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We successfully perform the three-dimensional tracking in a turbulent fluid flow of small asym-
metrical particles that are neutrally-buoyant and bottom-heavy, i.e., they have a non-homogeneous
mass distribution along their symmetry axis. We experimentally show how a tiny mass inhomogene-
ity can affect the particle orientation along the preferred vertical direction and modify its tumbling
rate. The experiment is complemented by a series of simulations based on realistic Navier-Stokes
turbulence and on a point-like particle model that is capable to explore the full range of parameter
space characterized by the gravitational torque stability number and by the particle aspect ratio.
We propose a theoretical perturbative prediction valid in the high bottom-heaviness regime that
agrees well with the observed preferential orientation and tumbling rate of the particles. We also
show that the heavy-tail shape of the probability distribution function of the tumbling rate is weakly
affected by the bottom-heaviness of the particles.

Introduction Many turbulent natural and artificial
fluid flows are seeded with small inclusions either organic
or mineral or manufactured, called dispersed phase. As
examples one can mention the water droplets, the ice
crystals, the sand grains or the volcanic ashes carried by
atmospheric winds; the wide variety of planktonic organ-
isms transported by the oceans [1]; and in the industry
the liquids loaded in cellulose fibers in paper making pro-
duction [2] or the tiny bubbles rising in column chemical
reactors. Although the common aspect of all these ex-
amples is that they concern the fluid transport of small-
in-size inclusions (from now on dubbed particles), each
case differs by the specific nature of the particles and
by their physical properties. The particles shape can be
regular like a sphere or irregular, their material struc-
ture can be rigid or deformable, the mass density can
be lighter/heavier than the surrounding fluid, and homo-
geneous or not. For what concerns living particles they
can react to external stimuli (like temperature, light or
local acceleration and deformations) through motility or
change in orientation or shape.
In the last two decades a vast amount of work has

been devoted to the investigation of the dynamics of par-
ticles in turbulent flows [3–8]. This renewed interest into
a classical fluid dynamics problem has notably taken a
fundamental point of view, considering idealized turbu-
lent flows with their known universal features and sim-
plified models for the particles, often assumed tiny and
spherical. Major advances have been performed thanks
to the strategy of combining experiments, numerical sim-
ulations and theoretical predictions built on models of
developed turbulence [9]. More recently the studies have
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attacked the problems of less idealized, real so to say, par-
ticles, such as non spherical ones [10] or active particles
[11–13]. Researches on the rotational motion of spheri-
cal and non-spherical particles [14–27] have revealed how
the complex dynamics of the turbulent velocity gradient
in the vicinity of the particle affects the characteristic
tumbling and spinning rates. On the other the rotation
of larger particles have been connected to the property
of turbulence in the so-called inertial range [16, 28, 29].
Studies of particle dynamics in wall-bounded flow have
provided new insights on the fact that particles tumbling
properties can be affected by the background shear-flow
in a non trivial way [25, 30, 31].

When particles are non-homogeneous in their mass
density distribution, an extra torque induced by the grav-
itational field comes into play and it can affect the pre-
ferred orientation and rotation of the particle. This has
been revealed to be particularly important in the bio-
logical domain for tiny motile plankton, leading to the
phenomenon called gyro-taxis or gravi-taxis. This phe-
nomenon first proposed in [32] is responsible for plankton
clustering at small scale by turbulence, and has been the
subject of recent important works [33, 34]. However, the
experimental studies of non-homogeneous active particles
by means of living organism are delicate because of their
sensitivity to diverse environmental factors and for the
unavoidable variability present in any real population. It
is clear that experiments with real microorganisms are
not the ideal setting to test dynamical models for e.g.
non-homogeneous non-spherical particles.

In this paper, we study the statistical properties of the
orientation and rotation of passive bottom-heavy neu-
trally buoyant rod-like particles in developed turbulence
by means of dedicated experiments and simulations. On
one hand this is a challenging experimental task, because
of the many control parameters involved and the high
accuracy required for the measurements. On the other
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hand the availability of simplified model system allows
for a numerical study of the system that can be checked
against experiments. We will show that this combined
approach is capable to assess the predictive potential of
currently adopted models for the Lagrangian dynamics
of single bottom-heavy anisotropic particles and to reveal
the main trends as a function of the control parameters.
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FIG. 1. a) Photos and scales in mm of one of the axisym-
metric bottom-heavy rods and its assembly parts used in the
experiments. b) Example of trajectory of a bottom-heavy rod
reconstructed via 3D-PTV. The temporal duration of this tra-
jectory is 23 sec. The color encodes the quadratic tumbling
rate.

Experimental methods We carry out the experiments in
the central region (referred as bulk) of a Rayleigh-Bénard
convection (RBC) cell in turbulent flow conditions. The
RBC system we consider is cubic with side H=24 cm,
while the bulk is chosen as a cube at its center of size
H/3. The latter choice, already adopted in our previous
work [25] is motivated by the fact that we have verified
that in that region the small scale properties of the turbu-
lent flows share a strong similarity with the ones found in
homogeneous and isotropic flows. A detailed description
of the experimental setup can be found in Ref. [25]. Here,
we carefully match the density of the working liquid (a
solution of 15 % in weight glycerol in water at a mean
temperature Tm = 40oC) to the one of the tracked parti-
cles so that the particles results to be on average neutrally
buoyant in the fluid. The experiments are conducted at
Rayleigh number Ra = βg∆TH3/(νκ) = 1.4× 1010 and
Prandtl number Pr = ν/κ = 13 (here β is the ther-
mal expansion coefficient, g is the gravity acceleration

intensity, ∆T the bottom-top temperature difference, κ
the thermal diffusivity, ν the fluid viscosity). The global
energy dissipation rate in the system is evaluated from
the relation ǫ = RaPr−2(Nu − 1)ν3/H4[35], while the
local energy dissipation in the bulk is estimated by con-
sidering the ratio of the local energy dissipation rate to
global energy dissipation rate via matching with numeri-
cal simulations as done in Ref. [25]. Thus, the dissipative
length and time scales in bulk are, respectively, η = 0.94
mm and τη = 0.87 s, and the estimated Taylor-Reynolds
number in the cell bulk is Reλ ≈ 37.
The bottom-heavy particles are fabricated by thread-

ing a polyamide rod into a thin polyethylene ring. The
diameter and length of rod are d = 0.56 mm and l = 10
mm respectively, which results in an aspect ratio α =
l/d ≃ 18. The ring has an inner diameter of 0.56 mm
and outer diameter 0.96 mm and a length of 1 mm. The
centroid of the ring is placed at the position 0.5 mm away
from the centroid of the rod, see particle picture in Figure
1 b). Given the basic geometry of assembled particle, the
position of its baricenter can be easily estimated. We es-
timate as h = 0.14 mm the off-center displacement of the
particle centroid with respect to the particle geometrical
center.

The particles are tracked using a three-dimensional
particle tracking velocimetry (3D-PTV) technique by
means of two orthogonally positioned cameras. The de-
tails of the tracking method are the same as in Ref. [25].
We track simultaneously ∼ 20 particles. Given the vol-
ume of the convective cell they can be considered as
highly diluted and non-interacting. The recorded series
can be as long as a minute, which is in the order of the
large eddy turnover time of the flow. A reconstructed
trajectory for a typical case is shown in Figure 1 b).
The rotation of particles is governed by the dimen-

sionless stability number ψ = B/τη where B is a reori-
entation time scale due to gravity, which is defined as
B = να⊥/(2hg). Here, α⊥ the dimensionless resistance
coefficient for rotation, same as in [36], which is ≃ 207 in
our experiments. We note that due to slight differences
in the particles, a precise evaluation of h and so of B is
arduous. For this reason we also evaluate B in an alter-
native way, by the direct measurement of the tumbling
trajectory in a quiescent flow. In such case the exact
evolution of the particle vertical component pz can be
obtained analytically (by solving the equation of motion
(5)):

pz(t) =
pz(0)(e

t/B + 1) + et/B − 1

pz(0)(et/B − 1) + et/B + 1
, (1)

where pz(0) is a predefined initial condition, that can be
easily controlled in the experiment. We proceed as follow,
the particle is released in a bottom-up position in the still
fluid, its trajectory filmed and the parameter B deduced
from the matching with (1). With this procedure we
estimate ψ = 0.52 ± 0.1, in good agreement with the a
priori estimation of B.
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FIG. 2. a) PDFs of absolute value of particle vertical com-
ponent |pz| from experiments (EXP) and simulations (DNS).
The black dot-dashed line represents the PDF of randomly
oriented particles. b) Mean absolute value of particle verti-
cal component 〈|pz|〉 as a function of stability number ψ from
experiments (EXP) and simulations (DNS). The light blue
shaded area represents the error of 〈|pz|〉 in simulations. c)
1 − 〈p2z〉 as a function of ψ in log-log scale. The pink solid
line shows the prediction eq. (10). Inset shows 1− 〈p2z〉 com-
pensated by ψ2 as a function of ψ and the expected values
according to the perturbative predictions (8) and (9).

Numerical methods We carry out numerical simula-
tions based on an Eulerian-Lagrangian modelization of
the physical problem. This means that the turbulent
environment is described by means of direct numerical
simulations (DNS) of incompressible Navier-Stokes equa-
tions while the particles are described by a point-particle
model that takes into account the movement of the center
of mass and the spatial orientation of the particle. The

equation for the fluids reads as follows:

∂tu+ u · ∇u = −ρ−1∇p+ ν ∇2u+ f, (2)

∇ · u = 0, (3)

where u(x, t) denotes the fluid velocity vector field, p
is the hydrodynamic pressure, and parameters are the
kinematic viscosity ν, the reference liquid density ρ. The
vector f refers to an external large-scale random force
with constant global energy input which produces and
sustains a statistically homogeneous and isotropic turbu-
lent (HIT) flow. Periodic boundary conditions are en-
forced along all the directions of the three-dimensional
cubic simulation domain. The HIT flow can be charac-
terized by a single dimensionless control parameter the
Taylor-Reynolds number Reλ = urmsλ/ν where urms

is the single-component root-mean-square velocity and
λ =

√

15ν/ǫurms is the Taylor micro-scale of turbulence.
We simulate an HIT flow at Reλ ≈ 32 on a regular grid
of 1283 nodes.
The model for the Lagrangian evolution of a single

particle position, r(t), and orientation, p(t), is described
by the following equations:

ṙ = u(r(t), t), (4)

ṗ =
1

2B
[z− (z · p)p] + Ωp+ α2−1

α2+1
(Sp− (p · Sp)p) ,(5)

where z is a unit vector pointing upward (i.e. opposite
to the gravity direction), S = (∇u + ∇uT )/2 and
Ω = (∇u−∇uT )/2 respectively represent the symmetric
and anti-symmetric components of the fluid velocity
gradient tensor at the particle position, ∇u. The
equation of rotation (5) is an extension of the Jeffery
equation[37] which considers the gravity torque due to
the center of mass offset in the particle, as proposed by
Pedley & Kessler [36]. This model has been originally
proposed in the context of motile algae studies and
since then extensively used to study the dynamics of
gyrotactic swimmers[13, 34]. This model is appropriate
for particles whose motion is ruled by hydrodynamics
in the viscous regime. It applies to turbulent flows as
long as the particle size and the particle translation and
rotation response times are of the order of the respective
dissipative (i.e. Kolmogorov) scales. Although here we
have d ≃ 10η, the response times are O(∼ 0.1)τη which
provide still a reasonable condition for the applicability
of the model (a fact also confirmed past studies on fibers
in turbulence [23]). The simulated HIT flow is seeded by
a large amount of particles (∼ 106), divided into distinct
families characterized by aspect ratio and stability
number parameters varying in the range α ∈ [0.01, 100]
and ψ ∈ [0.01, 100]. The simulations are performed with
the Ch4-project code [38].

Results: Orientation We begin discussing the effect of
preferential orientation along the vertical direction of the
particles, which appears to be a dominant effect in the
experimental setting as it can be noticed in the recon-
structed trajectory of Figure 1 b). This can be quanti-
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FIG. 3. a) PDFs of tumbling rate squared ṗiṗi from experi-
ments (EXP) (circles) and simulations (DNS) (full lines). b)
Normalized mean tumbling rate squared 〈ṗiṗi〉τ

2

η as a func-
tion of stability number ψ from EXP and DNS. The light
blue shaded area represents the statistical error of 〈ṗiṗi〉τ

2

η

in simulations. Grey dashed line refers to the value of mean
tumbling rate squared for homogeneous rod with a similar as-
pect ratio at Reλ = 32 The inset show the same data on a
log-log scale, the ψ2 behaviour is shown as black dashed line.

fied by the absolute value of particle z-axis component
|pz|. We use the absolute value here in order to allow
for the comparison between experimental measurements
and simulations, in fact the experimental trajectory re-
construction technique allows to detect the particle di-
rection but not to resolve its orientation, due to the tiny
asymmetry of its body. The probability density function
(PDF) of |pz| is expected to be non-uniform in the range
[0, 1]. This is illustrated in Fig. 2 a) which reports the
experimental measurement for the rod-like particle with
aspect-ratio α = 18 and stability number ψ = 0.5. In
the same figure we show the results of simulations for
the same parameters, which are in reasonable quantita-
tive agreement with the experiment. For comparison we
also provide the case for high stability number ψ = 100,
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FIG. 4. The ratio of mean squared tumbling rate of
non-spherical particles with respect to the sphere case,
〈ṗiṗi〉/〈ṗiṗi〉α=1, at various stability number ψ in the limit
of highly stabilized particles (ψ → 0).

where the particle orientation is only weakly affected by
the gravity, and the distribution appears essentially flat.

The trajectory and ensemble (i.e. particle population)
average for the same quantity, 〈|pz |〉, as a function of the
stability number ψ is shown in Figure 2 b). Such a quan-
tity, as illustrated by the DNS results, monotonically de-
creases as ψ increases from a gravity torque dominated
regime (ψ ≪ 1) to the turbulence dominated regime
(ψ ≫ 1). The value ψ ∼ 1 identifies an intermediate state

between the two limiting behaviours (here 〈|pz|〉 ∼ 1/
√
2)

meaning 45o angle with respect to the vertical), confirm-
ing that the dissipative time-scale of turbulence τη is the
appropriate scale for the description of the dynamics of a
tiny particle in turbulence. It also appears that a plateau
is reached in the two limits when ψ <∼ 0.1 or ψ >∼ 10.
The experimental measurement agrees with the simula-
tions and show a strong alignment with the vertical; if
we convert the observable to an average angle in degrees
acos(〈|pz|〉) ≃ 32o.
In the limit of small but non-vanishing B, a per-

turbative solution of equation (5) up to the first or-
der in B can be performed. We consider the Taylor
expansion of the solution p around the point B = 0:
p(t) ≃ p0(t) + Bp1(t) + O(B2), and substitute it into
(5). The equation is then solved order by order in B
starting by the leading order. This leads to

p ≃ z+B(ω × z+ 2α2−1
α2+1

(Sz− Szzz)) +O(B2). (6)

We note that this prediction does not satisfy the con-
straint of unit norm for p, hence its normalized expres-
sion reads:

p ≃
z+B(ω × z+ 2α2−1

α2+1
(Sz− Szzz))

√

1 +B2(ω × z+ 2α2−1
α2+1

(Sz− Szzz))2
(7)

However, eq. (6) can still be considered as an accept-
able approximation of the solution in the very small B
limit, because it is the first order Taylor expansion of
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eq. (7). These derivations when combined with the sta-
tistical properties of the velocity gradient tensor in HIT
flows 〈∂aub∂cud〉τ2η = (4δacδbd − δabδcd − δadδbc)/30[39],
allow to estimate the mean quadratic orientation along
the vertical direction 〈p2z〉. We discuss here two special
cases: the sphere α = 1 and the thin rod α→ ∞. In the
first case (α = 1), from (6), we get

1− 〈p2z〉 ≃ B2(〈ω2
y〉+ 〈ω2

x〉) =
2

3
ψ2, (8)

in the second case (α→ ∞), again from (6),

1− 〈p2z〉 ≃ B2(〈 (∂zux)2〉+ 〈(∂zuy)2〉) =
16

15
ψ2. (9)

We observe that from eq. (7), upon averaging and by
means of Jensen inequality one can derive the slightly
more general relation

1− 〈p2z〉 ≤
16
15
ψ2

1 + 16
15
ψ2
. (10)

Such predictions are compared with the measurements in
Figure 2 c), where it is clearly seen the quadratic trend for
1−〈p2z〉 ∼ ψ2 for ψ < 1 and the saturation 1−〈p2z〉 = 2/3
occurring in the regime dominated by turbulent fluctua-
tions ψ ≫ 1. The predictions for thin rods (9) and (10)
compare well both with the DNS and experimental re-
sults. The agreement on the scaling prefactor, which is
excellent in the case of the sphere, is compared in the
inset of Figure 2 c).
Results: Tumbling We now focus on the tumbling rate

of the particle, i.e. on its rotation rate in the direction
orthogonal to the symmetry axis. Previous studies have
shown that the particle shape is responsible for a phe-
nomenon of preferential alignment of rod-like particles
with the fluid vorticity leading for prolate particles to a
reduced tumbling rate with respect to the spherical case
and the opposite for oblate particles [14, 15, 28]. We
show here how the gravitational torque further reduces
the tumbling of the particles.
The PDFs of tumbling rate squared for different ψ are

shown in Figure 3 a). The long tail of PDF of tum-
bling rate has also been observed for homogeneous axi-
symmetric particles[15, 16, 25]. This denotes the pres-
ence of intense local rotation rates with respect to the
average value 〈ṗiṗi〉. The PDF from experiments agrees
with the PDF from simulation up to about ∼ 10 standard
deviations. The differences observed for higher tumbling
rate regime could be a signature of sub-leading inertial
effects associated to the finite-size of the particles, as
observed in [16] for homogeneous fibers. Furthermore, a
weak stability number dependence is observed on the tail
of PDFs, with an increasing intermittency for low ψ; such
an observation can be considered as preliminary and will
deserve further checks at different Reynolds numbers.
The quadratic tumbling rate normalized by the tem-

poral dissipative scale, 〈ṗiṗi〉τ2η for α = 18 particles at
varying the stability number ψ is reported in Figure 3
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FIG. 5. Normalized mean tumbling rate squared 〈ṗiṗi〉τ
2

η as
a function of stability number ψ and aspect ratio in EXP
and DNS. The color represents the value of 〈ṗiṗi〉τ

2

η . The
black circle denotes the data from the present experiments.
The black square shows the result for homogeneous particles
(ψ = ∞) of aspect ratio α = 6 and 1/6 in the RBC bulk at a
comparable turbulent intensity, from [25].

b). We observe a marked suppression of the tumbling
rate for the particle in the experiments to about 20% of
the known value for a corresponding equal-in-shape and
homogeneous particle. The numerics suggest that the
trend of tumbling as a function of ψ is similar to the
one already observed for the orientation, with apparent
saturation for ψ outside the range [0.1, 10]. The pertur-
bative solution (6) when derived with respect to time and
averaged gives, for spheres (α = 1):

〈ṗṗ〉|sphere ≃ 4B2
(

〈
(

D
Dt∂iuj

)2〉 − 〈 D
Dt∂iuj

D
Dt∂jui〉

)

(11)
and for rods (α → ∞)

〈ṗṗ〉|rod ≃ 8B2〈
(

D
Dt∂iuj

)2〉, (12)

where the summation over repeated indexes is not im-
plied. We remark that in both cases the scaling
〈ṗiṗi〉τ2η ∼ ψ2 is expected and well verified in the inset of
Figure 3 b), where we compare it with the numerically
measured behaviour for a particle with α = 18. The av-
erage values in eq. (11) and (12) can not be computed
on the basis of purely statistical symmetry arguments.
However, they have been numerically measured in [40]

as 〈 D
Dt∂iuj

D
Dt∂jui〉 ≈ 0.6〈

(

D
Dt∂iuj

)2〉 suggesting a larger
tumbling rate for rods as compared to spheres for van-
ishing ψ values. This is consistent with our numerical
results, where we obtain 〈ṗṗ〉rod/〈ṗṗ〉sphere ≃ 4 (with
respect to the 5 implied by DNS in [40]). The described
trend is reported in Fig. 4, for the smallest ψ values
explored in our simulations.
Finally, we address the behaviour of the mean

quadratic tumbling rate in the full two-dimensional
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parameter space (α, ψ). This can be conveniently done
by means of the simulations. The results are illustrated
in Fig. 5. At large ψ values, the mean tumbling rate
shows two plateaus for slender rods and thin disks,
which agrees with the rotation dynamics of homoge-
neous particles in turbulence (ψ = ∞) and with our
previous experimental measurements at ψ = ∞ and
α = 6 and 1/6 in the same bulk of RBC setting [25]. As
the stability parameter decreases, one observes a more
pronounced similarity between disk-like and rod-like
particles. And, as already remarked in Fig. 4 in that
limit the tumbling both of rods and thin disks is larger
than the one of corresponding spheres, in agreement
with the expectation from the perturbative prediction.

Conclusions In summary, we presented a study of
the statistics of orientation and rotation of anisotropic
bottom-heavy particles in a turbulent flow by means of
experiments and simulations. The effect of gravity in-
duced torque due to the inhomogeneity of particles, char-
acterized by stability number ψ, significantly modifies the
statistics of the particle orientation and its rotation in-
tensity. At low ψ, the particles are brought to align with
the gravity direction. It is found that the in this limit
1 − 〈p2z〉 and mean tumbling rate squared 〈ṗiṗi〉 scale as

ψ2 at small ψ. A prediction based on perturbation theory
shows excellent agreement with the DNS measurements.
Our results point to the fact that particulate matter with
geometrical and mass density properties that are differ-
ent from the idealized homogeneous one, are likely to
possess rotational properties that are very different from
the one indicated by the homogeneous particle model.
As we show here even a tiny mass bottom-heaviness sta-
bilizes the particle and drastically reduce its tumbling.
Further studies will be needed in future to better under-
stand the rich rotational dynamics of non-ideal particles
in turbulent flows. In particular it would be of great in-
terest to extend the present investigation to the analysis
of spinning rates (i.e. the rotations around the symmetry
axis), to the examination of inertial effects for larger par-
ticles and ultimately to a the exploration of much more
particle shape types and mass-density asymmetries.
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