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Abstract—Analysis of longitudinal changes in brain diseases is
essential for a better characterization of pathological processes
and evaluation of the prognosis. This is particularly important
in Multiple Sclerosis (MS) which is the first traumatic disease
in young adults, with unknown etiology and characterized by
complex inflammatory and degenerative processes leading to dif-
ferent clinical courses. In this work, we propose a fully automated
tensor-based algorithm for the classification of MS clinical forms
based on the structural connectivity graph of the white matter
(WM) network. Using non-negative tensor factorization (NTF),
we first focused on the detection of pathological patterns of the
brain WM network affected by significant longitudinal variations.
Second, we performed unsupervised classification of different MS
phenotypes based on these longitudinal patterns, and finally, we
used the latent factors obtained by the factorization algorithm
to identify the most affected brain regions.

I. INTRODUCTION

Multiple Sclerosis (MS) is an inflammatory demyelinating
disease of the central nervous system (CNS) leading to white
matter (WM) myelin destruction and progressively to axonal
degeneration. It is one of the most frequent neurological
diseases, and the leading cause of non-traumatic disability in
young and middle-aged adults [1]. While its etiology remains
unknown, four clinical courses have been identified. Typically,
around 85% of patients start with a relapsing-remitting multi-
ple sclerosis (RRMS) form, with some of them experiencing
a first clinically isolated syndrome (CIS). Several years later,
typically between 12 to 19 years after the RRMS onset,
most of these patients develop a secondary progressive MS
(SPMS) form, with gradual worsening of illness and handicap.
About 15% of the patients begin with a more severe clinical
form, called primary progressive MS (PPMS), probably due
to increased lesions of the spinal cord [2]. By detecting and
monitoring these inflammatory lesions, conventional Magnetic
Resonance Imaging (MRI) plays a crucial role in MS diagnosis
and prognosis. Moreover, other advanced MRI techniques such
as Diffusion tensor imaging (DTI) provide greater sensitivity

than conventional MRI to detect diffuse alterations in nor-
mal appearing WM of MS patients [3]. Thus, analysis of
longitudinal DTI data is essential to better understand the
complex pathological mechanisms of complex brain diseases
such as MS where WM fiber-bundles are variably altered by
inflammatory events [4]. Moreover, longitudinal analysis allow
to investigate the temporal variations of diffuse alterations to
better understand the role of inflammatory and neurodegener-
ative mechanisms in MS evolution [5].

In recent years, several studies were conducted to
differentiate MS clinical forms with the help of DTI.
In particular, in Kocevar et al. [6] the analysis of WM
networks using graph representations showed promising
approaches to better delineate biomarkers and characterise the
disease. Indeed, graph network metrics can provide clinically
relevant information about MS pathology. In Lee et al. [7],
several structural changes were identified between patients’
groups. Compared with healthy controls (HC), network
efficiency and clustering coefficient were reduced in MS
patients. Furthermore, greater assortativity, transitivity, and
characteristic path length as well as a lower global efficiency
were observed when comparing MS patients to HC subjects
[8].
Such longitudinal information of brain structural connectivity
may also provide valuable knowledge for Machine Learning
(ML) and Deep Learning (DL) tools for distinguishing MS
clinical forms and better predict the disease evolution.

Longitudinal data of brain networks describe spatial and
temporal interactions between brain regions that can be repre-
sented by multi-way arrays (tensors). In order to extract latent
factors driving such connections, derived compact representa-
tions from brain network data is useful to better characterise
and analyse the disease evolution. In these perspectives, Tensor
factorization (TF), which has become an effective technique
in many healthcare applications, offers a valuable resource.



Several works have been reported in the field of brain network
analysis, and many of them have been oriented towards
useful embeddings for feeding conventional classifiers [9].
Cao et al. [10] proposed a novel Brain Network Embedding
model (t-BNE) based on constrained tensor factorization for
performing graph classification tasks. They demonstrated how
their method offers a significant improvement over more
traditional clustering techniques. Moreover, they exploited the
interpretability of TF approach to visualise resulting factors
in order to investigate possible disease mechanisms. Liu et al.
[11] exploited network analysis of human brain connectivity
for understanding brain function and disease states. They
argued that by exploiting multiparametric information from
multiple neuroimaging modalities or views, one could obtain a
more useful embedding in terms of classification performance.
Using tensor decomposition technique they simultaneously
leveraged the dependencies and correlations among multi-
view and multi-graph brain networks on HIV and bipolar
disorder brain network datasets. Mahyari et al. [12] used
also a 4-mode TF representation to analyse the dynamics of
functional connectivity across time. They showed that their
tensor-based method outperformed the conventional matrix-
based methods such as Singular Value Decomposition (SVD)
in terms of change-point detection and state summarisation.
Interestingly, Khambhati et al. [13] studied also the dynamic
processes of engagement and disengagement of brain regions
in attention modulation by means of a NMF approach, and
reported that changes of cognitive demand were associated
with individual task performances. A TF approach can also
be used in semi-supervised learning as proposed by Cao et
al. [14]. Their semi-supervised method (semiBAT), based on
constrained TF, was used to detect the underlying factors
driving connections inside a brain structural graph. They
demonstrated that their method outperformed traditional tensor
factorization approach and allowed the visualisation of the
data-driven factors, which could be informative for further
investigations of cognitive mechanisms. In Cai et al. [15]
the authors exploited the TF approach by defining a Graph
Regularized Nonnegative Matrix Factorization (GNMF) to
retrieve naturally occurring relationship in human brain graph
generating a low-dimensional embedded representation, which
uncovers the hidden semantics and simultaneously respects
the intrinsic geometric structure. Finally, Guixiang et al. [16]
exploited TF on a multi-view tensor by taking advantage of
the consensus and complementary information from multiple
views derived from multiple graph instances in order to learn
the multi-view graph embeddings and simultaneously perform
clustering.

Notwithstanding, TF has already achieved promising re-
sults in detecting MS pathological alterations. Stamile et. al.
[17] proposed a TF-based approach to automatically detect
longitudinal variations in WM fiber-bundles. They showed
how small longitudinal changes along the WM fiber-bundles
in MS patients could be detected to better characterize the
progression of the disease and to automatically visualize the
damaged WM fiber-bundles.

In this study, we propose a new unsupervised TF approach
to classify MS clinical forms based on the analysis of longitu-
dinal variations of brain structural connectivity graphs. Indeed,
we demonstrated that our TF strategy is effective as well as
easy to implement.

The rest of the paper is organised as follow. In Section II,
we describe the dataset and the TF-based algorithm. In Section
III, we present the results of our method applied to MS patients
and healthy controls. Finally, we discuss the results in Section
IV, and draw our conclusions in section V.

II. MATERIAL AND METHODS

In the following, a detailed description of the background
techniques and methods used for this study is provided.

A. Extracting Brain Connectiviy
MS patients underwent a MR examination on a 1.5T

Siemens Sonata system (Siemens Medical Solution, Erlangen,
Germany) using an 8-channel head-coil. The MR protocol
consisted in the acquisition of a sagittal 3D-T1 sequence
(1×1×1 mm3, TE/TR = 4/2000 ms) and an axial 2D-spin-
echo DTI sequence (TE/TR = 86/6900 ms; 2×24 directions
of gradient diffusion; b = 1000 s.mm−2, spatial resolution of
2.5× 2.5× 2.5 mm3) oriented in the AC-PC plane.
In this study, seventy MS patients distributed across three
clinical forms (CIS, RRMS and SPMS), as shown in Table
I, are considered. Each patient underwent multiple brain MRI
examinations over a different period, ranging from 2.5 to 6
years. The minimum number of scans per patient is 3, while
the maximum is 10. The gap between two consecutive scans
is either 6 or 12 months. The total number of MRI scans in
the dataset is 452.

For each patients, the structural brain connectivity was
generated, by combining brain grey matter (GM) parcellation,
obtained after segmentation of T1-weighted MR images, and
the WM fiber-tracking, reconstructed from DTI acquisitions.
More formally, as described in Kocevar et al. [18], after
labelling each voxel of the T1-weighted MR images in four
classes [WM, cortical GM, sub-cortical GM, cerebro-spinal
fluid (CSF)], a segmentation of the cortical and sub-cortical
GM was performed on the T1 images. Meanwhile, a prepro-
cessing of DTI data was performed using the Eddy-current
distortions correction [19], and a probabilistic streamline fiber-
tracking algorithm was applied to generate WM fiber-bundles.
The generation of these fiber-bundles used as connections
between the GM nodes led to the construction of a symmetrical
connectivity matrix A ∈ Nq×q

+ where q = 84 for each patients.
Specifically, the adjacency matrix A is generated by summing
the number of streamlines connecting each pair of nodes and
represents a weighted undirected graph G = (V,E, ω), where
|V | = q defines the set of brain regions, |E| = m represents
the set of connections between these regions while ω defines
the number of fibers connecting two nodes.

B. Notation
If not clearly stated, we will use the notation described in

[20]. We denote with lower case letters e.g. a scalar values,



TABLE I
DEMOGRAPHIC INFORMATION OF MS PATIENTS OF DIFFERENT CLINICAL

PROFILES (CIS, RR, SP).

CIS RRMS SPMS

Number of patients (Male/Female) 12 (50/50) 30 (20/80) 28 (61/39)

Age at first scan (years) 30.88 (6.4) 27.57 (7.8) 27.64 (7.6)

Disease duration (years) 1.50 (1.54) 6.75 (4.81) 13.12 (5.84)

EDSS median (range) 0.5 (0-4) 2.0 (0-4.5) 5.0 (3-7)

Total number of scans 63 190 199

with bold lower case letters e.g. aaa 1-dimensional vectors, with
uppercase letter e.g. A matrices and with Euler script letters A
tensors. Matrices with superscripts e.g. X(n) define the factor
matrices obtained from the factorisation while X̂ (n) defines
the unfolding of a tensor of mode n. Practically speaking, for
a tensor of 3rd oder, X̂ (0) ∈ R(i×j∗z)

+ denotes the mode 0,
X̂ (1) ∈ R(z×i∗j)

+ denotes the mode 1 and X̂ (2) ∈ R(j×i∗z)
+

denotes the mode 2.

C. Random walk

Let’s consider an undirected weighted graph G = (V,E, ω)
where |V | = n and |E| = m. A walk, of length p on the graph
G is a sequence of connected vertices H[v0] = [v0, · · · , vr]
such that |H[v0]| = p and v0 is defined as starting ver-
tex. Following this notation, we can also define a walk as
a sequences of weighted edges representing the connection
between two consecutive nodes: W [v0] = [w0, · · · , ws] such
that |W [v0]| = |H[v0]| − 1 = s where wi is the weight of
the edge connecting the two nodes (vq, vz). In the rest of
this paper we refer to a walk according to its weighted edges
representation.

A random walk can be modelled as k-th order Markov
Chain, in which the future state depends only on the current
state and is independent from the last k−1 previous states. In
general, a k-th order random walk is generated by sampling
the position i-th, given the current state, from the transition
probability distribution:

Pr[wi|wi−1, wi−2, wi−s] = Pr[wi|wi−1] (1)

Under the Markov Chain assumption, this probability is
non-zero if there is an edge between vertex vi and vi−1.
Moreover, in order to generate a k-th order Markov Chain
random walks, we need to sample the k initial vertices in order
to effectively calculate the transition probability. Henceforth,
the random process that defines the starting point of a first
order random walk is characterised by a specific probability
distribution that is usually independent from all the others
paths that starts from a different position inside the graph.
Given n random walks of length s a multiple Markov Chain
sequences of edge weights is defined. By stacking all the
sequences horizontally, it is possible to construct a matrix
M ∈ R(n×s).

Fig. 1. Visual representation of the tensor describing a patient

D. Tensorization

Tensors are multidimensional arrays of numerical values and
therefore generalise matrices to multiple dimensions. Using
the tensor formalism, it is possible to obtain a compact 3-
dimensional representation of longitudinal brain connectivity
pathways. More in detail, in the proposed approach, each pa-
tient is represented by a third-order tensor generated from the
bi-dimensional representation of the random walks obtained
for each time step. As an example, the tensor Xi ∈ R(n×s×t)

can be defined for the patient i, where n is the number of
random walks, s is the length (in terms of number of weighted
edges) of the walk, and s is the number of scans available
for the specific i-th patient. A visual representation of such a
tensor is proposed in Figure 1.

A number of different factorization algorithms have
been proposed in the literature, such as Higher Order
SVD (HOSVD) [21], Tucker decomposition [22], Canonical
polyadic decomposition (CPD) [23] and Non-negative Tensor
Factorization (NTF) [24]. In this work, the NTF approach is
used as all the values of the tensor are non-negative. Moreover,
it is desirable for the decompositions to retain the non-negative
characteristics of the original data and thereby facilitate the
results interpretation.

E. Non-Negative tensor factorization (NTF)

Generally speaking, an n-order tensor has rank one if it
can be written as the outer product of n nonzero vectors. The
rank of a tensor is defined as the minimal number of rank-1
terms that generate the tensor as their sum. In this work we
will use the NTF. More precisely, it defines an N -order tensor
X ∈ Rd1×d2×···×dn as a sum of K rank-1 terms:

X = JX(1), X(2), ..., X(n)K =

K∑
r=1

x(1)rx
(1)
rx
(1)
r ◦x(2)rx

(2)
rx
(2)
r ◦x(3)rx

(3)
rx
(3)
r ◦...◦x(n)rx

(n)
rx
(n)
r +E

(2)
where J.K defines the factorization operation, X defines

the original N -order tensor, K defines the rank, and E ∈
Rd1×d2×···×dn is the residual tensor. The symbol “◦” repre-
sents the outer product.

Considering a third-order tensor as an example, equation (2)
can be defined as a system of equations as defined in (3):
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Fig. 2. Canonical polyadic decomposition with rank R of a 3rd order tensor

X̂ (1) = (X(1) ◦X(2))X(3)T

X̂ (2) = (X(1) ◦X(3))X(2)T

X̂ (3) = (X(2) ◦X(3))X(1)T

(3)

On the other hand, X̂ (1), X̂ (2), X̂ (3) define the unfolding of
the original tensor X of type 0, 1 and 2 respectively. Multiple
types of algorithms has been proposed in order to minimize
the loss:

L = ||X − X̂ || ≈ ||X − JX(1), X(2), X(3)K||2F
In this work, the Alternating Least Square (ALS) algorithm

is employed which implies the recursive optimisation of each
of the component as defined in the following equation:

X(1) ← arg min
X(1)∈R+

||X̂ (1) − (X(1) ◦X(2))X(3)T ||

X(2) ← arg min
X(2)∈R+

||X̂ (1) − (X(1) ◦X(3))X(2)T ||

X(3) ← arg min
X(3)∈R+

||X̂ (2) − (X(2) ◦X(3))X(1)T ||

(4)

F. Method description

Goal of this study is to exploit longitudinal information in
order to detect latent temporal anomalies useful for distin-
guishing between early and severe MS clinical phenotypes.
Longitudinal variations and tissue damage evolutions are in-
trinsically different between MS patients in the very early
phase of the disease (CIS) and the RRMS course compared to
the more severe stage of the illness as in the SPMS course.

For each patient, brain connectivity matrices are first gener-
ated and the random walk matrices are computed according to
Section II-C. Then, a multi-view tensor is obtained by stack-
ing together multiple random walk matrices, as previously
described in Section II-D. It is worth to note that each random
walk can be interpreted as a feature describing the connections
between different regions (nodes) of the brain network for a
single patient in a specific time step. In order to make different
features for different time steps comparable, a L1-norm is
applied.
The third-order tensor is decomposed by means of NTF, thus
producing a combination of 3 rank-k matrices as defined in
equation (3). Specifically, matrix X

(3)
i captures the longitu-

dinal variation of patient i while matrices X
(1)
i and X

(2)
i

represent the latent factors describing the random paths and
their relative edges respectively. In this study, the rank k of

the NTF was fixed at 10 since higher values do not result in
a meaningful improvement of the reconstruction error while
increasing the computational cost. The number of random path
was set to 100 and their length to 20, which provided the more
stable results.

In order to detect the most anomalous edges in the multi-
view tensor, X(1)

i and X(2)
i are combined. Let x(1) be a generic

component of X(1)
i and let x(2) be a generic component of

X
(2)
i . Let dx(1) be the the percentile distribution of the values

in x(1) and let d(2)
x be the the percentile distribution of the

values in x(1). Thus, two sets of indices can be computed as
follows:

Sx(1) = {j | d(1)
x j > 2σ(1),∀j ∈ 1, . . . , |d(1)

x |}

Sx(2) = {w | d(2)
x w > 2σ(2),∀w ∈ 1, . . . , |d(2)

x |}

where σ(1) is the standard deviation of d(1)
x and σ(2) is the

standard deviation of d(2)
x . It is worth to note that each pair

(s1, s2) ∈ Sx(1) × Sx(2) identify a precise location inside
the multi-way tensor, thus refer to a precise edge inside a
precise random path. The set of anomalous edges in the
original tensor is obtained by repeating the procedure for each
component in X

(1)
i and X

(2)
i . Finally, the brain regions (i.e.

nodes) connected by the anomalous edges are selected.
The described process is summarised in Algorithm 1. In

order to increase the readability of the proposed method,
a schematic visual representation of the entire process is
depicted in Figure 3.
The proposed method can be thought of as a realisation of
an event conditioned to a specific random sampled input.
Although not exactly randomly defined, Markov Chain based
random walks can convey some statistical properties that
nicely couple with a completely randomly sampled approach
[25]. In addition, they provide a meaningful embedding strat-
egy compared to drawing edges at random [26].

It should be emphasised that the above described method
is applied iteratively adopting a Monte Carlo strategy. The
process is repeated 100 times, recording the anomalous edges
at each iteration. The most occurring nodes are selected as
outlier, indicating anomalous longitudinal changes in the brain.

G. Unsupervised classification

The above described method produces, for each patient, a
frequency distribution which summarises the likelihood of a
specific node to be identified as anomalous. Notwithstanding,
the primary goal of this work is to classify clinical profiles. In
order to achieve such result k-means clustering was applied
to the obtained distributions in order to retrieve a label
assignment for each patient.

III. RESULTS

In this section, we report the details of our experimental
work. First, a two-way comparison was performed between
the three clinical forms herein considered (CIS, RRMS and
SPMS). Second, we combined patients in the early and pri-
mary phase of the disease (CIS+RRMS) together and compare



Fig. 3. Schematic representation of the proposed method applied recursively 100 times for each subject. Starting from DTI+T1 images, for each subject with
multiple time acquisitions, a set of longitudinal adjacency matrices (A) is created. k-order random walks is then applied to each of these matrices and a new
longitudinal random walk embedding is generated (B). Tensorization in thus performed on the embedding matrices in order to obtain an higher order tensor
X . Factorial components X (1), X (2), X (3) are obtained by applying NTF. Finally, factor X (1) and X (2) are combined and a set of anomalous nodes can be
identified. Repeating the entire process 100 times for each subject, a vector of frequency distribution of anomalous nodes is created for each patient. Stacking
horizontally all the subject’s anomalous nodes frequencies, a matrix of anomalies (C) is produced. By applying k-means on this matrix a label is assigned to
each subject and the classification task can be performed.

them with patients in the secondary phase (SPMS). Third,
a statistical analysis of the results was performed and some
interesting insights are provided.

A. Classification

In Table II, we report the results obtained with our method.
Four different measures are considered to evaluate the classi-
fication task. In order to have a measure of reproducibility, the
entire process was repeated 10 times with different initialisa-
tion for both the k starting points of the k-order random walks
and for the starting values of the factorization components.

In order to evaluate the classification results, the following
metrics were considered: Precision = TP

TP+FP , Recall =
TP

TP+FN , F1 = 2∗precision∗recall
precision+recall and the Area Under the

Curve (AUC weighted score). The CIS vs SPMS group
reported the best results with an F1 score of 76.67 (5.01)
and AUC score of 76.33 (5.68). Notwithstanding, the highest
variability for both measures is also observed probably due
to the low dimensionality of the dataset and high level of
unbalance between classes. On the other hand, the RRMS vs
SPMS group highlighted the lowest score with an F1 and AUC
score of 70.17 (3.37) and 70.00 (3.29) respectively. As far as
the CIS+RRMS vs SPMS group is concerned, an F1 of 74.17
(3.66) and an AUC of 73.83 (3.60) is reported.

Afterwards, a graphical analysis is considered for all the
comparisons discussed above. In order to better visualise the
clustering results, t-distributed stochastic neighbour embed-
ding (t-SNE) [27] dimensionality reduction technique was
employed. It is worth to note that in the t-SNE procedures,

the perplexity parameter dictates the shape of the mapping
function. For this reason, we performed multiple evaluations
for different level of the parameter starting from a value of 5 to
30 at steps of 5. In Figure 4, the k-means clustering result ob-
tained comparing CIS and SPMS groups is pictured. Although
the data were highly imbalanced, a clear separation between
patients groups is visible (CIS represented in red while SPMS
represented in green). SPMS patients widely spread across
space causing some degree of uncertainty in the clustering.
Once again, this might be due to the high level of imbalance
observed in the longitudinal data. In Figure 5, the RRMS vs
SPMS comparison shows a good level of separation between
groups though a minimum overlap is noticeable. Finally in
Figure 6, we reported the comparison between the CIS+RRMS
and SPMS patients’ groups. In agreement with what is shown
in Figure 4 and Figure 5, a nice overall separation appears
between early and advanced clinical courses.

B. Statistical Analysis

As allowed by our approach, we are interested in detecting
the graph’s nodes, which provide latent temporal anomalies
useful for distinguishing between primary and secondary MS
clinical courses. In this purpose, a statistical analysis is
performed in order to better understand and investigate the
implication of the obtained results. In particular, we focus on
the RRMS vs SPMS comparison.

For each brain region (node), we counted the number of
times a node is considered anomalous by our method. Figure
7, depicts the average node-to-node difference of the anomaly



Algorithm 1: Proposed Method
Data: P : set of patients;

Tp: number of acquisitions for the patient p;
q: number of vertices in G(V,E, ω);
k: number of factors;
υ: total number of iterations;
Θp: anomaly count for each node of patient p;
Θ: anomaly frequencies for each patient;
Φ: k-means label;

Input: Ap,t ∀p ∈ P ∀ t ∈ {0, 1, ..., Tp} longitudinal
matrices for each patient

Output: Φ ∈ {0, 1}p label assignment
Θ = [];
for p ∈ P do

Θp = {node0 : 0, node1 : 0, ..., nodeq : 0};
for iter ← 1 to υ do

1. Xp ← create a tensor by performing n-order
random walks on Ap,t ∀t ∈ {0, 1, ..., Tp};

2. X̂ (1), X̂ (2), X̂ (3) ← NTF (Xp);
for each factor do

3. Sx(1) ← select indices corresponding to
anomalous random walks

4. Sx(2) ← select indices corresponding to
anomalous edges

for (i, j) ∈ Sx(1) × Sx(2) do
Θp[nodei]+ = 1
Θp[nodej ]+ = 1

end
end

end
append(Θ,Θp)

end
Φ← k-means(Θ);
return: Φ;

TABLE II
MEAN AND STANDARD DEVIATION (IN PARENTHESIS) OF CLASSIFICATION

RESULTS

Group Comparison CIS vs SP RR vs SP CIS+RR vs SP

F1 76.67 (5.01) 70.17 (3.37) 74.17 (3.66)

Precision 79.33 (4.63) 77.67 (5.24) 77.50 (3.39)

Recall 76.17 (4.31) 70.83 (2.99) 74.33 (3.33)

AUC 76.33 (5.68) 70.00 (3.29) 73.83 (3.60)

Note: RRMS and SPMS are reported as RR and SP respectively for better
visualisation purpose.

Fig. 4. CIS vs SPMS clustering visualisation using t-SNE dimensionality
reduction

Fig. 5. RRMS vs SPMS clustering visualisation using t-SNE dimensionality
reduction

count between RRMS and SPMS patients (red horizontal
line defining the median anomaly frequency difference). More
precisely, the height of the bins represent the mean node-
to-node difference between the two clinical forms. Basically,
for each Monte Carlo iteration, we first calculate the average
node anomaly frequency for each patient (see section II-F) and
average the result conditioned on the class label. Second, we
take the node-to-node difference between clinical profiles. We
repeat this process one hundred times and average the results.
Conversely, in order to detect the brain structural differences
between the average person in an early stage and compare
it with the average person in the advance stage of the
disease (SPMS), one hundred random walks of length 20



Fig. 6. CIS+RRMS vs SPMS clustering visualisation using t-SNE dimen-
sionality reduction

Fig. 7. Node-to-node difference between RRMS vs SPMS: height of the bins
represent the mean node-to-node difference between clinical profiles while
colours define the node-to-node mean difference based on the occurrence of
random walks

are performed for each patient and the node-to-node average
difference between clinical profiles is considered. Specifically,
for each patient, we first count the number of time a node
is included in a k-order random walk. Second, the node-to-
node average was considered as a condition of the class label.
We then calculate the node-to-node difference of the average
values between clinical profiles. We repeated this process one
hundred times and average the results. For interpretability
purposes, we rescale the values in the range [0, 1] and colour
the bins based on this score. The obtained random-walk-based
average difference can be considered as a score that defines
the structural difference between an average patient in the
primary phase of the disease (CIS and RRMS) and the average
patient in a more advance stage (SPMS). However, it does

Fig. 8. Node-to-node difference score between RRMS vs SPMS for node with
value greater than the median (red line Figure 7). Node colours represent the
degree of anomaly score difference between clinical profiles

not take into account the longitudinal component resulting in
a possible biased estimator for the real structural difference
between clinical profiles.
Notwithstanding, in Figure 7 it is possible to notice that most
of the brain areas with high value of anomaly frequency
difference are also the area that register the greatest structural
difference between the two clinical groups being compared.
This suggest that our method mainly focus on the most
structurally important differences, neglecting the areas less
relevant and that do not constitute central hubs inside the brain
network (dark coloured bins).
To better visualise the location of the anomalous nodes,
Figure 8 depicts the brain location of the nodes with anomaly
values greater than the median (red line in Figure 7). The
brain areas detected by our method are: right and left
superior-parietal, right and left inferior-parietal, right and left
inferior-temporal, right and left superior-temporal, right and
left middle-temporal, left superior-frontal, right rostralmiddle-
frontal, left caudate between just the most relevant one.
Interestingly, although not the primary aim of this work, the
selected areas are most often correlated with the brain areas
commonly damaged by MS [28].

IV. DISCUSSION

The results obtained by the proposed method show the
capability of our algorithm to discriminate between different
MS clinical forms. The results in terms of Precision, Recall,
F1 and AUC suggest that the proposed method is promising
in order to perform unsupervised analysis of brain network.
Moreover, we enriched our analysis by showing different plot
by applying t-SNE on the factorization results. From the
obtained images, some interesting properties are visible. More
in detail, in Figure 5, good level of separation is observed
between groups though a minimum overlap is also noticeable.
This is expected since different patients entered in the study
at different phases of the disease. In particular, some RRMS
patients entered in the study with a high lesion load although
with a reasonably low value of both Expanded Disability Sta-
tus Scale (EDSS) and Multiple Sclerosis Functional Composite
(MSFC) score. Moreover, some SPMS patients entered in the
study with a lesion load comparable with the worst RRMS



scenario although reporting a much greater disability scores.
This marginal overlap between the clinical forms makes the
classification task more challenging resulting in some degree
of misclassification.
In Figure 6, a wide spread of RRMS and SPMS patients can
be observed, in line with the comparison previously discussed.
Indeed, it is reasonable to argue that although labeled as early
and advanced stage MS patients, some RRMS and SPMS
patients experience a widely worsen or milder condition with
respect to other patients equally labeled.

V. CONCLUSION

In this work we described a tensor-based method analyse for
longitudinal changes in brain network of MS patients. More in
detail, we provided an algorithm capable to exploit the longi-
tudinal variations in order to perform classification of different
forms of multiple sclerosis. We formalised our problem using
the TF framework by modelling the longitudinal evolution of
the brain graphs as a tensor. We then validated our algorithm
on a real dataset of MS patients showing its capability to well
discriminate between different MS clinical forms. As future
work we plan to better analyse the latent factors obtained by
the factorization and, at the same time, improve the quality of
the results by taking into account external cofounding factors.
Moreover, NTF could be too restrictive for some applications
as it does not model all variability in the data [29]. We plan
to increase the performance using block term decomposition
(BTD) instead of CPD. Indeed, using a BTD model, it is
possible to model the variability on the data by performing
a so-called rank (Lr, Lr, 1) BTD [29].
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