the supervised and unsupervised setting.
We hypothesize that in the supervised setting, 5 shots are not enough. In the unsupervised
setting, there are 30 samples per class but no label. The semi-supervised setting gets the
best of both worlds.

Therefore, we perform a second experiment considering only the LR confidence in
a semi-supervised setting. The advantage of the LR confidence over other measures is
that it is easily interpretable. Indeed, it associates with each task the average confidence
of the LR on each query sample. We propose to consider the LR confidence value as a
predicted accuracy. We perform an experiment on 10,000 5-way 5-shot tasks. The average
error between the real and the predicted accuracies is 2.40%. To evaluate this result, we also
compute the mean absolute deviation of the real accuracies from their average. It amounts
to compare the LR confidence with a naive method always predicting the same accuracy.
The mean absolute deviation is 4.14%. Thus, the predictions of the LR confidence are better
than the naive method.

5.8. Using Per-Sample Confidence to Annotate the Hardest Samples

To illustrate the usefulness of the LR confidence in practical applications, we propose
a simple experiment in which we label the hardest query samples according to the LR
confidence. In Figure 7, we compare what happens when labeling specific query examples,
and when labeling examples at random. The data come from mini-ImageNet. Their features
are extracted with wideresnet and diffused through a similarity graph. We observe that
when the number of labeled samples is small, it is better to have a random selection. This is
probably due to the fact that classes are more balanced when the annotation is randomized.
Above a certain amount of labeled samples, it becomes clearly more efficient to choose the
samples to label. This is not surprising as the chosen elements happen to be the ones with
the lowest confidences, meaning that the remaining ones are easy to classify.
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Figure 7. Using per-sample confidence to label data in a semi-supervised setting. We consider
5000 random 5-way 1-shot 50-query tasks. After a first training, we label either random samples or
samples with a low LR confidence. In both cases, the accuracies after a second training are reported.

5.9. Additional Experiments

In the previous experiments, as many unlabeled samples per class were generated.
In the following, we propose to explore what happens when the number of unlabeled
samples is unbalanced.
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In Figure 8a, we propose an experiment on 2-way 5-shot 50-query tasks. We vary
the proportion of unlabeled data samples in the first class with respect to the second one.
First, we observe that the correlations with the supervised measures (LR loss, similarity)
decrease. Although these measures do not take into account the unlabeled samples, their
accuracy is computed on an unbalanced set of samples. It might explain the decrease.
Second, the correlations with the LR confidence are rather constant. As the LR confidence
is directly linked to the query samples, it is more robust. Third, the correlations with
the unsupervised measures (DB-score, Egv N) goes to 0. This is not surprising. Indeed,
the DB-score measures the quality of the N clusters made by a N-means algorithm on
the unlabeled samples. As for Egv N, it measures to what extent a 15 nearest neighbors
similarity graph computed on the unbalanced data samples is far from having N connected
components. When the distribution of the unlabeled samples is unbalanced, these measures
on clusters/connected components no longer represent what happens in the classifier.
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Figure 8. Influence of the proportion of unlabeled data samples p in a class with respect to the other
ones in a semi-supervised setting. The features are extracted with wideresnet from mini-ImageNet,
and diffused through a similarity graph. We report linear correlations between the measures and
the accuracy of a LR on the unlabeled samples. In (a), 2-way 5-shot 50-query tasks are generated.
In (b), 5-way 5-shot 50-query. The proportion of samples in the other classes is identical. Each point
is obtained over 10,000 random tasks.

In Figure 8b, the same experiment is made on 5-way 5-shot 50-query task. The pro-
portion of unlabeled samples in a class is modified with respect to the four other classes.
These four classes keep the same number of samples. When the proportion of unlabeled
samples in one class is closed to 0, the problem amounts to a 4-way classification problem
with balanced samples. In that case, the correlations are not really influenced. However,
when the proportion goes to 1, the performance of all measures, except the LR confidence,
decreases. The same reasons as in the 2-way experiment explain the results.

Finally, we propose a last experiment on the Laplacian eigenvalues measure. In
Section 4, we motivated the use of the N-th lower eigenvalue as a measure, assuming that
the N classes should correspond to N connected components in a graph whose edges only
connect the most similar samples. However, in practice, it is expected that the number
of components differ and as such more useful information could be carried by other
eigenvalues. In Figure 9, we report the linear correlation in function of the number of ways
where the N-th eigenvalue and the best one are plotted. The features of the data samples
are extracted with wideresnet from mini-ImageNet, and diffused through a similarity
graph. We observe that, in both semi-supervised and unsupervised settings, the index of
the best eigenvalue is lower than N.
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Figure 9. Analysis of the relevance of eigenvalues with different number of classes. In the semi-
supervised setting (a), 5-shot 30-query tasks are generated. In the unsupervised setting (b), 35-query
tasks. We report linear correlations between the egv N and the accuracy of the LR (a)/the ARI of the
N-means algorithm (b). In both settings, we also report the index of the eigenvalue which enables
the best correlation. Each point is obtained over 10,000 random tasks.

6. Conclusions

In this paper, we introduced the problem of measuring the generalization performance
of a few-shot classifier, taking into account the fact that we do not have a validation set. We
studied several measures that we showed to be correlated to the generalization performance
in various settings: supervised, unsupervised and semi-supervised. Interestingly, in the
semi-supervised setting, we found a measure (LR confidence) that estimates quite well
the generalization ability of a few-shot classifier despite the lack of labeled data. In the
two other settings, the experiments showed that thresholds chosen within the ranges of
measures to determine whether a task is easy or hard for a classifier are not applicable to
new data.

We would like to investigate the relevance of other measures. Besides, in future work,
we would also like to address two limitations of our method. First, the experimental results
showed that the correlation between the measures and the performance of the classifier
is not a robust indicator of the performance of the classifier. A better evaluation design
might be defined. Second, we only performed experiments on two backbones trained on
two datasets. The conclusion might be different on different backbones/datasets. Finally,
we would like to inquire in more details how these findings could help in designing more
efficient solutions for the few-shot problems, for example by choosing which samples
to label.
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Appendix A. Details about the Training of the Classifiers

The LR is trained on 50 epochs with the Adam optimizer [41], a learning rate of
0.01 and a weight decay of 5e− 6. The adapted LR is trained with α = 0.75, k = 15 and
κ = 1, as recommended in the original paper [24]. For the N-means algorithm, the default
implementation of scikit-learn [42] is used.
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Appendix B. Models Performance on Various Tasks
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Figure A1. Performance of the models used in Figures 2, 4 and 5. By default, 5-way 5-shot 30-query
tasks are generated. Mini/Tiered means that data come from mini-ImageNet/tiered-ImageNet. LR
are the accuracies obtained in the supervised setting. Adapted LR, the accuracies obtained in the
semi-supervised setting. N-means are the ARIs obtained in the unsupervised setting. For reasons of
scale, the ARIs are multiplied by 100.

Appendix C. Influence of the Number of Nearest Neighbors
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Figure A2. Influence of the number of neighbors k on the correlations. The features are extracted with
wideresnet from mini-ImageNet and diffused through a k-nearest neighbors similarity graph. 5-way
5-shot 30-query tasks are generated. In (a), the correlations are computed between the measures and
the accuracy of a LR on the unlabeled samples. In (b), they are computed between the measures and
the ARI of a N-means on the unlabeled samples. Each point is obtained over 10,000 random tasks.
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