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Convective flows coupled with solidification or melting in water bodies play a major role in shaping
geophysical landscapes. Particularly in relation to the global climate warming scenario, it is essential
to be able to accurately quantify how water-body environments dynamically interplay with ice
formation or melting process. Previous studies have revealed the complex nature of the icing process,
but have often ignored one of the most remarkable particularity of water, its density anomaly, and
the induced stratification layers interacting and coupling in a complex way in presence of turbulence
and phase change. By combining experiments, numerical simulations, and theoretical modeling, we
investigate solidification of freshwater, properly considering phase transition, water density anomaly,
and real physical properties of ice and water phases, which we show to be essential for correctly
predicting the different qualitative and quantitative behaviors. We identify, with increasing thermal
driving, four distinct flow-dynamics regimes, where different levels of coupling among ice front,
stably and unstably stratified water layers occur. Despite the complex interaction between the ice
front and fluid motions, remarkably, the average ice thickness and growth rate can be well captured
with the theoretical model. It is revealed that the thermal driving has major effects on the temporal
evolution of the global icing process, which can vary from a few days to a few hours in the current
parameter regime. Our model can be applied to general situations where the icing dynamics occurs
under different thermal and geometrical conditions (e.g. cooling conditions or water layer depth).

Many geophysical patterns result from the interaction
between fluid motions and the dynamical evolution of
solid phase boundaries. Usually, the dynamics of the
solid boundaries are due to phase change or erosion. Ex-
amples range from sculpturing of the glacier, ice shelf,
iceberg, and sea caves due to flows in the oceans, to con-
gelation ice forming in ponds and lakes and many geo-
logical patterns [1], astrophysical landforms [2], as well
as in our daily lives and many industrial processes [3, 4].

Generally, warm water (freshwater or water with low
enough salinity) is lighter and so it floats, whereas cold
water is denser and therefore it sinks. However, this is
not the case once water is around the density-peak tem-
perature, Tc (around 4◦C), when its density reaches the
maximum: water expands when it is colder than Tc (the
nonmonotonic relationship of density with temperature
for water near Tc is reported in SI Appendix, section C
and Fig. S3). During cold weather conditions when the
lake is close to freezing, colder water (less than Tc) floats
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to the top and warmer water (more than Tc) sinks. Con-
sequently, the coldest water, which sits on top of the lake
releases heat under cold weather conditions, freezes to
form a layer of ice. That is why ice first forms on top of
water bodies. The temperature structure in shallow ice-
covered lakes is characterized by a continuous increase
from 0◦C at the ice-water interface up to Tc or higher at
the bottom layers in the deep parts of the lake [5]. A re-
search report on the ice-covered Karelian lake found that
at the ice formation, a weak stable stratification existed
in the lakes with average temperatures about 1◦C. When
there is a strong stratification, the turbulent mixing tends
to be suppressed. While the temperature exceeds Tc the
interior convection develops that is important to the flow
dynamics in the water beneath ice [6]. This water den-
sity anomaly results in a complex coupling between the
ice layer, the gravitationally stably stratified layer of fluid
(0 < T ≤ Tc) and the unstably stratified layer (T > Tc,
with convective instability) [4, 7–14]. The stably strat-
ified layer always exists in the ice-water system, but its
strength may be enhanced or depleted under different
levels of turbulence.

Connecting to the complex fluid dynamics in the wa-
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ter, the evolution of ice front and the phase change at
the interface show very rich dynamics, which recently
has received increasing attention. Rayleigh-Bénard (RB)
convection, a fluid layer confined between a cold top plate
and a hot bottom plate [16–20], is an ideal model system
to study the aforementioned coupled dynamics. Various
studies have been performed on the flow in the RB sys-
tem with freezing or melting boundary conditions. The
focus has been on the behaviors of global quantities such
as the heat flux, the kinetic energy, and the dynamics of
the ice-water interface morphology with a melting phase-
change boundary in the RB system [2, 21, 23, 24], pattern
selection and instability analysis with a moving solid-
water interface [25, 26], the bistability of the equilibria
induced by different initial conditions [3, 27], melting in
double diffusive convection [29–31], the influences of dif-
ferent container shapes on the melting and convection of
phase change materials [32–34].

While most of these studies consider the interaction of
phase change with the convective motions in the fluid, yet
several crucial ingredients have not been fully taken into
consideration, notably the water density anomaly and
the real physical properties of the ice and water. These
ingredients are crucial to realistically capture the growth
of the ice layer and the dynamical coupling mentioned
above. For example, in geophysical flows, with a typi-
cal water temperature in winter of the range 0 ∼ 15◦C
(see examples of Historical Lake Erie Temperatures from
National weather service [35]), it is essential to consider
the realistic natural configurations to make correct pre-
dictions, e.g., how thick the ice can form and how long it
takes to arrive at the equilibrium state for a given envi-
ronmental condition. What’s more, correctly predicting
the ice formation time scale can provide a natural indi-
cator of climate change [36–39].

In this work, we combine experiments, numerical sim-
ulations, and theoretical modeling to study the coupled
dynamics of freshwater solidification and the surrounding
fluid dynamics, properly accounting for the water density
anomaly and the real physical properties of ice and wa-
ter. We aim to reveal how the growth of freshwater ice
depends on the environmental conditions.

RESULTS AND DISCUSSION

Experiments and simulations

The experiments are performed in a Rayleigh-Bénard
convection system of cuboid shape (aspect ratio Γ =
Lx/H = 1, Lx, H are the system width and height)
heated up from the bottom and cooled down from the
top. Water, as the working fluid, is deionized, ultra-
pured and degassed. The top plate temperature, Tt, and
bottom plate temperature, Tb, are imposed by water-
circulating bath, with Tt < Tφ and Tb > Tφ (Tφ is the
water freezing point, Tφ = 0◦C). In such a configuration,
ice starts forming from the top plate and it grows till its

saturation thickness. During the experimental process,
there is a volume change induced by thermal expansion
of water and water-ice phase change, so an open expan-
sion vessel is connected to the experimental cell allowing
to quantify the volume change, and therefore the pressure
of the system remains atmospheric pressure. By monitor-
ing the water volume change inside the expansion vessel,
the evolution of the spatial average ice thickness can also
be calculated (details are shown in SI Appendix, section
A and B and Figs. S1 and Figs. S2). In addition to the
experiments, the numerical simulations are carried out
using Lattice-Boltzmann method (LBM) numerical code
[2, 9, 10]. In the simulations, we consider the density
anomaly, the source term from the latent heat at the ice
front [8], and the correction for the governing equations
when the investigated domain consists of heterogeneous
media, i.e., ice and water phases (SI Appendix, section E)
[11]. Two- (Γ = Lx/H = 1) and three-dimensional sim-
ulations are conducted (Γ = Lx/H = 1, Ly = H/4, same
as the experimental cell; Ly being the system width),
and the boundary conditions are no-slip for the veloc-
ity, adiabatic at the sidewalls, and constant tempera-
tures at the top and bottom plates. The initial condi-
tion is still fluid at uniform temperature, Tb. We as-
sume thermophysical properties to be constant except for
the density in the buoyancy term. The real water den-
sity property near to Tc is well described with the equa-
tion ρ = ρ0(1 − α∗|T − Tc|q), where α∗ is not the usual
thermal expansion coefficient but has units of K−q with
q = 1.895 and α∗ = 9.30 × 10−6(K−q). This equation
gives the maximum density of water ρ0 = 999.972 kg/m3

at T = Tc [1] (see also in SI Appendix, section C and Fig.
S3).

One important control parameter of the system is the
Rayleigh number, Rae, which is the dimensionless ther-
mal forcing, and its definition formula is explained be-
low (more details are shown in SI Appendix, section D).
Another important control parameter is the Stefan num-
ber which relates the sensible heat to the latent heat,
Ste = L/Cpi(Tφ − Tt), with Cpi being the isobaric heat
capacity of ice and L the latent heat of solidification. In
order to make sure that the fluid dynamics of the water
region is the only influencing factor for the ice evolution,
the top temperature, Tt (correspondingly also the Stefan
number), both in experiments and simulations is fixed at
a typical value for winter, which we select as Tt = −10◦C
and thus the Stefan number Ste ≈ 20. The bottom plate
temperature, Tb (connected to Rayleigh number to be
explained below), is varied in a wide parameter regime,
i.e., in experiments 3.8◦C ≤ Tb ≤ 8◦C and in simula-
tions 0.5◦C ≤ Tb ≤ 15◦C (typical water temperature in
winter). We employ laboratory experiments to ensure
that the simulations capture all relevant aspects of the
physics. The results from the experiments act as the val-
idation for the results from the simulations. On the other
hand, simulations can provide more detailed information
about the investigated system, and also it is easier to
change the values of the control parameters in numer-
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ical simulations rather than that of the experiments in
the laboratory. So we conduct numerical simulations in
a wider and more systematic parameter range than that
of the experiments.

An important response to the imposed Rae and Ste is
the overall heat flux transported vertically from bottom
to top. The dimensionless heat flux is Nusselt number,
Nu (more details are shown in SI Appendix, section D).

The final average ice position

We first compare the final average ice position, h0,
which depends on the bottom plate temperature from the
experiments, the two dimensional (2D-) and two dimen-
sional (3D-) simulations and from the theoretical model
(the details of the model will be discussed later; recall
that we use a fixed top temperature (Tt = −10◦C) as
a typical example, nevertheless, it should be noted that
in real natural situations, h0 may also be influenced by
other factors, see also Results and Discussion section).

Figure 1A is a photo of the experimental domain at
Tb ≈ 8◦C when the system has reached the statistical
equilibrium state. With the same operating conditions,
the visualization from the 3D-simulation of the ice posi-
tion and the temperature field in the fluid phase at the
statistical equilibrium state is shown in Fig. 1B. As shown
in Fig. 1A and B, the ice position is similar in the experi-
ment and the numerical simulation in the same condition.
Varying bottom plate temperature, Tb, in a large tem-
perature range, the spatially average ice position at the
equilibrium state as a function of Tb is shown in Fig. 1C.
Depending on Tb, the system may end up in a diffusive
state (refer to the green shaded area of Fig. 1C ) or in
a convective state. There is a good agreement on the
height of the spatially average ice-water interface among
the experiments, the 2D- and 3D- simulations as well
as the theoretical model with considering water density
anomaly (see Fig. 1C, in which “E”, “S”, “M” stand for
experiment, simulation, and model, respectively). How-
ever, it is noteworthy that when neglecting the water
density anomaly the prediction of ice position from the
model (see the violet line and the green dashed line in
Fig. 1C ) deviates dramatically from the real value. The
violet line is under the assumption that the thermal ex-
pansion coefficient, α, is a fixed value, which is evalu-
ated at the mean temperature of the investigated range
of Tb (∼ 7◦C); one may argue that α itself can change
with the temperature, then we show the green dashed
line, and here α is evaluated at the mean temperature
Tmean of the water region for each bottom plate temper-
ature Tb, which is Tmean = (Tb + Tφ)/2. Nevertheless,
the trend from the model without considering the water
density anomaly (the violet line and green dashed line
in Fig. 1C ) is very different from the real situation (the
blue line in Fig. 1C ). The key reason is that the sta-
bly stratified layer (with temperature ranging from Tφ to
Tc), which results from the density anomaly of water, is

crucial for the dynamics of the system. The results from
the experiments, 2D- and 3D- simulations agree well with
each other, which indicates the simulations are reliable,
and therefore in the following we will explore the com-
plex nature of the coupled dynamics mostly via 2D- sim-
ulations as these allow to more efficiently scrutinize the
phenomena in a wide range of parameters.

The coupled dynamics of the ice growth with the
fluid motion

To investigate the physical mechanism, we highlight
four distinct regimes based on the phenomenology of the
equilibrium state as the bottom plate temperature in-
creases from below to above Tc (Fig. 2A–D). The four
regimes that will be considered are as follows, where the
first two letters of the acronyms specify the feature of
stratification, which can be either the stably stratified
(SS) or the unstably stratified (US), and the third let-
ter of the acronyms specifies the mode of heat trans-
port (and fluid motion) which can be either diffusion
(D) or convection (C): 1) Regime-1: SSD with flat ice
(Tb ≤ Tc) ; 2) Regime-2: SSD + USD with flat ice
(Tc < Tb ≤ 5.1◦C); 3) Regime-3: SSD + USC with flat
ice (5.1◦C < Tb ≤ 6.9◦C); and 4) Regime-4: SSD + USC
with deformed ice front (Tb > 6.9◦C).

The boundaries between different regimes depend on
the bottom plate temperature (here, around the thresh-
old between each regime, we did simulations with 0.1K
increments in order to better identify the transition val-
ues). Fig. 2A–D show typical cases from all four regimes
from the simulations. Next, we discuss the details of the
four regimes.
Regime-1 (Tb ≤ Tc) Figure 2A shows a typical case

in this regime. The system is in a stably stratified state
with purely diffusive heat transfer all the way from the
beginning (see Fig. 2AI) till the end (see Fig. 2AII), the
corresponding sketch, which shows different layers at the
statistical equilibrium state in the system, can be seen in
Fig. 2AIII. The ice-water interface is always flat indicat-
ing that the instantaneous 0◦C isotherm overlaps with
the average position of the ice front, h0. The tempera-
ture profiles are linearly dependent on the height both in
the ice and water phases, with the different slopes corre-
sponding to the different thermal conductivity in ice and
water (Fig. 2AIV).
Regime-2 (Tc < Tb ≤ 5.1◦C) Raising the bottom

plate temperature into this regime, the gravitationally
unstably stratified layer (from the level of the bottom
plate to the spatially average level of Tc denoted as
h4, namely the horizontally average temperature is Tc

at z = h4, with the temperature ranging from Tc to
Tb) emerges beneath the gravitationally stably stratified
layer (from the level of h4 to h0 with the temperature
ranging from Tφ to Tc, see the yellow shaded area in
Fig. 2BIII). When Tb > Tc, in order to know beforehand
whether the heat transfer regime is diffusive or convec-
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FIG. 1. (A) Picture of the experimental domain. The system is heated up at the bottom (above the water freezing point
Tφ = 0◦C) and cooled down from the top (below Tφ). In order to focus on how the fluid dynamics of the water region influences
the process of ice formation, the top temperature, Tt, is fixed both in experiments and simulations at a typical value in the
winter (which is chosen to be Tt = −10◦C). The case shown in (A) is at the statistical equilibrium state with Tb ≈ 8◦C (to give
an impression of the approximate timescale of reaching an equilibrium state, it takes a few hours to a few days in the highly
convective state and purely conductive state (Tb < Tc)), “I” stands for ice and “W” water. (B) Visualization of the temperature
field across the numerical domain at the statistical equilibrium state (3D-simulation for Tb = 8◦C and Tt = −10◦C). The blue-
colored domain is in the ice region. The ice-water interface is drawn in dark blue. (C ) The comparison of spatial-average
ice-water interface from the experiments (triangles), the 2D- (circles) and 3D- (stars) simulations, as well as the theoretical
model ( legends “E”, “2D-S”, “3D-S”, “M for water”, “M (neglecting ρw anomaly)” stand for experiments, two-dimensional
simulation, three-dimensional simulation, model for water, model for water without considering the water density anomaly,
respectively; blue line: with considering water density anomaly at Tc; violet line: without considering water density anomaly
at Tc), and the thermal expansion coefficient α is evaluated at the mean temperature of the investigated range of Tb (∼ 7◦C);
green dashed line: without considering water density anomaly at Tc, and the thermal expansion coefficient α is a function of
temperature, which is evaluated at the mean temperature Tmean of the water region for each bottom plate temperature Tb,
which is Tmean = (Tb +Tφ)/2. The green-shaded area shows the temperature range corresponding to the diffusive regime of the
system. Tbcr is the critical bottom plate temperature (Tbcr ≈ 5.1◦C, depending on the model results) above which the system
ends up in a convective state. The error bars for the experiments (inside the triangles and comparable to the symbol size) come
from the measurement errors (more details are reported in SI Appendix, section B). The error bars for the simulations (inside
the circles) are smaller than the symbol size represent the maximum level of difference between the 2D- and 3D- simulations.

tive during the transient state and the statistical equi-
librium state, we define the effective Rayleigh number,
Rae, based on the thickness of the water region from the
bottom plate to the spatially average level of Tc and the
corresponding temperature difference, which reads [3]

Rae =
(∆ρ/ρ0)g(h4)3

νκ
=
gα∗(Tb − Tc)q(h4)3

νκ
, (1)

with g being the gravitational acceleration, ν the kine-
matic viscosity, and κ the thermal diffusivity. Due to the
initial conditions, the system starts from convection in
the gravitationally unstably stratified layer, with the Tc

isotherm deformed (see Fig. 2BI), where Rae ∼ 108 �
Racr ≈ 1708. (Racr is estimated by the linear insta-
bility analysis, which has been intensively validated in
the references [7, 45, 46]). As the ice grows, the effec-
tive height, h4, shrinks and Rae consequently decreases.
And thus the system ends up at a diffusive state in the
entire water layer (SSD+USD) with effective Rayleigh
number in US layer Rae ∼ 10 smaller than Racr. This
also explains why the Tc-isotherm becomes flat in the end
(see Fig. 2BII), and the corresponding sketch is shown in
Fig. 2BIII. The entire system is in a diffusive state with
a linear temperature profile (see Fig. 2BIV) similar to
that in Regime-1.

Regime-3 (5.1◦C < Tb ≤ 6.9◦C) As Tb is in Regime-

3, with temperature ranging from 5.1◦C to 6.9◦C, there
are rich fluid dynamics in the fluid layer below the ice.
The system ends up in the convective state with Rae ∼
105 (see Fig. 2C II). We can see hot plumes form from the
bottom plate. During the lifetime of hot plumes, they de-
tach from the bottom plate shortly after being generated;
the plumes accumulate and become coherent plumes,
which rise through the bulk region while experiencing
heat exchange with the fluid around; if in a classical
Rayleigh-Bénard system they would later on go through
the cold boundary layer below the flat Tc-isotherm where
they give out most of the energy and slow down to stop,
however, in the stably and unstably stratified coupled
system presented here, bunches of plumes can impact on
and deform the Tc-isotherm because of turbulent bursts.
The Tc-isotherm is no longer flat but develops some spa-
tial variations (see the thick black line in Fig. 2C II). The
region from the spatially average height, h4, of the in-
stantaneous Tc-isotherm to its upper bound, h+

4 , belongs
to the gravitationally stably stratified layer but there are
also some warmer patches of fluid with the temperature
larger than Tc from the unstably stratified layer. Due to
mass conservation, the same amount of fluid, with a tem-
perature smaller than Tc coming from the gravitationally
unstably stratified layer, goes downwards below the level
of h4 (see the downward cold plumes in the region from
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FIG. 2. The phenomenology of temporal dynamics and the feature at the statistical equilibrium states in the four regimes.
Typical cases visualizations from Regimes-1–4: (A) Tb = 3.8◦C. (B) Tb = 4.75◦C (see SI Movies1 ). (C ) Tb = 5.5◦C (see
SI Movies2 ). (D) Tb = 10◦C (see SI Movies3 ). Different time instances of temperature field for four typical regimes of the
simulations (panels I and II in (A)–(D)). The sketches on panels III in (A)–(D) depict the coupled different layers of the system
at the statistical equilibrium state in Regimes-1–4 respectively, in which the interface (horizontal lines) between neighboring
layers (different color shaded areas) are space-average value. The dashed black line is for h0 (the final average ice position);
dotted blue line is for h4 (the final average Tc-isotherm); thick black curved lines are for instantaneous 0◦C and Tc isotherms
respectively; dash-dotted lines are for the upper bound h+

4 and lower bound h−
4 of instantaneous Tc isotherms. Panels IV in

(A)–(D): the temporal and space-average temperature profiles at the statistical equilibrium state corresponding to the four
typical cases. In panels III&IV of (A)–(D), the blue-shaded, yellow-shaded and orange-shaded areas denote ice (ICE), stably
stratified layer (SS) and unstably stratified layer (US) respectively. To make the flow structures more visible, two approaches
are applied: 1) two colorbars for the temperature field corresponding to ice region(TI(x, z)) and water region (Tw(x, z)) are
shown on the right of (D)I&II; 2) (A)I, (C )I&II, and (D)I&II show more isotherms (thin black lines) except for 0◦C & Tc

isotherms (thick black lines), which are designed to make the hot and cold plumes more noticeable.

the lower bound of the instantaneous Tc isotherm h−4
to h4 in Fig. 2C III, the flow is convection-dominated in
that the estimated Peclet number in the current regime
is of order 102 ∼ 103 � 1; the Peclet number denotes
the relative importance of convection with respect to dif-
fusion, and is defined as Pe = LU/κ[48], where U is
the characteristic velocity which is taken as the free-fall

velocity scale with corrections U = 0.2ν
√
RaPr
h4

for buoy-

ancy driven convection [49], and L is the characteristic
length scale of the flow which is based on the unstably-

stratified layer, and L is the thickness of the unstably-
stratified layer, i.e., L = h4). In other words, due to the
non-monotonical behavior of water with respect to the
temperature, on average sense there is a stably stratified
layer with diffusive heat transfer (SSD, from the level of
h4 to that of h0) and unstably stratified layer with con-
vective heat transport (USC, from the level of the bottom
plate to that of h4), however instantaneously because of
the penetration, there is a strong fluid exchange between
SSD and USC as indicated by the deformation of instan-
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taneous Tc-isotherm. Because of the shield of SSD where
there is still a horizontal layer with fluid temperature
purely smaller than Tc (from h+

4 to h0), the ice-water
interface is still flat in Regime-3. In this regime, the
temperature profile in the entire water layer is not linear
(see Fig. 2C IV). In the entrainment layer (from the level
of h−4 to the level of h+

4 ) and underneath USC, the tem-
perature profile reflects the turbulence-induced mixing:
there is a hot thermal boundary layer attached to the
bottom plate, a well-mixed bulk region of nearly uniform
temperature, and a cold thermal boundary layer.

Regime-4 (Tb > 6.9◦C) Upon further increasing Tb

to above 6.9◦C, the level of upper bound of instanta-
neous Tc isotherm, h+

4 , is even higher than the spatially
average level of ice position h0, which indicates strong
thinning of the thermal boundary layer by the plumes.
On the plume-impact region, ice melts and forms a con-
cave interface due to extra heat input. We can see that
there is no horizontally stably stratified layer with fluid
temperature purely smaller than Tc which can shield the
ice front from the turbulent convective motion. The Tc-
isotherm line is not in a well-defined position, instead, it
displays intensive spatial fluctuations due to strong tur-
bulent plumes, resulting in local melting or freezing of the
ice front. The water layer consists of a very wide range
of USC at the equilibrium state (refer to Fig. 2DII). The
temperature profile is similar to that in Regime-3 but
with a much thicker water layer thickness and a much
thinner ice layer. The fact of the asymmetrical feature of
the thermal boundary layers in the water layer is different
from that in the classical Rayleigh-Bénard convection,
which has also been found in [4], in which they investi-
gated the penetrative convection based on the Prandtl
number Pr = 1 which is different from the value we used
(∼ 10). In their work, the reported asymmetrical feature
of the thermal boundary layers (fig. 9-11 in [4]) is simi-
lar to that found in Regime-3 (Fig. 2C IV) and Regime-4
(Fig. 2DIV) of the current study, when the system has
the coexistence of the stably and unstably stratified lay-
ers.

In summary, we can see that the heat transfer regimes
of diffusion and convection can be even switched dynami-
cally during the evolving process due to the fact that the
USC thickness is changing, so the system may end up
in a diffusive or convective state depending on the final
effective Rayleigh number Rae (which varies with Tb).
The statistical equilibrium state depends on the bottom
plate temperature, Tb. Next, we assess the detailed ice
dynamics in a more quantitative perspective.

The flow is highly dynamic in the Regime-3 and
Regime-4, and the intricate nature of the intensive inter-
action among the ice front, the entrainment layer, and
the unstably-stratified layer leads to high fluctuations of
Tc and Tφ isotherm varying in a range (see the black-
shaded area and the red-shaded area in Fig. 3). Neverthe-
less, the global responses of the system, i.e., the spatial-
average thicknesses of the ice-water interface, h0 (where
the horizontally average temperature is 0◦C), and the,

h4 (where the horizontally average temperature is Tc),
match up well to the 1D-model for water (to be discussed
below) except for some deviations in the Regime-3 and
Regime-4. The ice-water interface and the Tc-isotherm
attach to and adjust to each other, which results in a self-
organizing large scale circulation, and the overall effects
shape the ice front as shown in Fig. 2DII.
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(1D-M for water)
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(1D-M for water)
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0 5 10 15

FIG. 3. The complex phenomenology emerging from the
tight interplay among ice front, stably stratified layer and
unstably stratified layer: comparison of the theoretical model
(black thick line for h0, red thick line for h4) and the simu-
lations featuring the real nature of fluctuations, with circles
being the average values (black circles for h0, red circles for
h4), and black-shaded area and red-shaded area indicating
the spatial fluctuation of instantaneous ice-water interface
and Tc-isotherm. The blue-shaded area indicates Regime-
1 (R-1), green-shaded area Regime-2 (R-2), yellow-shaded
area Regime-3 (R-3) and the remaining Regime-4 (R-4). In
Regime-4 where Tb (i.e. Rae) is high, the predictions for h4

deviate a bit from theoretical model due to the intensive in-
teraction among different layers.

Theoretical model

The ice thickness can be properly predicted by tak-
ing into account the water density anomaly and the
known scaling properties of turbulent thermal convec-
tion (namely the Nusselt number-Rayleigh number rela-
tion [18]). Next, we introduce the theoretical model and
we consider two situations: 1) for statistical equilibrium
states, and 2) for the time-dependent transient states.
Here, we assume one dimensional geometry and all the
notations are consistent with that in the panels III of
Fig. 2A–D (more details about the theoretical model are
reported in SI Appendix, section D).

1) theoretical model for water: statistical equi-
librium state

When the system has reached the statistical equilib-
rium state, there is an energy balance between the heat
flux through the ice layer and that through the water
layer. When Tb > Tc, the water layer consists of a stably
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stratified layer (from Tφ to Tc) and a unstably stratified
layer (from Tc to Tb). Based on the heat flux balance,
the average thicknesses of the ice layer (H − h0), sta-
bly stratified layer (h0−h4) and unstably-stratified layer
(h4, exists when Tb > Tc) at the equilibrium states can
be evaluated.
In the temperature range Tb ≤ Tc. The system is in a

diffusive state and independent of the water layer thick-
ness, the total water layer is stably-stratified. According
to the conservation of heat flux, we can obtain

kI
Tφ − Tt
H − h0

= kw
Tb − Tφ
h0

. (2)

where kI and kw are the thermal conductivity of ice and
water, respectively. Recall that Tφ = 0◦C. From which
we obtain the results on the thicknesses as follows,

H − h0 =
−kITt

kwTb − kITt
H,

h0 =
kwTb

kwTb − kITt
H.

(3)

In the temperature range Tb > Tc. We assume that
the interfaces of the ice front and that between the sta-
bly stratified and the unstably stratified layers are both
flat, based on the heat flux balance between the gravi-
tationally unstably-stratified layer (from the level of the
bottom plate to the spatially average level of Tc denoted
as h4, namely the horizontally average temperature is Tc

at z = h4, with the temperature ranging from Tc to Tb)
and the gravitationally stably-stratified layer (from the
level of h4 to h0, with the temperature ranging from Tφ
to Tc), 

kI
Tφ − Tt

H − h0
= kw

Tc − Tφ
h0 − h4

,

kI
Tφ − Tt

H − h0
= Nukw

Tb − Tc

h4
.

(4)

The model for the heat flux in the unstably stratified
layer is in the form of Nusselt number as a function of
Rayleigh number (Nusselt number is the dimensionless

heat flux defined as Nu = grad(T )|z=0

(Tc−Tb)/h4
). The Rayleigh

number dependence of Nu can be obtained from the
simulations and is consistent with that of the classical
Rayleigh-Bénard in the same parameter regime [5], sug-
gesting that the model we build is of a general form (more
details are reported in SI Appendix, section D).

By this statistical equilibrium state model, the final
ice position, as a function of Tb (see Fig. 1C and Fig. 3),
and the Tc isotherm position, as a function of Tb, can be
calculated, which show a good agreement with the results
from experiments as well as simulations.
2) theoretical model for water: transient state
Following the analytical methods for the classical Ste-

fan problem [6], since the time-dependent evolving inter-
face between ice and water (denoted as z = h0(t)) (where
h0(t) is the height at which Tw(h0(t), t) = Tφ) is a pri-
ori unknown, a part of the solution will be to determine

the boundary. As the phase transition occurs, there will
be volume change due to the density difference between
water and ice as well as the thermal expansion effect. In
order to simplify the problem, here we ignore this volume
variation. Further, we consider the one-dimension heat
transfer problem and assume that the physical proper-
ties are invariant with temperature while their values are
different for the ice and water phase; the ice-water in-
terface is fixed at phase change temperature Tφ (recall
Tφ = 0◦C).

When Tb ≤ Tc, the basic control equations are

∂TI(z, t)

∂t
= αI

∂2TI(z, t)

∂z2
, 0 < z < h0(t), (5)

∂Tw(z, t)

∂t
= αw

∂2Tw(z, t)

∂z2
, h0(t) < z < H, (6)

where α is the thermal diffusivity, the subscripts “I”
and “W” denote ice and water phase respectively. The
boundary conditions read

Tw(0, t) = Tb,

lim
z→h0(t)−

Tw(z, t) = lim
z→h0(t)+

TI(z, t) = Tφ,

TI(H, t) = Tt.

(7)

where the superscripts “+” and “−” indicate the direc-
tion when taking the limit, namely from smaller than
h0(t) towards h0(t) and from larger than h0(t) towards
h0(t), respectively. The nonlinear energy balance at the
ice-water interface is

LρI
dh0(t)

dt
= kI

∂TI(z, t)

∂z
|z=h0(t)+ − kw

∂Tw(z, t)

∂z
|z=h0(t)− ,

(8)
From Eqns. (22, 21, 23, 24), we obtain the solutions for
temperature distributions in the ice and water,

Tw(z, t) = Tb −
Tb

erfc(λw)
erfc

(
Z

2
√
αwt

)
,

TI(z, t) = Tt −
Tt

erf(λI)
erf

(
Z

2
√
αIt

)
,

(9)

where Z = H − z, erf is the error function (erfc()x) =
1− erf(x)), and

λw =
H − h0(t)

2
√
αwt

, λI =
H − h0(t)

2
√
αIt

. (10)

When Tb > Tc, the effective Rayleigh number can be
calculated and the interface energy balance takes the
form:

LρI
dh0(t)

dt
= kI

∂TI(h0(t)+, t)

∂z
+ Nu kw

Tb − Tφ
h0(t)

. (11)

Based on Eqn. (22) and (11) with boundary condi-
tions Eqn. (23), the position of the ice-water interface as
a function of time can be solved, and therefore we can
predict the temporal evolution of the global icing pro-
cess of the icing process (see Fig. 4B) (more details are
reported in SI Appendix, section D).
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Growth dynamics of the ice layer
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FIG. 4. Dynamics of the ice growth: (A) Time evolution of
the average ice thickness for various Tb. The parameters are
Tt = −10◦C and 0.5◦C ≤ Tb ≤ 15◦C. The gray arrow in-
dicates the direction of increasing Tb. The circles show the
saturation time (when ice thickness is increasing to a value of
90% of that in statistical equilibrium state); (B) The satura-
tion time as a function of Tb. The blue-shaded area specifies
Regime-1 (R-1), green-shaded area Regime-2 (R-2), yellow-
shaded area Regime-3 (R-3) and the remaining Regime-4 (R-
4).

The coupled interactions between the stably and the
unstably stratified layers play a major role in determin-
ing the final saturation thickness of the ice layer and the
time it takes to reach the saturation state (here we de-
fine the saturation time, t∗, as the time when the ice
thickness reaches 90% of the final statistical equilibrium
state thickness). At early stages of the evolution, the
conductive heat transfer within the ice layer dominates
versus the convective heat transfer within the liquid, be-
cause the ice layer is thin where the temperature gradi-
ent is large, correspondingly, the conductive heat flux is
large. This conduction-dominated early evolution stage
yields leading order behaviour of the ice thickness with
(H − h0)/H ∝ t0.5 at early times even with convective
heat fluxes in the liquid (shown in Fig. 4A). The ice
growth deviates from the early leading order behaviour
due to the convective flows in the water layer. The satu-
ration time t∗ versus the bottom plate temperature is

shown in Fig. 4B, which clearly shows a good agree-
ment between simulations (black symbols) and experi-
ments (orange symbols). We also compare the experi-
mental and numerical results with that in the theoretical
model. They show a good agreement except that there
is some deviation in Regimes-2 and 3, which may be due
to the complex dynamics around the onset of convection.
Further, the coexistence of stably and unstably strati-
fied layers leads to the effective convective region (cor-
responding to the unstably-stratified layer) smaller than
the entire water depth, which may contribute to the dis-
crepancy. Based on the investigated parameter regime,
it is revealed that the temperature of the bottom surface
has major effects on the icing time. To give the reader an
impression of the physical saturation time scale, for ex-
ample, when the bottom plate increases from Tb = 0.5◦C
to Tb = 15◦C, the saturation time can vary from a few
days to a few hours.

Here, we use a fixed top temperature (Tt = −10◦C)
as a typical example, nevertheless, it should be noted
that in real natural situations, the icing dynamics may
also be influenced by the cooling conditions, whole water
layer depth and other factors, to which our findings are
still applicable and the model is easy to be extended to
general situations.

CONCLUSIONS AND OUTLOOK

By combing experiments, simulations, and theoretical
modeling, we systematically investigated the coupled dy-
namics between flow and ice growth for different levels of
stratification instability (i.e., higher Tb signifies increas-
ingly unstably stratified). We revealed that the dynamics
of the ice thickness can be accurately predicted only by
properly taking into account the water density anomaly,
in combination with the known GL theory [18] scaling
properties of turbulent thermal convection. We uncov-
ered the rich coupling dynamics among the ice-water in-
terface and the stably- and unstably-stratified layers.

Four regimes were identified depending on Tb

(Regimes-1, 2, 3, and 4), which show the different degrees
of interactions with respect to the activities in the water
layer. It is noteworthy that turbulent bursts from the
convective unstably stratified layer can penetrate above
the Tc and induce the entrainment layer in Regime-3.
However, as long as the ice still enjoys the protection of
the horizontally continuous stably-stratified layer (where
the heat transfers diffusively, SSD), the system termi-
nates with a flat ice-water interface, regardless of the
water layer ending up in convection (Regime-3) or con-
duction state (Regime-1 and 2). Higher thermal inten-
sity (namely high Tb), leads to the deformation of the ice
(see Fig. 2DII), which indicates that some spots of the
ice block are thin and vulnerable, and in the case of river
or lake ice, these spots may act as initial breakout point.
This information is of great importance in de-icing and
dredging waterways to provide a more convenient, effec-



9

tive, and smooth freight transportation system in win-
ter. Further, we showed that, up to a moderate level of
turbulence (Regime-1, 2, and 3), the spatially and tem-
porally average ice thickness at the equilibrium state can
be well predicted by the theoretical model, suggesting ro-
bust predictability of the model with the consideration
of the density anomaly.

We found that the ice grows diffusively until the system
slowly arrives at the energy balance state and the satu-
ration time can be also well predicted by the theoretical
model. Within the investigated parameter regime, the
equilibrium time for the ice growth decreases from a few
days to a few hours upon increasing Tb, suggesting differ-
ent environments can tune the final state and its time to
consumption. It is noteworthy that our findings can be
extended to general situations, such as different environ-
ment temperatures and different system sizes, amongst
others.

By modifying the thermal condition of the system, the
coupling of stably and unstably stratified layers holds
promise for regulating local mixing in devices (devoid
of moving parts) with respect to contemporary clinical,
pharmaceutical, as well as chemical categories, and is
ideal for biologically active elements.

The approach followed in this study, which is based on
the matching of controlled laboratory-scale experiments
with fully resolved direct-numerical simulations sets a
standard for future explorations on convection coupled to
phase-change problems. We note that the current work
has only uncovered a subset of the rich possibilities of
ice-water dynamics in terms of the parameter space. In
future investigations, we plan to continue by studying the
effect of container aspect ratio, ice-water interface incli-
nation, dissolved salt, overburden pressure, the topic of
which are of great relevance for better modeling of geo-
physical and climatological large-scale processes.

MATERIALS AND METHODS

Below, we provide basic information on the experi-
ments, theoretical modeling, and numerical simulations
performed in this work. Further details and additional
figures are provided in SI Appendix .

Experimental setup

The turbulent convection coupled with solidification of
freshwater experiments were performed in a classical con-
vection setup (SI Appendix, Fig. S1A). The experimen-
tal cell, of rectangular shape, consists of plexiglas side-
walls with height H = 240mm (length Lx = 240 mm and
width Ly = 60 mm, i.e., aspect ratio Γ = Lx/H =1.0).
The working fluid is confined in between the copper top
plate (cooled by circulating bath (PolyScience PP15R-
40)) and the copper bottom plate (heated by circulating
bath (PolyScience PP15R-40)). In the experiments, ice

forms on the top plate and grows in thickness until the
system reaches a statistical equilibrium state. During the
phase change process, there is a volume change. In or-
der to release the pressure due to volume change induced
by phase-change, an expansion vessel is connected to the
experimental cell through a tube. The expansion vessel
is open to the atmosphere so that the pressure of the ex-
perimental cell is kept constant. To avoid evaporation
of the water in the expansion vessel, we use a thin layer
of silicone oil (immiscible with water) to seal the water
surface. By monitoring the water level inside the expan-
sion vessel, the spatial average ice position, h0 (i.e., the
ice thickness is H − h0), can be calculated for each bot-
tom plate temperature, Tb SI Appendix, section B. Six
resistance thermistors (44000 series thermistor element,
SI Appendix, Fig. S1C) are embedded into the top and
bottom plates, respectively. To control the temperature
the setup to avoid the heat exchange between the exper-
imental cell and the environment, there are two kinds of
techniques applied: 1) the experimental cell is wrapped in
a sandwich structure: insulation foam, aluminum plate,
and insulation foam; 2) a PID (Proportional-Integral-
Derivative) controller (SI Appendix, Fig. S1B) is in-
stalled to the setup (more details are reported in SI Ap-
pendix, section A and section B). The working fluid is
deionized and ultrapure water. Before the experiments,
water is boiled twice to degas. Since water density in-
verses at temperature Tc, here we use the nonmonotonic
relationship of density with temperature for water near
Tc and details are reported in SI Appendix, section C.

Theoretical model

The theoretical modeling with considering density
anomaly for the system is divided into two situations and
we assume one-dimensional geometry: 1) for statistical
equilibrium states; and 2) for the time-dependent tran-
sient states. We also perform theoretical modeling with-
out considering water density anomaly and prove that
in this case the ice position can’t be predicted properly.
More details about the theoretical model are reported in
SI Appendix, section D.

Numerical simulations

We use Lattice-Boltzmann method (LBM) which is
able to capture the turbulent convective dynamics in the
water phase and also describe the phase change process at
the ice-water interface. SI Appendix, section E provides
more details about the relevant equations that govern
phase change, fluid flow, and heat transfer solved by the
LBM algorithm.
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SI: SUPPLEMENTARY INFORMATION

SECTION A: EXPERIMENTAL SETUP

Rayleigh-Bénard convection experiments coupled with solidification of freshwater are performed in a classical con-
vection setup (see Fig. 5). Fig. 5A reports a sketch of the experimental cell, of rectangular shape, consisting of
a plexiglas sidewall with height H = 240 mm (length Lx = 240 mm and width Ly = 60 mm, i.e., aspect ratio
Γ = Lx/H =1.0). The working fluid is deionized and ultrapure water. Before conducting any experiments, water is
boiled twice to degas. The working fluid is confined in between the copper top plate (cooled by a circulating bath,
PolyScience PP15R-40) and the copper bottom plate (heated by a circulating bath, PolyScience PP15R-40). The top
and bottom plates and the sidewalls are sealed using silicone O-ring. During the experiments, the top plate temper-
ature, Tt, and bottom plate temperature, Tb, are kept constant, with Tt < 0◦C and Tb > 0◦C. In the experimental
measurements, the temperature fluctuations are less than ±0.2K for the bottom plate and ±0.02K for the top plate.
The fluctuations of the top plate temperature are less than that of the bottom plate, and this is because the ice forms
on the top plate and the heat transfer mode is conduction, while on the bottom plate, the turbulent flows of the water
region can directly affect the temperature of the bottom plate and induce more fluctuations. In order to focus on
how the fluid dynamics of the water region influences the ice formation, the top plate temperature Tt (and therefore
the Stefan number, Ste) is fixed in the experiments at a typical value in winter, which we select as Tt = −10◦C (i.e.,
Ste ≈ 20). The bottom plate temperature Tb (i.e., Rayleigh number, Ra) is varied in the temperature range of 3.8◦C
≤ Tb ≤ 8◦C. In the experiments, ice forms on the top plate and grows in thickness until the system reaches a statistical
equilibrium state. During the phase change process, there is a volume change. In order to release the pressure due to
volume change induced by phase-change, an expansion vessel is connected to the experimental cell through a tube.
The expansion vessel is open to the atmosphere so that the pressure of the experimental cell is kept constant. To avoid
evaporation of the water in the expansion vessel, we use a thin layer of silicone oil (immiscible with water) to seal
the water surface. By monitoring the water level inside the expansion vessel, the evolution of the spatial average ice
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thickness can be calculated. So, when the water level doesn’t change in the expansion vessel, it is expected that the
system has reached the equilibrium state. Six resistance thermistors (44000 series thermistor element, see Fig. 5C )
are embedded into the top and bottom plates respectively (refer to the black shaded circles on the top and bottom
plates in Fig. 5A for the positions of the thermistors). The experimental cell is wrapped in a sandwich structure:
insulation foam, aluminum plate, and insulation foam. There is a PID (Proportional-Integral-Derivative) controller
(see Fig. 5B) to control the temperature of the setup in order to avoid heat exchange between the experimental setup
and the environment.

We have limited our experimental, simulation, theoretical studies to a constant top undercooling temperature of
Tt = −10◦C, and we find four typical regimes based on the coupling behaviors. The effects of changing the top
undercooling temperature Tt are qualitatively predictable and are not expected to change the occurrence of the four
typical regimes, except that the critical bottom heating temperature for the onset of convection will change. Assume
the top undercooling temperature is lower, e.g., Tt = −20◦C. At the final equilibrium state, if the ice layer thickness
remains the same as that in the case Tt = −10◦C, so the temperature gradient in the ice layer is higher, and thus the
heat transfer rate in the ice layer is higher than that in the water layer. In order to reach the heat transfer balance
state, the ice tends to melt and arrives at a thinner ice thickness, correspondingly, the heat transfer rate in the ice
layer decreases and the heat transfer rate in the water layer increases (because the effective Rayleigh number which is

defined as Rae = (∆ρ/ρ0)g(h4)3

νκ = gα∗(Tb−4)q(h4)3

νκ ) increases when the water layer thickness increases). Therefore, the
critical bottom heating temperature for the onset of convection decreases.
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FIG. 5. Sketch of the experimental system for Rayleigh-Bénard convection coupled with solidification of fresh water. (A)
Experimental cell with insulation facilities. (B) The PID (Proportional-Integral-Derivative) controller and the temperature
sensor. (C ) The sketch of resistance thermistor used to monitor the top and bottom plates temperature.
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SECTION B: CALCULATION OF ICE THICKNESS AS A FUNCTION OF TIME IN EXPERIMENTS

The evolution of the spatial average ice position, h0 (the ice thickness is H−h0), can be calculated for each bottom
plate temperature, Tb, by monitoring the water level inside the expansion vessel.

There are three parts in the system: the Rayleigh-Bénard convection cell (RB cell, red dashed box), the expansion
vessel (EV, green dashed box) and the tube (blue dashed box) which connects the RB cell and the EV (see Fig. 6).
During the experiments, the mass of water and ice in the system (RB cell + tube + EV) is conserved (the initial
mass of the system m0 is a priori known), the total volume (the ice volume and the water volume) will change due to
isobaric thermal expansion of water and ice formation, both of which will induce a redistribution of the mass in the
system.

The argument of mass conservation yields:

m0 = ρw(Tm) ·ARB · h0(t) + ρI · [ARB · (H − h0(t))] +mtube + ρw(T0) · VEV(t). (12)

where ρw is the water density as a function of the mean temperature of the water in the RB cell Tm = Tb/2, ARB

is the cross sectional area of the RB cell, ρI is the ice density evaluated at the mean temperature of the ice layer Tt/2,
mtube is the water mass in the connecting tube, and VEV is the volume of water in the EV (green dashed box in Fig.
6).

So the general form of the ice position, as a function of time h0(t), is

h0(t) =
m0 − ρw(T0) · VEV(t)− ρIARBH −mtube

ρw(Tm)ARB − ρIARB
(13)

Next, we estimate the measurement error on the ice position, h0. The expansion vessel is made of a burette on
which there are scales, and therefore the volume of water in the expansion vessel can be read directly. The scale on
the expansion vessel has the minimum value of 0.1ml which can lead to accuracy errors when calculating h0. There
is also another factor associated with water evaporation in the expansion vessel that may induce error. It has been
mentioned in Section A that the expansion vessel is open to the atmosphere to keep the pressure constant, and we
use an oil seal to decrease the evaporation of water from the expansion vessel. To evaluate the evaporation effect, we
measure the evaporation rate of water in the expansion vessel on condition of oil seal, which is approximately 1ml
decrease for three days. On top of these, the minimum and maximum variation in ice position are 0.064cm (for the
case when Tb = 8◦C ) and 0.28cm (for the case when Tb = 3.8◦C), which corresponds to 0.5% (for the case when
Tb = 8◦C) to 7% (for the case when Tb = 3.8◦C) variation of h0.
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FIG. 6. Sketch for the mass conserved region of the system. There are three parts: Rayleigh-Bénard convection cell (RB cell,
red dashed box), the expansion vessel (EV, green dashed box) and the tube (blue dashed box) which connects the RB cell and
EV.
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SECTION C: THE NONMONOTONIC RELATIONSHIP OF DENSITY WITH TEMPERATURE FOR
WATER NEAR 4◦C

The working fluid in the experiments is deionized ultrapure water. Since water density inverses at the temperature
of Tc (∼ 4◦C), here we use the nonmonotonic relationship of density with temperature for water near Tc from Ref.
[1],

ρw = ρ0(1− α∗|Tb − Tc|q), (14)

with ρ0 = 999.972kg/m3, α∗ = 9.30× 10−6(K−q), q = 1.895. The density of water, ρw, as a function of temperature,
T , is shown in Fig. 7.
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FIG. 7. Water density anomaly: the nonmonotonic relationship of density with temperature for cold water near Tc from Ref.
[1].

SECTION D: THEORETICAL MODEL

Theoretical model incorporating water density anomaly

In this section, we introduce the theoretical model that accounts for the density anomaly of water. We consider
two situations and we assume one-dimensional geometry:

1) for statistical equilibrium states;
2) for the time-dependent transient states.
Several relevant previous investigations have also put many efforts into modeling convection. Esfahani et al.[2]

employs a linear equation of state for water to model convection with phase change; Purseed et al.[3] numerically
studied the Rayleigh-Bénard convection with phase change (not using water as working fluid) where the melting
temperature and the temperature difference between the top and bottom plates are free parameters and are varied;
Toppaladoddi & Wettlaufer. [4] investigated the penetrative convection with a nonlinear equation of state in a system
with rigid boundaries.

Next, we discuss the details of the two situations.
1) theoretical model for water: statistical equilibrium state
When the system has reached the statistical equilibrium state, there is an energy balance between the heat flux

through the ice and that through the water. When Tb > Tc, the water layer consists of a stably stratified layer (from
0◦C to Tc) and a unstably stratified layer (from Tc to Tb). So there are three kinds of heat flux that balance at the
statistical equilibrium state: 1) the diffusive heat flux in the ice layer; 2) the diffusive heat flux in the stably stratified
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layer; 3) the convective heat flux in the unstably stratified layer, from which we can calculate the average thicknesses
of the ice layer (H − h0), stably stratified layer (h0 − h4) and unstably stratified layer (h4, exists when Tb > Tc) at
the equilibrium state.

An important step is to model the convective heat flux in the unstably stratified layer, which is similar to the
classical Rayleigh-Bénard convection that we will show later.

Here we define the effective Rayleigh number, Rae, based on the unstably stratified layer, which induces the thermal
buoyancy driving force when Tb > Tc,

Rae =
(∆ρ/ρ0)g(h4)3

νκ
=
gα∗(Tb − Tc)q(h4)3

νκ
. (15)

where g is the gravitational acceleration, ν the kinematic viscosity, and κ the thermal diffusivity. Correspondingly,
the effective Nusselt number is defined as the heat flux compensated by the diffusive heat flux based on the thickness
of the unstably stratified layer h4 and its temperature difference (Tb − Tc),

Nue =
grad(T )|z=0

(Tc − Tb)/h4
. (16)

An empirical fit on the simulation data points similar to Ref. [3] is as follows,

Nue =


1, when ξ ≤ 0,

1 + C1ξ, when 1 < ξ ≤ 1.23,

C2ξ
β , when ξ > 1.23.

(17)

with ξ = (Rae − Racr)/Racr, C1 = 0.88, C2 = 0.27 × Raβcr with β = 0.27, and all these values are based on the
simulation results. Nue as a function of Rae is shown in Fig. 8, where the simulations results are the red circles and
an empirical fit on the simulation data points similar to Ref. [3] given by Eqn. 17 is the black line.
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FIG. 8. Nusselt number as a function of the Rayleigh number. The red circles are simulation results. The black line is an
empirical fit on the simulation data points similar to Ref. [3]. The blue circles are classical Rayleigh-Bénard convection results
from reference [5].

Fig. 8 also reports the numerical results of classical Rayleigh-Bénard convection from Ref. [5]. We can see that,
despite that our system has different conditions (ice layer, stably stratified layer and unstably stratified layer coexist
and couple with one another), there is good agreement on the Nu-Ra relation between the current simulation results
and the classical Rayleigh-Bénard convection, suggesting that the Nu-Ra relation is robust [2]. So we can use the
principle in classical Rayleigh-Bénard convection to model our system.
In the temperature range Tb ≤ Tc. The system is in a diffusive state and independent of the water layer thickness,

the total water layer is stably-stratified,

kI
Tφ − Tt
H − h0

= kw
Tb − Tφ
h0

. (18)
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where Tφ is the phase change temperature (Tφ = 0◦C), kI and kw are the thermal conductivity of ice and water,
respectively. From which we obtain the results on the thicknesses as follows,

H − h0 =
−kITt

kwTb − kITt
H,

h0 =
kwTb

kwTb − kITt
H.

(19)

In the temperature range Tb > Tc. We neglect the fact that the interfaces of the ice front and that between the
stably and unstably stratified layers can be curved, at the statistical equilibrium state we have

kI
Tφ − Tt

H − h0
= kw

Tc − Tφ
h0 − h4

,

kI
Tφ − Tt

H − h0
= Nuekw

Tb − Tc

h4
.

(20)

2) theoretical model for water: transient state
Following the analytical methods of classical Stefan problem [6], since the time-dependent evolving interface between

ice and water (denoted as z = h0(t), where h0(t) is the height at which Tw(h0(t), t) = 0◦C) is a priori unknown, a part
of the solution will be to determine the boundary. As the phase transition occurs, there is a volume change due to
the density difference between water and ice as well as the thermal expansion effect. In order to simplify the problem,
we ignore here this volume variation. Further, we consider the one-dimension heat transfer problem and assume that
the physical properties are invariant with temperature while their values are different for the ice and water phases;
the ice-water interface is fixed at the phase change temperature Tφ (recall Tφ = 0◦C).

When Tb ≤ Tc, the basic control equations are

∂Tw(z, t)

∂t
= αw

∂2Tw(z, t)

∂z2
, 0 < z < h0(t), (21)

∂TI(z, t)

∂t
= αI

∂2TI(z, t)

∂z2
, h0(t) < z < H, (22)

where α is the thermal diffusivity, the subscripts “I” and “W” denote ice and water phase respectively. The boundary
conditions read

Tw(0, t) = Tb,

lim
z→h0(t)−

Tw(z, t) = lim
z→h0(t)+

TI(z, t) = Tφ,

TI(H, t) = Tt

(23)

where the superscripts “+” and “−” indicate the direction when taking the limit, namely from smaller than h0(t)
towards h0(t) and from larger than h0(t) towards h0(t), respectively. The energy balance at the ice-water interface is

LρI
dh0(t)

dt
= kI

∂TI(z, t)

∂z
|z=h0(t)+ − kw

∂Tw(z, t)

∂z
|z=h0(t)− , (24)

where L is the latent heat for solidification of water, k the conductivity.
Based on the control equations and the corresponding boundary conditions we now derive an explicit expression

for the solution. We first consider the equation within the water layer Eqn. (21) and introduce the similarity variable

ζ(z, t) =
z√
t
, (25)

and thus the solution is of the form

Tw(z, t) = F (ζ(z, t)), (26)

where F (ζ(z, t)) is an unknown function yet to be found. So the derivatives of Tw(z, t) are

∂Tw(z, t)

∂t
=
dF

dζ

∂ζ

∂t
=
dF

dζ

−z
2t
√
t
,

∂Tw(z, t)

∂z
=
dF

dζ

∂ζ

∂z
=
dF

dζ

1√
t
,

∂2Tw(z, t)

∂z2
=

1√
t

d

dζ
(
dF

dζ
)
∂ζ

∂z
=

1

t

d2F

dζ2
.

(27)
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Substituting Eqn. (27) into the heat equation Eqn. (21) gives

d2F

dζ2
+

ζ

2αw

dF

dζ
= 0. (28)

which can be solved with an integrating factor

M(ζ) = e
∫ ζ
h0(0)

h0(t)
2αw

dh0 = C1e
ζ2

4αw (29)

where C1 is an integration constant. M(ζ) in equation (29) is multiplied with equation (28) we have

d2F

dζ2
M(ζ) +

ζ

2αw
M(ζ)

dF

dζ
= 0, (30)

and by identifying the product rule in equation (30) we have

d

dζ

(
M(ζ)

dF

ζ

)
= 0, (31)

and by integrating equation (31) we have

M(ζ)
dF

dζ
= C2, (32)

where C2 is an integration constant. The solution of equation (32) is

F (ζ) = C

∫ ζ

0

e−
h20

4αw ds+D (33)

where D is an integration constant.
From the boundary conditions at z = 0, Tw = Tb and z = h0(t), Tw = T0, we can get the temperature distribution

within the water which is

Tw(z, t) = Tb −
Tb

erfc(λw)
erfc

(
Z

2
√
αwt

)
(34)

with Z = H − z, and λw = H−h0(t)

2
√
αwt

.

With the same method, we can get the temperature distribution within the ice,

TI(z, t) = Tt −
Tt

erf(λI)
erf

(
Z

2
√
αIt

)
(35)

with λI = H−h0(t)

2
√
αIt

. erf is the error function, which is erf [x] = 2√
π

∫ x
0
e−t

2

dx, and erfc[x] = 1− erf [x].

When Tb > Tc, the water layer consists of stably and unstably stratified layers and the interface between these two
layers is h4(t), to simplify the problem of estimating the convective heat flux of the water layer, here we define the
nominal Rayleigh number Ra and Nusselt number Nu based on the whole water layer from the bottom plate to h0(t)
with temperature difference (Tb − 0◦C). The definitions for Nu and Ra are as follows:

Ra =
gα∗(Tb − 0)q(h0(t))

3

νκ
,

Nu =
∂zT |z=0

(T0 − Tb)/h0(t)
.

(36)

By comparing the definition of the nominal Rayleigh number, Ra, and Nusselt number, Nu, with the effective
Rayleigh number, Rae, and effective Nusselt number, Nue, we can find the relations in between Ra and Rae as well
as Nu and Nue as follows,

Ra = Rae · ϕq1 · ϕ3
2,

Nu = Nue · ϕ−1
1 · ϕ2,

(37)
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with

ϕ1 =
Tb − 0

Tb − 4
,

ϕ2 =
h0

h4
.

(38)

Using Eqns. (17,37) we can have the model for Nu as a function of Ra so that the convective heat flux based on
the whole water layer can be calculated. The energy balance at the ice-water interface takes the form:

LρI
dh0(t)

dt
= kI

∂TI(h0(t)+, t)

∂z
+ Nu kw

Tb − Tφ
h0(t)

. (39)

Based on Eqn. (22) and (39) with boundary conditions Eqn. (23), the position of the ice-water interface as a function
of time can be solved, and therefore we can predict the temporal evolution of the global icing process.

Theoretical model without the water density anomaly

For the theoretical model without considering the water density anomaly, there is no such thing as nominal or
effective Rayleigh number, so here the Rayleigh number Ra∗ is defined based on the whole water layer, i.e., the whole
water layer thickness h0 and the corresponding temperature difference (Tb − 0), which is shown as follows,

Ra∗ =
gα(Tb − 0)(h0)3

νκ
, (40)

where α is the thermal expansion coefficient of water evaluated at the mean temperature of the investigated range of
Tb (∼ 7◦C).

We can also take the thermal expansion coefficient as a function of temperature, then the Rayleigh number Ra∗

reads,

Ra∗ =
gα|at Tmean(Tb − 0)(h0)3

νκ
, (41)

where α|at Tmean is evaluated at the mean temperature Tmean of the water region for each bottom plate temperature
Tb, which is Tmean = (Tb + 0)/2.

At the equilibrium state, the energy balances between the diffusive heat flux in the ice layer and the heat flux in
the whole water layer, which takes the form:

kI
Tφ − Tt

H − h0
= Nuekw

Tb − Tφ
h0

. (42)

By using Ra∗ to predict the Nusselt number in the Eqn. 39 we can solve the equation and get the ice position h0 for
different Tb just shown in Fig. 1C of the main paper.

SECTION E: INTRODUCTION TO THE NUMERICAL METHODS: GOVERNING EQUATIONS AND
NUMERICAL SIMULATIONS

In this section, we introduce the relevant equations that govern the phase change, the fluid flow, and the heat
transfer. The governing equations in the water layer are,

~∇ · ~u(x, y, z, t) = 0,

∂~u

∂t
+ ~u(x, y, z, t) · ~∇~u(x, y, z, t) = −

~∇p
ρ0

+ νw∇2~u(x, y, z, t) + α∗g|T (x, y, z, t)− 4|qez,

ρCp
∂T (x, y, z, t)

∂t
+ ~∇ · (ρCp~u(x, y, z, t)T (x, y, z, t)) = ~∇ · (k~∇T (x, y, z, t)).

(43)

where ~u(x, y, z, t), p(x, y, z, t), T (x, y, z, t) are fluid velocity, pressure, and temperature fields (all temperatures are
measured in Celsius), respectively; νw, k, ρ, Cp, g are the kinematic viscosity of water, the thermal conductivity,
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the density, the specific heat, and the acceleration of gravity, respectively. When it is in water phase k = kw,
ρ = ρw = ρ0(1 − α∗|Tb − 4|q), Cp = CpW, and when it is in ice phase k = kI , ρ = ρI, Cp = CpI. All the physical
properties of water and ice phase, except for ρw are evaluated at the mean temperatures in each phase which are
(Tb + 0)/2 and (Tt + 0)/2, respectively.

The boundary conditions corresponding to the governing equations above are isothermal at the top and bottom
plates, no-slip at the bottom plate and at the ice-water interface, adiabatic at the lateral boundaries, and no-slip and
freezing (namely, Stefan condition [6, 7]) at the phase-changing interface. It is noteworthy that in the simulation we
use the Boussinesq approximation, which means that the density is regarded as a constant value except for that in
the buoyancy term in the momentum equation. Furthermore, we assume the ice and water density remain the same
ρI = ρw to satisfy the incompressibility of the flow. On top of these preconditions, the boundary conditions read:

T (x, y, 0, t) = Tb,

T (x, y,H, t) = Tt,

u(x, y, 0, t) = 0,

u(x, y, h0(x, y, t), t) = 0,

∂T (0, y, z, t)

∂y
= 0,

∂T (Lx, y, z, t)

∂y
= 0,

LρIVn = n · qw − n · qI

(44)

where L is the latent heat and h0(x, y, t) the position vector of a point belonging to the ice-water interface, and q
is the heat flux vector, n is a unit normal at the ice-water interface pointing into the liquid. The subscripts I and w
refer to the ice and the water, respectively. The heat flux reads qI = −kI∇TI and qw = −kw∇Tw.

The boundary condition at the ice-water interface requires particular care due to its time and space dependent
character. So an useful method is to separate the total enthalpy h into sensible heat and latent heat [8]:

h =


Lφw + CpIT, when T < Tφ,

Lφw + CpITφ, when T = Tφ,

Lφw + CpITφ + CpW(T − Tφ), when T > Tφ.

(45)

where Tφ is the phase change temperature (Tφ = 0), and φw(x, y, z, t) is the liquid fraction in the system and

the relation between h0(x, y, t) and φw(x, y, z, t) is h0(x, y, t) =
∫H

0
φw(x, y, z, t) dz, where H is the height of the

investigated domain. In the ice phase, φw = 0, and in the water phase, φw = 1, which leads to an additional source
term S1 from the latent heat contribution at the ice-water interface in the energy conservation equation of Eqn. 43.
On the other hand, we use the Lattice Boltzmann method (LBM) which is able to capture the turbulent convective
dynamics in the water phase and also describe the phase change process at the ice-water interface. The basic principle
and formulation has been extensively discussed e.g. in Refs. [2, 9, 10]. It is noteworthy that the key to accurately
solve such problems is to recover the diffusion term in the energy conservation equation exactly and, similarly to [11],
we implement the correction when the investigated domain consists of heterogeneous media which lead to another
additional source term S2 in the energy conservation equation of Eqn. 43. So the energy equation with consideration
of two source terms S1 and S2 read

σ(ρCp)0
∂T (x, y, z, t)

∂t
+ ~∇ · (σ(ρCp)0T (x, y, z, t)~u(x, y, z, t)) = ~∇ · (k~∇T (x, y, z, t)) + S1 + S2. (46)

where the first source term is S1 = −Lρ∂φw∂t and the second source term S2 = −σk~∇T (x, y, z, t)~∇ 1
σ −

ρCp

σ T (x, y, z, t)~u(x, y, z, t)~∇σ. Here σ =
ρCp

(ρCp)0
is the ratio of heat capacitance (which is variable and depends on

the type of phase, i.e., ice or water) and (ρCp)0 is reference heat capacitance which is taken as constant [11].
Next, we explain the benchmarking we have done and provide the resolution used in the simulations.
To sum up firstly, we have done the benchmarking against theoretical solutions as well as simulations of different

resolutions. Once the benchmarking is done, we try to shrink the resolution as small as possible, because the ice
formation related time scales are on the whole very long. Based on the computation costs and the accuracy of
different bottom plate temperatures, we have checked the simulation results of different resolutions to make sure our
results are robust. We finally choose the resolution 240 ×240, with which 6 ∼ 8 lattice nodes can be guaranteed
within the thermal boundary layer.
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TABLE I. S1 Comparison among different resolutions

Tb (◦C) htheoryice hsimulationice

120× 120 240× 240 480× 480

0.5 0.9830 0.9833 0.9794 0.9900

1.0 0.9667 0.9750 0.9625 0.9815

1.5 0.9508 0.9585 0.9458 0.9522

2.0 0.9355 0.9500 0.9292 0.9396

2.5 0.9206 0.9417 0.9167 0.9293

3.0 0.9063 0.9250 0.9000 0.9125

3.5 0.8923 0.9167 0.8837 0.9002
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FIG. 9. Error of simulation results compared with the theoretical results. Blue symbols for the resolution 120×120; red symbols
for the resolution 240 ×240; green symbols for the resolution 480 ×480. Here the dashed lines are drawn as guides to the eye.

We conducted simulations in the purely conductive regime with different resolutions, i.e., 120×120, 240×240, and
480×480. The ice thickness ratio of different bottom plate temperatures Tb both from the numerical simulations of
different resolutions and from the theoretical modeling is reported in Table S1.

The error ε is defined as the relative difference between the results from the theoretical modeling, htheoryice (the
theoretical model has been explained in Section D: Theoretical model), and that from the numerical simulations
hsimulationice

ε = |h
theory
ice − hsimulationice

htheoryice

| × 100%. (47)

The error ε is shown in Fig. 9. We can conclude that the simulations with a resolution of 240×240 perform the best
with the error of less than 1% for all cases in the conductive regime.

It should be noted that when the system is purely conductive, the time it takes to reach an equilibrium is so long
that the computation costs are high with increasing resolutions. So it is essential to shrink the size of the system,
which is reasonable and luckily possible because in the purely conductive regime the heat transfer behavior is just
linear and thus the accuracy can be maintained even with smaller resolutions (for example with a resolution 120 ×
120, the error between the simulation results and the theoretical results is within 3%). Instead, when the bottom
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temperature is larger than 4◦C, there is a stably-stratified layer coupling with the unstably-stratified layer, especially
in Regime-4, and the flow in the system is highly turbulent. Now the simulation needs bigger systems to maintain
the accuracy, but at the same time in this regime the dynamics is much faster. Based on the computation costs and
the accuracy, we finally choose the resolution 240 ×240, with which 6 ∼ 8 lattice nodes can be guaranteed within the
thermal boundary layer. So all the simulations reported in the manuscript refer to the resolution 240 × 240.
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