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ABSTRACT

Background and objective: Machine learning frameworks have demonstrated their potentials in
dealing with complex data structures, achieving remarkable results in many areas, including brain
imaging. However, a large collection of data is needed to train these models. This is particularly
challenging in the biomedical domain since, due to acquisition accessibility, costs and pathology re-
lated variability, available datasets are limited and usually imbalanced. To overcome this challenge,
generative models can be used to generate new data.

Methods: In this study, a framework based on generative adversarial network is proposed to create
synthetic structural brain networks in Multiple Sclerosis (MS). The dataset consists of 29 relapsing-
remitting and 19 secondary-progressive MS patients. T1 and diffusion tensor imaging (DTI) acqui-
sitions were used to obtain the structural brain network for each subject. Evaluation of the quality
of newly generated brain networks is performed by (i) analysing their structural properties and (ii)
studying their impact on classification performance.

Results: We demonstrate that advanced generative models could be directly applied to the structural
brain networks. We quantitatively and qualitatively show that newly generated data do not present
significant differences compared to the real ones. In addition, augmenting the existing dataset with
generated samples leads to an improvement of the classification performance (F1 81%) with re-
spect to the baseline approach (F1g,,, 66%).

Conclusions: Our approach defines a new tool for biomedical application when connectome-based
data augmentation is needed, providing a valid alternative to usual image-based data augmentation

score

techniques.

1. Introduction

Artificial intelligence has revolutionized many areas of
research, from economics and law to health-care. However,
a large collection of data is essential for statistical evalua-
tion and machine learning applications, particularly in the
field of deep learning (DL). Indeed, DL frameworks have
achieved remarkable results in many fields, such as pattern
recognition, natural language processing, image processing,
among others [1, 2]. The main advantage of using DL ap-
plications lies in their great ability to recognize hidden pat-
terns in the data, thanks to the multiple nonlinear transfor-
mations produced by the sequential stacks of multiple lay-
ers [3, 4] However, huge amount of data are required for
training this kind of models while in the context of biomed-
ical domain, and particularly in medical imaging, extensive
datasets are challenging to obtain due to systems availabil-
ity, costs constraints, acquisition methodology, and pathol-
ogy related variability [5, 6], resulting in small and imbal-
anced dataset. Notwithstanding, when dealing with image
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data, different solutions have been proposed to overcome
these limitations [7]. A general and widely accepted solu-
tion is to impose meaningless perturbations to the original
data [8] or to apply more advanced techniques, like rota-
tion, reflection, scaling among others. These approaches
offer straightforward alternatives for augmenting the train-
ing set, allowing DL models to reach better performance
and/or more stable training [9]. Recently, with the rise of
DL, interesting alternatives have appeared and new gener-
ative DL-based models were proposed to obtain synthetic
data with characteristics spanning the original data manifold
[10]. Therefore, in this study we refer to generative models
as a subclass of DL frameworks able to generate complex
data data structure, including the recent modeling approach
used to characterize brain networks by means of graph the-
ory [11, 12, 13]. Given the great capability of graphs to rep-
resent complex relations among different areas of the brain,
such relational data structure started to be widely employed
in many contexts, including social behavioral studies. Addi-
tionally, advances in brain image acquisition and computer
assisted methods have begun to provide meaningful results
in support of clinicians, leading to a steadily growing use in
the neuroscience community, particularly in brain imaging
[14]. Using magnetic resonance imaging (MRI), functional
or structural brain connectivity can be obtained by analyz-
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ing temporal correlations of gray matter (GM) activity with
resting-state functional MRI (fMRI) or reconstructing white
matter (WM) fiber-bundles with diffusion tensor imaging
(DTI), respectively. Such network-like structure of the hu-
man connectome consists of nodes, defined by parcellisation
of the brain grey matter (GM), and edges, corresponding
to functional or structural links between the network nodes.
These new approaches paved the way for a better character-
ization of brain networks, particularly in brain diseases such
as Multiple Sclerosis (MS).

MS is a demyelinating, inflammatory, chronic disease of
the central nervous system [15]. While its etiology remains
unknown, MS is the most frequent disabling neurological
disease in young adults. Disease onset is characterized in
about 85% of cases [15], by a first acute episode called
clinically isolated syndrome (CIS) or a relapsing-remitting
course (RRMS) followed by a secondary-progressive course
(SPMS), while the remaining 15% of MS patients evolve di-
rectly into a primary-progressive course (PPMS). The course
of the disease and the risk for developing permanent dis-
ability are very different from one patient to another. Thus,
the neurologist’s challenge is to predict the disease evolu-
tion based on early clinical, biological and imaging mark-
ers available from disease onset. However, the complexity
brought by conectome data is more cumbersome with re-
spect to the grid-like pixel-by-pixel representation found in
images. In fact, due to the multiple interconnections be-
tween different nodes, connectome data represent a chal-
lenge for synthetic data generation for which simple opera-
tions, like edge swapping, would end up changing the entire
structure of the graph network, jeopardizing the information
they convey. [16].

In this study, a generative adversarial network framework is
proposed, namely Generative Adversarial Neural Network
AutoEncoder (AAE). The framework is able to automati-
cally generate synthetic structural brain connectivity data of
MS patients. To achieve this, a prior is imposed to the latent
space of the autoencoder network by means of an adversar-
ial model. Moreover, a consistency loss is also introduced in
order to increase the stability of the training process. New
samples of brain connectivity data are generated by drawing
from the parametrized latent space. An overfitting analy-
sis over generated graphs, by exploiting graph properties,
is proposed for model evaluation. The synthetic generated
data can be used to augment the MS brain networks dataset
to improve classification performances of classical machine
learning methods like the Random Forest Classifier.

The paper is structured as follows. In Section 2, we illustrate
the related literature, and in section 3, we provide a detailed
description of our methodological approach. In Section 4,
we describe our experimental results and finally, in Section
5, we draw our conclusions.

2. Related Work

Due to their ability to generate new data, generative mod-
els have gained a lot of interest in the computer vision and

medical imaging research communities. The Generative Ad-
versarial Network framework (GAN) has been previously
used for generating realistic training images that synthet-
ically augment datasets. Radford et al. [17] introduced a
class of generative model called deep convolutional gener-
ative adversarial networks (DCGAN) to generate 2D brain
MR images followed by an AE neural network for image
denoising. Makhzani et al. [18] proposed a new method
for regularizing AutoEncoders (AE) by imposing an arbi-
trary prior on the latent representation. Calimeri ef al. [19]
proposed a GAN for the automatic generation of artificial
MR images of the human brain. They demonstrated that
the power of adversarial training could be exploited for the
generation of brain networks data, which are more complex
than usual images.

GAN frameworks have also shown to improve accuracy of
image classification via generation of new synthetic training
images. Frid-Adar er al. [20], for instance, used synthetic
medical image augmentation with GAN for the classifica-
tion of liver lesions. Similarly, Salehinejad et al. [21] used
this framework to simulate pathology across five classes of
chest X-rays in order to augment the original imbalanced
dataset and improve the performance of a convolutional model
in chest pathology classification. In the context of MS, Shui-
Hua W. er al. [22] proposed a new transfer-learning-based
approach to identify MS patients with higher accuracy, com-
paring three different types of neural networks (DenseNet-
121, DenseNet-169, and DenseNet-201), which make use
of composite learning factors to different layers. Yu-Dong
Z. et al. [23] exploited the AlexNet model to classify MS
patients and studied the best transfer-learning settings (i.e.
number of layers transferred and replaced) obtaining high
level of performance.

Interestingly, other applications of adversarial variational
training frameworks have been reported. For example, Zhang
et al. [24] proposed a semi-supervised learning Adversar-
ial Variational Embedding for leveraging both the power of
GAN as a high quality generative model and Variational Au-
toEncoder (VAE) as a posterior distribution learner. They
demonstrated that the combination of VAE and GAN pro-
vided significant improvements of semisupervised classifi-
cation. Imran et al. [25] used a network architecture that
incorporates an ensemble of discriminators in a VAE-GAN
network using datasets from the computer vision and med-
ical imaging domains in order to generate new realistic im-
ages of medical data. They showed that the combination
of this two generative models can lead to superior perfor-
mances against state-of-the-art semi-supervised models both
in image generation and classification tasks. However, the
generation process become more cumbersome in the case
of highly structured graph data. In order to address this
challenge, many approaches have been reported. Chawla
et al. [26] proposed a GraphVAE method for generating
small graphs using a Variational approach. This model is
composed by a simple linearized decoder output, which pro-
duces a probabilistic fully-connected graph. Pan et al. [27]
proposed a new architecture for which an adversarial train-
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ing is combined with a graph autoencoder structure (ARAE).
The framework encodes the topological structure and node
content in a graph to a compact representation, on which a
decoder is trained to reconstruct the graph structure.
Freund et al. [28] proposed an approach based on adver-
sarial regularization of the latent space for generating graph
structured data. They could demonstrate the ability of the
model to embed graph-based data coherently, and at the
same time, generate meaningful samples. Thus, Graph AE
and VAE constitute today the best approach for embedding
nodes and learn a low dimensional vector representation with
applications to link prediction, node clustering and matrix
completion. However, much less attention has been spent on
generating the entire structure of graphs. Khoshgoftaar et al.
[29] proposed a simple graph AE structure which does not
use the graph convolutional network. They demonstrated
that a straightforward linear models with adjacency matri-
ces as inputs performed equally well in benchmark datasets
like Cora, Citeseer and Pubmed citation networks.

3. Materials and Methods

3.1. Dataset Description and Preprocessing
Forty-eight MS patients distributed across the two most
frequent clinical courses, namely the RRMS course, which
is followed, between 10 to 20 years later, by the SPMS
course [1]. If these two clinical forms are distinguished by
the status of the patient, mainly expressed by its Expanded
Disability Status Scale (EDSS), they can also be differen-
tiated by their biological and imaging markers reflecting
two underlying pathological processes, such as inflamma-
tion, and neurodegeneration. Each patient underwent multi-
ple brain MRI examinations over different periods, ranging
from 2.5 to 6 years. The minimum number of scans per
patient is 3 while the maximum is 10. The gap between
two consecutive scans is either 6 or 12 months. The to-
tal number of MRI scans in the dataset is 270. This study
was approved by the local ethics committee (CPP Sud-Est
IV) and the French national agency for medicine and health
products safety (ANSM). Written informed consent was ob-
tained from all patients and the control subject prior to study
initiation.
For each subject, the brain structural connectivity graphs
are generated by combining brain GM parcellation extracted
from T1-weighted MRI and the white matter (WM) fiber-
tracking obtained from DTI acquisition. An undirected graph
G = (V, E) representing the WM fiber-tracks of the brain
is created, where V' defines the set of nodes (GM regions)
and E represents the set of connections (WM fiber-tracks)
between these nodes. Each graph G is represented by an
adjacency matrix. More in detail, the data processing in-
cludes an atlas parcellation of cortical and sub-cortical GM
regions, performed after segmentation of the T1-weighted
MRI in four classes [WM, cortical GM, sub-cortical GM,
cerebro-spinal fluid (CSF)], as described in Kocevar et al.
[30]. Meanwhile, a pre-processing of the diffusion images is
performed by applying the Eddy-current distortions correc-

Table 1
Population description by clinical profiles
RRMS SPMS

Patients (M\F) 29 (20\80) 19 (61\39)
Age at first scan (years) 35.1 (7.4) 42.3 (4.4)
Disease duration (years) 6.75(4.81) 13.12 (5.84)
EDSS median (range) 2.0 (0-4.5) 5.0 (3-7)
Total number of scans 182 88

tion [31] and a probabilistic streamline tractography algo-
rithm is applied to generate WM fiber-tracks that combined
with the T1-image parcellation leads to a symmetrical con-
nectivity matrix A € N7/ where ¢ = 84 for each subject.
Finally, due to the symmetry of the matrix, only the upper
triangular part was considered in order to reduce the dimen-
sionality of the problem. This implies that a single matrix
can be represented as a vector x € R where d = 3486
excluding the diagonal which is imposed to zero values.

3.2. MRI Data Acquisition

MS patients underwent a MR examination on a 1.5T
Siemens Sonata system (Siemens Medical Solution, Erlan-
gen, Germany) using an 8-channel head-coil. The MR pro-
tocol consisted in the acquisition of a sagittal 3D-T1 se-
quence (1 X 1x 1 mm?, TE/T R = 4/2000 ms) and an axial
2D-spin-echo DTI sequence (T E/T R = 86/6900 ms; 2x24
directions of gradient diffusion; b = 1000 s.mm™2, spatial
resolution of 2.5 x 2.5 x 2.5 mm?) oriented in the AC-PC
plane.

3.3. Generative Adversarial Neural Network

GAN is a generative model approach based on differ-
entiable neural networks where two actors are involved: a
Generator [qu(zm(x)] and a Discriminator [D(v)] [8]. The
former is a neural network mapping the input x to the out-
put z by training a network with structure ¢ and parameters
6. In most applications, brand new data are generated by
defining a prior on input noise variables. The latter is a net-
work which takes as input v and outputs the probability that
the input is coming from the true data distribution instead
of being synthetically generated [19]. Formally, the adver-
sarial game can be defined as a min-max problem following

Eq. (1).

min max = E,, ) [log D(v)]+

Eznpryll =108 D(G gz (X))]

ey

Here, the first term represents the discriminator network’s
probability that true instances v from distribution p(v) are
rightly classified. The second term in the summation, identi-
fies the generator network’s ability to fool the discriminator
by producing data with probability distribution p(z) indis-
tinguishable from that of the true data.
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Figure 1: Schematic representation of the proposed AAE model. Starting from the brain connectome data representation
(adjacency matrix), conditional probability distributions were calculated, from which new batches of connectome data were
sampled. From the vectorized representation of the sampled adjacency matrix, the encoder network compresses the input into
a latent lower dimensional representation, while the decoder reconstructs the input from its compressed latent representation.
The combination of the two networks defines the autoencoder generator of the adversarial framework. Conversely, the
discriminator network takes as input the latent representation and a random noise vector and tries to discriminate between
the two, effectively imposing a constraint on the latent distribution of the autoencoder. Finally, from the latent space, an
additional classifier discriminates between RRMS and SPMS patients.

3.4. Generative Adversarial Neural Network
Autoencoder

In this study, the adversarial training is used to train
the proposed AAE model at generating synthetic structural
brain networks. Fig. 1, illustrates the adversarial process.
The structure of the AAE model is defined by two adver-
sarial neural networks: the generator and the discriminator.
The former is an autoencoder composed by 13 layers for
which fully connected and batch normalization layers alter-
nate between one another except for the output layer. The
input layer of the encoder is the number of upper triangu-
lar nodes in the graph (d = 3486). Subsequent fully con-
nected layers have a number of neurons of 512, 256, 128,
100. This last encoder layer (gy(z|x)) maps the input vector
x € RID to alower dimensional space z € R with
¢ = 100. The decoder py(x|z) is defined as a mirror repre-
sentation of the encoder with the aim of reconstructing the
original input. Furthermore, the encoder is provided with
an additional branch, a fully connected layer with a single
neuron, used as regularization with respect to the clinical
form.

On the other hand, a second neural network is intro-
duced, which takes two inputs. The first is a random stan-
dard gaussian vector v € R with ¢ = 100 where:

1 -2
v~ N, 0%) = —=e 2 @

Vr

with 4 = 0and ¢ = 1. The second is z € RU-©) obtained as
the output of the encoder gy(z|x). The second model (dis-
criminator) produces a probability score, which defines the
likelihood that the two input vectors are coming from the
same underlying data distribution. Its architecture is com-

posed by 6 layers in which fully connected and dropout lay-
ers alternates between one another. The LeakyReL.U activa-
tion function with an alpha parameter of 0.2 is used for all of
the middle layers in both the generator and the discriminator
while for the output layers a sigmoid activation function is
employed. Only for the generator, batch normalisation with
momentum 0.8 is added after each feedforward layer except
for the output layer. For the discriminator, dropout with pa-
rameter 0.2 is used between each layer excluding the output
layer. Finally, the encoder model g,(z|x) is connected to a
second mirrored model py(x|z), the decoder, whose objec-
tive is to learn the inverse mapping function of the encoder.
In order to maximize the reconstruction quality of the input
data, an additional penalty is imposed to final loss function

Q).

MSE=-L zk: (—x” ~ Polylzy) )2 3)
i=1 j=1 Oij
where k defines the total number of possible connections
in the upper triangular of the connectivity matrix while n
defines the size of the batch used for training the network.
In other words, we penalized the loss function each time the
reconstructed matrix is far from the original data matrix in
terms of mean squared error (MSE). This constraint ensures
that while the hidden space z is forced to follow a standard
normal distribution, the output of the model will produce
results that span the entire input space. Moreover, in order
to improve the classification performance we imposed an
additional form of regularization which bind the latent space
to be “coherent” [32] between the encoder and the decoder
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network. Mathematically, this translates in Eq. (4):

MSECoherence = cn z z

i=1 j=

(qe(ZIx) >2 @

with TOR = Q5 — Q| where Q; and Q5 are respectively
the first and the third quartile of the distribution given by
qy(z|x) — ¥y where ‘I‘QU = qp(2;j1Pp(xi;190(2] ;).

As long as the adversarial loss is concerned, let D(v)
be the discriminator network, where v ~ N'(u =0, ¢% =
1) = p(v), is a standard normal distribution. The related
loss function will thus be defined as [EUNP(U)[logD(U)] for
positive casesand E,_ ) [1-/ ogD(qu(z| x(X))] for negative
cases. In this last case, the generation of the latent space
z is defined as qu(zm(x) with z ~ gy(z|x) = p(z). We
would like that p(z) =~ p(v), which implies that the latent
space is distributed as a standard gaussian. On the contrary,
we define with G(x) the final generator (composed of an
encoder and a decoder) and its respective loss function as
[EZqumx)[l 0g py(x|z)]. Henceforth, the adversarial loss will
be defined as shown in Eq. (5).

L(09 D(U)7 Gq9(2|x)(x)) = [EZng(le)[lOg P¢(X|Z)]+
[Eu~p(v)[10gD(U)] + IEZNP(Z)[I - lOgD(qu(zlx)(x))] (5)

Roughly speaking, the Kullback-Leibler, usually employed
in a VAE framework [33], is now substituted with the ad-
versarial loss. This model allows us to provide probabilistic
descriptions of observations in latent space, which translates
in the ability of the model to store latent attributes as proba-
bility distributions. In order to take into account the clinical
form for each graph, an additional constraint has been im-
posed and defined as follows:
exp(a;)

LCrossEntropy 2 Yij log ( exp(a )) ©

where C is the number of the clinical forms.
The final loss function to optimize is thus obtained by
summing up all the losses as defined in Eq. (7).

Lfinal = L6, D(v), qu(z|x)(x)) + MSEp,q0+

+ MSECoherence + LCrossEmropy (7)

As long as the parameters used for training the AAE are
concerned, 500 iterations with a batch size of 64 are used for
training the generator and the discriminator in an alternat-
ing fashion. The process terminates when the capability of
the discriminator to distinguish synthetic samples from true
samples remains stable approximately around 50%. The
Adam optimizer is used for both models while the learn-
ing rate (Ir), imposed for the discriminator, was chosen to
be 10 times smaller than the generator (Ir = 0.001). These
settings, have been empirically observed to lead to a more
stable training of the adversarial network, providing better
results.

3.5. AAE Adversarial Training Pipeline

The whole pipeline for training the GAN framework and
generating synthetic structural brain networks is summa-
rized in Fig. 2. Generally speaking we can divide the entire
workflow in three main phases: i) Training the AAE model
ii) Using the AAE model for generating synthetic MS struc-
tural brain networks iii) Data augmentation for MS clinical
form classification.

3.5.1. Training the AAE model

In order to properly train the proposed AAE model, a
naive data augmentation procedure is needed. The original
dataset is split in training and test set by a leave-one-subject-
out cross validation strategy (step 1). The training set was
then exploited to calculate the conditional probability distri-
bution defined in Eq. (8):

PX =0y =y,0=¢q) = (Z)pfyq(l ~ Py ®

Here, p;,, defines the probability of an edge i to be present in
the vectorized representation of the upper triangular matrix
x € {0, 1}(1’d) with dimensionality d and i € [0, d] given
a class label y and a degree quantile g. The letter v defines
the number of times the edge i is present and n the number
of trials (number of subjects drawn).

It is worth noting that outlier probabilities can be present.
In fact, given that our training set is only the realization of
a stochastic process, the fact that two regions are always
(Piyq = D or never (p;,,, = 0) connected might not be true in
general. For example, it can be due to lack of data or biases
in the collected dataset. To overcome this issue Eq. (9) is
applied:

0.95, if piyy > 0.95

iy, 9
0.05, if p, <005  P7 ©)

P(XIY,Q)={

It is important to notice that the described anomalies rep-
resents a tiny fraction of the total number of connections
(< 1%) and do not mine the final result of the work. Yet,
the operation is useful for a better generalisation capability
and avoid overfitting.

The calculated probability density function (pdf) is then
used as a “stamp" from which sampling new batches of data
at each iteration (step 2 and 3). More in detail, given a
class label y and a degree quantile g, a new vectorized rep-
resentation of an upper triangular matrix can be obtained
x € {0,1}19 where x; is assigned 1 with probability p;,
or 0 with probability 1 — p;,,,. Here, x; denotes the pres-
ence or the absence of a connection in the i-th edge of the
y-th MS class in the g-th degree quantile. Finally, a contin-
uous transformation of the connectivity matrices is applied
as following (Eq. (10)):

ifx; =0

X, + U(0.01,0.05), (10)
xA =
i ifx; =1

x; * U(0.95,0.99),
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where U is the continuous uniform distribution. In other
words, a noise component is introduced to the new gener-
ated connectivity matrix. This strategy is usually imple-
mented in the context of an adversarial model and it has
been shown to provide more stable training [34].

This naive procedure for extracting new instances from the
underlining likelihood distribution provides a double advan-
tage: first, several samples can be generated, thus addressing
the problem of limited training size. Second, the obtained
instances resemble, at each iteration, the percentile distri-
bution of the original dataset. Henceforth, this second ad-
vantage is important to overcome the problem of mode col-
lapse, which constitute a usual challenge when it comes to
train an adversarial network [12]. It is worth noting that this
data augmentation technique is only used to train the AAE
model but cannot be implemented for actual MS connectiv-
ity data augmentation. Indeed, this naive method is not able
to produce enough qualitative results, due to the hypothe-
sis of conditional independence imposed between pairs of
nodes inside the graph. However, the resampling strategy
guarantees that the dataset effectively used to train the ad-
versarial framework is perfectly balanced with respect to a-
priori information of the clinical profile and graph density
that we are interested in generating.

3.5.2. Using the AAE model for generating synthetic
MS structural brain networks

Once the model is trained, we are ready for the second
phase in which the synthetic graphs are generated by sam-
pling new instances from a standard gaussian distribution
(Figure 2 step 4), with shape RU-¢), and then used to feed
the already trained decoder, obtaining new realistic connec-
tome data.

3.5.3. MS clinical form classification

Finally, in the third phase, the synthetic dataset was used
to augment the original training set (step 5) and fed to a clas-
sifier (step 6) in order to enhance the classification perfor-
mance of MS clinical profiles (step 7). The predicted labels
obtained from the classifier were compared with the left-out
samples for performance evaluation. It is important to notice
that neither the training set nor the test set were ever used by
the adversarial model to generate synthetic data. The pro-
posed pre-processing approach thus reduces the overfitting
tendency of the generative model.

3.6. Experimental Protocol

In this section, the results obtained by evaluating both
the structural property of the connectivity matrices and their
respective graph-derived metrics are reported. In order to
perform the evaluation, a sample of data from a random nor-
mal distribution v ~ N (i =0, 6% = 1) were drawn, where
v € R19 and ¢ = 100. N defines the number of samples
to be generated and passed to the decoder py(x|z) to obtain
a new sample of synthetic data. Finally, we demonstrate
the usefulness of our approach by improving the classifi-
cation performance of MS clinical forms, even in presence
of strong imbalance between classes. Classical approaches,

Table 2
Performances of MS Clinical Forms Classification using dif-
ferent data augmentation methods

Strategy Fl,,, Precision Recall

True Data  65.65+12.34 77.49+12.8  61.68 +12.63
ROS 65.84+11.97 77.49+12.76 61.76 + 12.08
SMOTE 7232+ 11.18 83.04+11.28 68.45+11.39
ARAE 7001158 8l.1+12.14  648+11.83

AAE (ours) 81.0+10.37 86.25+10.36 79.65 + 10.51

Average classification performance (with standard errors) based on a leave-
one-subject-out cross validation strategy on the original dataset (True Data)
and after data augmentation of the training set using the Random Over Sam-
pling (ROS) technique, Synthetic Minority Oversampling Technique (SMOTE),
Adversarially Regularized Graph Autoencoder (ARAE) and our approach
(AAE)

like ROS and the more efficient SMOTE [26] are used for
comparisons as well as the more recent adversarial model
ARAE [27]. The performance metrics used for the evalua-
tion are F1g,.,,.,, Precision and Accuracy which are defined
in Eq. (11, 12, 13) respectively.

2T P
F1 = 11
score - A((TP+FP+FN) an
Precision = —TP (12)
TP+ FP
Precision = _re (13)
TP+ FN

where the abbreviations TP, TN, FP, FN represent the
True Positive, True Negative, False Positive and False Neg-
ative of instances respectively.

From now on, we refer to the connectivity graphs gener-
ated through the adversarial network as synthetic data, while
the original dataset will be labelled as true data.

4. Results

4.1. Comparison of Data Augmentation Methods
for MS Classification

The classification task was performed with a Random
Forest Classifier (RF) with 100 trees, due to its robustness
to overfitting and unbalanced dataset. Table 2 reports the
average classification performances (with standard errors)
between our method and the three oversampling techniques
previously introduced. Fig. 3 shows the corresponding con-
fusion matrices. Compared to the true unbalanced date used
as reference, our method obtained higher performance, reach-
ing an F1,,,, of 81% instead of 65.7%. The ROS and
SMOTE methods provided a score of 65.8% and 72.3% re-
spectively, while the ARAE model reports a value of 70%
showing a marginal improvement over the unbalanced base-
line.
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Figure 2: Schematic Representation of the entire workflow. (1) The original dataset is split in training and test set by means of
a leave-one-subject-out cross validation strategy. Considering only the training set, conditional probabilities were calculated
and mini-batch random samples were drawn (2), at each cycle, for training the AAE model (3). Once the training process
was completed, a batch of random instances were sampled from a standard gaussian distribution (4) and fed to the trained
decoder to produce synthetic graphs, used to augment the original training dataset (5). The resulting augmented dataset
was used to train a classifier (6) to predict MS clinical profiles (7). The entire process was repeated for each patient and the

predicted MS class was compared with the actual class from the left-out subjects by means of F1-score.

True Data ROS SMOTE
118 64
g 97 85 § 102 80 5
5 37 51 o 34 54 o 32 56
RR SP RR sp RR SP
AAE (our) ARAE
g 159 23 ﬁ 121 61
g 22 66 g 40 48
RR SP RR SP

Figure 3: Confusion matrices for the classification of MS
clinical profiles

4.2. Evaluation of Synthetic Data Based on
Graphs Matrices
We want to evaluate both the coherence and the differ-
ence between true and synthetic data. Ideally, we aim at

producing synthetic graphs that span the entire range dis-
tribution of the true data sample. In order to evaluate the
properties of synthetic graphs, an equal number of data were
generated with respect to the true data samples obtaining a
perfectly balanced dataset. For both true and synthetic data,
the global assortativity degree metric was calculated along
with a percentile distribution of 1% width. In other words,
the distributions of true and synthetic data were computed
with the highest degree of precision following the idea that
larger bandwidth will produce less precise comparisons by
smoothing the distributions and providing a too optimistic
result. In order to measure the distance between the two
distributions, the mean absolute point-wise deviation was
calculated (77.82 + 46.07). The overlap proportion (OP) be-
tween the two distributions (true vs synthetic) is calculated
by employing Eq. (14).

2y min(I;, M)
n
2]:1 Mj

Here, n represents the number of comparison while I and
M represent the synthetic and true data distribution respec-
tively. A value of 96.26% is obtained. A graphical anal-
ysis of the true and synthetic data was also performed by

OP = (14)

Berardino Barile: Preprint submitted to Elsevier

Page 7 of 12



Data Augmentation using Generative Adversarial Neural Networks

Wipg True
o A Synthetic
g e 3@
20 ¥ * g %y
L B P #l . =
4 " % "J*‘." # A
s
- [
S o e
5 v
c g
E L
S 0 4
3 Fah
[ !"e o
—40 0"0 s
- ~
b )
—60
—a0 20 0 0 0

1nd dimension

Figure 4: Embedded t-SNE representation of structural
graphs: True vs Synthetic data

means of the #-distributed Stochastic Neighbour Embedding
(+-SNE) model [35, 36]. This algorithm applies a non-linear
transformation of the original multidimensional data. It per-
forms an embedding of data, mapping them in a lower di-
mensional space. Specifically, the algorithm ensures that,
each high-dimensional element is mapped to a lower dimen-
sional space in such a way that similar objects are modelled
by nearby points and dissimilar objects are modelled by dis-
tant points with high probability [37, 38].

Fig. 4 illustrates the embedded representation of the syn-
thetic and true data. From the image, it can be observed
that the two groups are fairly similar. It is worth to note
that in the #-SNE procedures, the perplexity parameter dic-
tates the shape of the mapping function. For this reason,
multiple evaluations of this parameter has been performed
using value from 10 to 60 at 10 units increment. In Fig.
4 the -SNE results are illustrated for a perplexity parame-
ter of 30. To be noticed that the author pointed out that as
far as the perplexity parameter remains in the usual range
(5,50) the model is quite robust [36]. In addition to the #-
SNE representation, the embedding of the true and synthetic
graphs was also performed using the Graph2Vec algorithm
[39], which is optimised for working with graphs (Fig. 5).
It is a transductive neural embedding framework used to
learn from data-driven distribution representations of arbi-
trary sized graphs. This framework ensures that structurally
similar graphs are represented close to one another, while
dissimilar graph are depicted far apart. In other words, the
model is able to preserve the first and second order prox-
imity. The former is the local pairwise similarity between
nodes linked by edges, while the latter indicates the sim-
ilarity of the nodes neighbourhood structures. In order to
numerically compare the true and synthetic data, the F1,,,,,
metric was computed by linearizing the upper triangular part
of the binary adjacency matrices (A,, A; € R respec-
tively with d = 3486). Each true adjacency matrix is com-
pared with every synthetic vector. A minimum F1,,,,., value
of 63% and a maximum value of 82% was obtained with an

True
80 Synthetic

2nd dimension

-0 30 -0 -lo ) 10 0 0
1st dimension

Figure 5: Graph2Vec embedding comparison of structural
graphs: True vs Synthetic data

average score of 76%.

4.3. Evaluation of Synthetic Data Based on
Graphs Features

Analyzing the metrics of synthetic graphs is important
to capture meaningful features characterizing the structural
brain connectome. For this purpose, six graph-based global
metrics are considered: Transitivity, Global Efficiency, Mod-
ularity, Density, Betweenness Centrality and Assortativity.
Such metrics are indeed widely used to characterize brain
connectivity [40], and could provide a reliable measure of
the quality of generated data.
In Fig. 6, the boxplot distribution between true and syn-
thetic data is presented for each metric. Comparable values
of median and interquartile range are observed for the two
distributions.
As in the previous section, the 7~-SNE analysis has been re-
peated varying the perplexity parameter in the range be-
tween 10 and 60 at steps of 10. In Fig. 7, the +-SNE em-
bedded representation shows similar distributions between
true and synthetic data without obvious discrepancies.
In order to assess the similarity between the two groups, an
additional evaluation based on the Kernel Density Estima-
tion (KDE) function was performed. The distributions of
true and synthetic datasets were estimated by means of the
KDE function and their likelihoods were compared. This
approach was originally introduced by Breuleux et al. [41]
and applied in the context of generative adversarial networks
in two reports [19][42]. The method estimates the prob-
ability of the synthetic data, by fitting a Gaussian Parzen
window to the generated samples and reports the likelihood
under this distribution. The bandwidth of the Gaussian win-
dow is obtained by cross-validating the training data. Af-
terword, the similarity between the two datasets has been
computed by estimating the pdf of the KDE estimation, so
that similar datasets could be represented by similar distri-
butions. Value of 2773.66 and 2657.13 were obtained re-
spectively by comparing the log-likelihoods for the true and
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Figure 7: Embedded t-SNE representation of graph metrics:
True and Synthetic data

synthetic data. This result suggests, once more, that the two
groups of data are similar. Indeed, the two cumulative func-
tions (true in blue and synthetic in orange) are rather close to
one another (Fig. 8). Furthermore, they both follow approx-
imately a straight monotonic-increasing path, which means
that the probability mass is evenly distributed across all data
samples in both groups.

As an additional test, the bandwidth value from 0.1 to 1 at
steps of 0.1 has been increased in order to evaluate the ro-
bustness of our results. An increase in performances for
every value greater than 0.1 (best cross-validation) has been
observed. Finally, in order to offer a sample visualization of
the true and synthetic connectivity matrices, Fig. 9 provides

Assortativity Betweeness Centrality Global Efficiency
0.011 0.85
o.10 0.010
0.80
0.05 0.009
0.008 0.75
0.00 0.007
0.70
0.006
-0.05
0.005 0.65
-0.10 0.004
True Synthetic True Synthetic True Synthetic
Modularity Transitivity 070 Density
0.35
0.75 0.65
0.30 0.60
0.70
0.25 035
0.65 0.50
0.20 P <
0.60 0.45
0.15 0.40
0.55
0.35
0.10
0.50 0.30
0.05
True Synthetic True Synthetic True Synthetic
Figure 6: Boxplot distributions of graphs metrics: True vs Synthetic data
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Figure 8: KDE cumulative density function estimation of
structural graphs: True and Synthetic data

two visual examples from the RR and SP clinical forms. It
is possible to notice that the true and synthetic data are very
similar.

4.4. Evaluation of MSE Coherence

In order to evaluate the stability of the training process,
Figure (10) depicts the generator (orange) and discriminator
(blue) training loss. Panel (A) and panel (B) report the re-
sults obtained when the coherence loss in Eq. (4) was added
or excluded from the final objective function, respectively.
Less spikes and noise are noticeable in the former case com-
pared to the latter, implying an higher degree of stability of
the adversarial training.
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True
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Figure 9: Structural Graph Comparison: True and Synthetic
data

5. Discussion

In this work, an approach for generating new structural
connectivity matrices of MS patients was presented. In a
context of imbalanced data, the proposed framework was
able to up-sample the minority class producing a much higher
F1.,,.. (81%) with respect to the baseline unbalanced clas-
sification (66%). Furthermore, comparing to other classical
oversampling techniques (ROS and SMOTE) and a graph-
based adversarial network (ARAE), our method increases
the classification performance by approximately +10%. The
improvement can be related to the capability of our method
to generate more biologically plausible connectomes that
can better represent the different clinical forms. One of the
possible explanations can be related to the additional classi-
fier branch used as regularized factors. Indeed, it can help
to preserve meaningful structural information which char-
acterizes the different clinical forms.

Our method was evaluated by comparing true and synthetic
data by means of visual and analytical techniques. In fact,
the generated data should meet two requirements in order to
be valid: first, they should preserve similar structural char-
acteristics as the ones which can be observed in true MS
brain networks and second, the new generated brain net-
works should not be simply copies of the original dataset
(overfitting). In other words, while new synthetic graphs
with enough diversity in terms of structure and properties
need to be generated, they still have to be plausible and lie
inside the manifold of the true data. In this work, we showed
that both distributions (true and synthetic) were observed to
be different but very similar to one another. Indeed, the av-
erage F'1,,,,, obtained by comparing the binary adjacency
matrix representation, is 76% (Range 63% to 82%). This
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Figure 10: Training loss comparison with (A) and without (B)
coherence loss

means that a significant portion of the generated graphs is
completely different with respect to the distribution of the
true data samples. Notwithstanding, the boxplot compari-
son shown in Fig. 6 confirmed our visual observation of
Fig. 7. The mean distributions of true and synthetic graph
metrics are very close. However, one can notice a substan-
tial variability in the synthetic group. From all this evidence
the likelihood of overfitting the training set, by simply gen-
erating duplicates, is negligible. Instead, experiments high-
lighted the diversity of the synthetic samples, which lies in-
side the manifold of the true data, demonstrating that com-
pletely new instances have been generated. Moreover, the
actual training set was never seen by the adversarial frame-
work which was trained sampling from the conditional dis-
tribution proposed in Section 3.5, thus reducing the chance
of overfitting even more.

Once completed, the model will allow to increment the size
of the available dataset and thus perform a much robust
training of machine learning algorithms even with limited
amount and unbalanced data, which constitutes a common
scenario in the medical field. In addition, by learning the
complete underline data distribution, it is possible to per-
form meaningful bayesian statistical testing of hypothesis
as well as generating graphs with desired characteristics.
Finally, the combination with other embedding methods,
which learn a meaningful representation of single nodes, is
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of great interest. This study exploits the advantage of the
AAE framework in the context of brain graphs data gener-
ation and can be easily expanded for the analysis of other
brain diseases or other related domains.

Some limitations should be also mentioned. First, our dataset
represents structural connectivity matrices in which connec-
tions are binarized, discarding the valuable information con-
veyed by weighted graphs. Second, due to its simple ar-
chitecture, our method will not be efficient for very large
graphs. Moreover, in order to sample random batches from
Eq. (8), in this work the clinical class and the degree per-
centile were used for conditioning. In fact, the limited amount
of data did not allow to add other covariates like age and
gender which are worth exploring if one has a large enough
sample size. Finally, the computational time needed to per-
form the leave-one-subject-out cross-validation is not negli-
gible since for each subject the AAE model has to be trained.
However, in the context of brain network analysis, we rarely
deal with much larger networks as the actual MRI data are
limited to a maximum of a few hundred nodes, justifying
the simplification proposed in this study. Additionally, our
method performs well even with a limited in number and
strongly imbalanced data, in agreement with a previous re-
port [29].

6. Conclusion

In this study, a new data augmentation approach for con-
nectome dataset was presented. Given the capability of graphs
to represent complex brain networks, our approach provides
anew tool for biomedical application, a domain in which the
data availability is scarse and poorly behaving. Therefore,
our connectome-based data augmentation approach repre-
sents a promising alternative to usual image-based techniques.
Furthermore, the proposed data augmentation approach was
capable to improve the MS classification performance even
in cases of unbalanced data scenario. As future work, we
aim to improve our approach by generating all clinical MS
profiles and exploit weighted connectivity matrices in place
of binary structural graphs. In addition, we plan to explore
conditional adversarial neural network methods to perform
meaningful bayesian statistical testing of hypothesis as well
as generating graphs with desired characteristics. Finally
the combination with other embedding methods, which learn
a meaningful representation of single nodes, should be also
explored.
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