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ABSTRACT

In clinical trials, longitudinal data are commonly analyzed and compared between
groups using a single summary statistic such as area under the outcome versus
time curve (AUC). However, incomplete data, arising from censoring due to a limit
of detection or missing data, can bias these analyses. In this article, we present a
statistical test based on splines-based mixed-model accounting for both the censoring
and missingness mechanisms in the AUC estimation. Inferential properties of the
proposed method were evaluated and compared to adhoc approaches and to a non-
parametric method through a simulation study based on two-armed trial where
trajectories and the proportion of missing data were varied. Simulation results
highlights that our approach has significant advantages over the other methods.
A real working example from two HIV therapeutic vaccine trials is presented to
illustrate the applicability of our approach.

Keywords area under the curve, longitudinal data, statistical test, mixed-effects model, study drop
out, left-censoring

1 Introduction

The Area Under the Curve (AUC) is a summary measure commonly used in various applications
when the outcome of interest is based on a quantitative variable such as a biomarker concentration.
In pharmacokinetics, the AUC of the drug concentration versus time is typically analyzed to account
for drug exposure and clearance from the body [1] or to evaluate the bioequivalence of vaccines
[2], or the quality of life by summarizing individual scores [3, 4, 5, 6]. In preclinical cancer
drug screening tumor xenograft experiments, the ratio or the difference of AUC can be used to
replace the commonly used treatment-to-control ratio[7, 8] or summarize symptoms[9] to evaluate
therapy effectiveness. In infectious diseases, the AUC can summarize the exposure to the HIV virus
∗Corresponding author
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[10] or influenza [11, 12]. When AUC is an outcome to be compared between arms in a clinical
trial, estimates can be biased because of incomplete data. Two frequent sources for the lack of
completeness can arise: censoring due to a limit of detection (LOD) of assay and study drop out.

In this context, various methods for the calculation of AUC have been proposed. Allisson et al.
[13] and Venter et al. [14] compared different approaches based on incremental AUC. Incremental
AUC consist in computing the AUC only for observations that are above a threshold, which can be
viewed as particularly compelling when there is left-censored observations. However, Potteiger et
al. [15] pointed out the potential biais in resulting conclusions when using incremental AUC even
in presence of complete data. Wilding et al. [16] have developed an approach to evaluate treatment
effect by comparing longitudinal data from two groups of patients through AUC calculation when
data are subject to Missing Completely At Random (MCAR) missingness process. Bell et al. [17]
extended this method to Missing At Random (MAR) data and incorporated the within-subject
variability through random effects using Linear Mixed Effects Models (LMEMs). In both cases, the
comparison of the mean AUC using maximum likelihood (ML) between groups was more robust
than the comparison of the average individuals’ AUC with standard two-sample t-tests. Furthermore,
the estimation of the mean AUC using LMEM can be adapted to outcomes subject to left-censoring
[18].

In this paper, we propose a statistical parametric test for AUC based on splines-based MEMs
which is extending the previously described approaches by adding flexibility in the modeling,
accounting for left-censored data and dealing with MAR monotonic censored follow up. Estimation
of parameters in LMEMs model is possible using ML-based approach leading to robust inference in
presence of right-censored [19] and left-censored outcome [20, 21]. To do so, we use an Expectation-
Maximization EM algorithm for computing the maximum likelihood in nonlinear mixed effects
models with censored response as describe in Vaida et al. [22].

Multiple other non-parametric approaches have been developed to solve this type of problem.
Schisterman and Rotnizky [23] developed a semi-parametric estimator of a K-sample U-statistic
when data are missing at random combining information from both outcomes and auxiliary variables.
Thereafter, Spritzler et al. [24] extended these results by proposing a valid semi-parametric two-
sample test of equal AUC when observations are MAR monotonic and/or Missing Completely
At Random (MCAR). Both works are based on weighting approaches and thus require strong
assumptions on the missing data process. Alternative non parametric tests have been developed
by Vardi et al. [25] based on permutation tests. However, parametric approaches may help in the
situation of incomplete data.

This work was motivated by the evaluation of HIV therapeutic vaccine in clinical trials where high
rate of censoring can occur. The goal of the vaccines in HIV infected patients is to boost the immune
system to control the viral replication when antiretroviral treatments (ART) are interrupted. Hence,
analytical treatment interruption (ATI) is the ultimate way to assess the ability of new vaccine
strategies to control viral replication after ART discontinuation[26]. However, HIV-infected patients
undergoing ATIs are subject to high risks of immune damage with expansion of the existing reservoir,
clinical symptoms, resistance emergence, increased risk of HIV transmission as well as loss of
therapeutic benefits from ART [27, 28]. Therefore, ATI periods are short and patients are followed
carefully. Specification of criteria determining ART resumption may vary from one study to another:
development of Grade-3 adverse events or AIDS related events, the CD4 cell count fell below
350 cells/mm3, or a HIV RNA load exceeding a given virologic threshold [29, 30, 31, 32, 33, 34].
Following these criteria, ART resumption may occur before the end of the planned ATI period
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leading to missing data comparable to study drop out. Also, HIV RNA viral load is subject to left
censoring due to LOD usually around 50 copies/mL [20]. Therefore, the comparison of AUC in
HIV therapeutic vaccine trials constitutes a particularly relevant context for the application of the
method described in the paper.

The article is structured as follows. In Section 2, we briefly describe two HIV therapeutic vaccine
studies which motivated the development of our ML based-model proposed approach to estimate
the difference of mean AUCs between two groups of patients when observations are left-censored
and subject to follow up censoring presented in section 3. In section 4, we investigate the inferential
properties of this method and compare them with both traditional methods and a non-parametric
test through simulation studies. To illustrate the applicability of the approach, we provide a real
working example from the two motivating examples in section 5. To conclude, we summarize the
paper and propose future research in section 6.

2 Motivating Examples

In this paper, we focus on two HIV therapeutic vaccine trials testing the efficacy of vaccines through
ART interruption in HIV-1 infected patients. The first one is the HIV therapeutic vaccine trial VRI02
ANRS 149 LIGHT [35]. This study is a randomized double-blind, two-arm placebo-controlled
Phase-II trial. Its primary objective was to evaluate the virological efficacy after ART interruption
of a therapeutic immunization compared to a placebo. The therapeutic immunization is based on
a recombinant DNA vaccine (GTU-MultiHIV B) and a lipopeptide vaccine (LIPO-5). This study
enrolled 105 patients (35 in the placebo control group vs 70 in the vaccinated group) whose 91 of
them (32 placebo and 59 vaccinated) experienced ATI. HIV RNA load was repeatedly measured at
times 0, 2, 4, 6, 8 and 12 weeks after ATI. The second study is the HIV therapeutic vaccine trial
ANRS 093 Vac-IL2 (Vac-IL2) [36]. This study is a randomized two-arm placebo-controlled Phase-II
trial enrolling 71 patients (37 in the control group and 34 in the vaccinated group). Its primary
objective was to evaluate the immunogenicity of a therapeutic immunization strategy combining
two different vaccines, recombinant ALVAC-HIV (vCP1433) and Lipo-6T (HIV-1 lipopeptides),
followed by the administration of subcutaneous interleukin-2 (IL-2). Therapeutic immunization
was followed by 12 weeks of ATI with repeated measures of HIV RNA load at times 0, 1, 2, 3, 4, 6,
8, 10, 12 weeks after ATI.

3 Method

3.1 Definition of the AUC by interpolation method

We consider N subjects divided into G vaccine arms, with N =
∑G

g=1 ng, with ng being the number
of patient in group g. Let Yij,g be the response measured for the subject i belonging to group g at
its jth time point, tij,g, with i ∈ {1, · · · , N}, j ∈ {1, · · · ,mi} and g ∈ {1, · · · , G}. Moreover, we
define {tij,g} as the set of time points at which data are observed for the patient i and mi = |{tij,g}|
the cardinal of this set. At group level, we equivalently note {tj,g} = ∪i∈g({tij,g}) the set of time
points at which outcome of interest is measured for at least one patient in g, whose mg is the
cardinal. As defined, this framework allows the consideration of unbalanced group design and
group-specific time points. The area under the response of interest curve can be calculated by the
trapezoid interpolation method. The AUC summary measure for the ith subject belonging to the
group g and summary statistics for the entire group g can then be approximated by the following
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equations. Without loss of generality, we define the lower limit of the integration interval as well as
the first time point in each group as zero.

AUCi =

∫ Ti

0

Yi,g(t)dt '
mi∑
j=2

(tij,g − tij−1,g)
2

(Yij,g + Yij−1,g)

AUCg =

∫ Tg

0

Y g(t)dt '
mg∑
j=2

(tj,g − tj−1,g)
2

(Y j,g + Y j−1,g)

where Y j,g is defined as the mean value of the outcome Y in the gth group at its jth time point,
Y j,g = 1

ng

∑
i∈g Yij,g, Ti = maxj({tij,g}) and Tg = maxj({tj,g}) the individual and group time

of follow up. Whereas the trapezoid method is known as the cumulative area over m − 1 time
period in which the value of interest Y is approximated by a straight line between two adjacent
points (tj−1, yj−1) and (tj, yj), two other interpolation methods have been studied in this work to
approximate AUC using either global or piecewise cubic polynomials instead of linear function:
(1) the Lagrange method and (2) the Spline method (See Appendices A and B for more details,
respectively). These methods are not described in the main body of the article as they provide
similar results to the described trapezoid interpolation method.

When calculating individual’s AUC, it is usual to divide the AUC by the delay of follow-up to
take into account the variability in follow-up due to early drop-out for example [37, 38, 39, 40].
Although we propose in this article a method based on modeling that would allow to work directly
on the raw AUC, we will use a normalized AUC (nAUC), that is the AUC divided by the number of
days/weeks of follow-up, for the sake of comparison with individual level methods. The nAUC are
given by [1] and [2].

nAUCi =
1

Ti

∫ Ti

0

Yi,g(t)dt '
1

Ti

mi∑
j=2

(tij,g − tij−1,g)
2

(Yij,g + Yij−1,g) [1]

nAUCg =
1

Tg

∫ Tg

0

Y g(t)dt '
1

Tg

mg∑
j=2

(tj,g − tj−1,g)
2

(Y j,g + Y j−1,g) [2]

3.2 Estimation of nAUC by mixed effects model

We assume the MEM given by the equation [3] to describe the outcome Yij,g of the subject i in the
group gi at the jth time point:

Yij,gi = f0(tij,gi) +

G∑
g=1

1[gi=g] × Fg(tij,g) + hi(tij,gi) + εij [3]

where the function f0 gathers all non group-specific terms, e.g. an intercept, the functions Fg
are non-linear smooth functions of time describing the fixed effect specific to each group and hi
are polynomial time-dependent random effects modeling the inter-individual variability. In the
following, the functions Fg are set to linear combinations such as Fg(tij,g) =

∑Kg
k=1 β

g
kf

k
g (tij,g)

where Kg is the number of time-dependent components describing the group-specific dynamics, e.g.

4



A PREPRINT - MAY 26, 2021

spline basis, and βgk are the regression coefficients.

For generalization purpose, the LMEM given in [3] can be re-expressed with matrix formulation as
follow

Y = X0γ +Xβ +Zb+ ε

where Y is the vector of the outcome of interest, X0, X and Z are respectively the design
matrices for the non group- and group-specific fixed effects and random effects. Because vaccine
or randomized controlled trials involve often adjustment of treatment effects on covariates, such
as baseline covariates, the use of MEM allows it through the definition of the design matrices,
whether at population, group or individual level. The vectors γ, β and b are the unknown non
group- and group-specific fixed parameters and the random parameters respectively while ε is
the vector of error terms supposedly normally distributed such as E(ε) = 0 and Var(ε) = Θ.
Moreover, we assume that E(b) = 0 and Var(b) = Ω, with b ⊥⊥ ε. By construction, the matrixX
is defined as a diagonal block matrix such asX = diag (X1, · · · ,XG), where each sub-matrixXg

is group-specific. Similarly, the vector β can be written as βT =
(
β1T

, · · · ,βGT
)

, each vector βg

being only specific to the group g. It can be demonstrated that the estimate of the nAUC in group g
[2] can be re-expressed as a linear combination of the responses at each time, as

nAUCg =
1

Tg

mg∑
j=1

wj,gY j,g =
1

Tg
wT

g Y g [4]

where wg = (w1,g, · · · , wmg ,g)T , Y g = (Y 1,g, · · · , Y mg ,g)
T , with

wj,g =


tj+1,g − tj,g

2
, j = 1

tj,g − tj−1,g
2

, j = mg

tj+1,g − tj−1,g
2

, otherwise

[5]

In our method, the approximation of the summary statistics nAUC is obtained post-estimation
of the MEM parameters. To this end, we denote µ̂g = E(Ŷg) being the expected value of
the estimation of Y in the gth group, where µ̂g = (µ̂1,g, · · · , µ̂mg ,g)T with µ̂j,g = E(Ŷj,g) and
Ŷg = (Ŷ1,g, · · · , Ŷmg ,g)T . It follows that µ̂j,g is expressed as a linear combination of the fixed
parameter estimates denoted β̂ and γ̂ for the group- and non group-specific. Indeed, by notingX [g]

0

the sub-matrix ofX0 corresponding to the group g, we obtain µ̂g = X
[g]
0 γ̂ +Xgβ̂

g leading to

µ̂j,g =

dim(γ̂)∑
v=1

X
[g]
0jv · γ̂v +

Kg∑
v=1

Xgjv · β̂gv

Replacing Y g by µ̂g in the equation [4], the approximation of nAUC in the group g, n̂AUCg, can
be written as

n̂AUCg =
1

Tg
wT

g µ̂g [6]
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3.3 Statistical testing of difference between groups

We want to identify whether or not two groups of treatment can be differentiated by their mean
value of the area under the response curve. Consequently, we defined the hypotheses of interest
for the two compared groups g and g̃ as the equality and the difference of their nAUC for the null
hypothesis, H0 and the alternative one, H1, respectively.
While the mechanism of follow up censoring and the resulting missing data have no direct impact
on the method of the MEM estimation, the statistical test must be written to take it into account.
The presence of informative censoring impacting directly the time of follow up and thus the time
interval of AUC calculation for each group, [0, Tg], the statistical test is build to compare the mean
value of AUC on the same time interval. To do this, we define the upper integration limit for nAUC
calculation as T = min(Tg, Tg̃) given the time restricted nAUC for each group calculated as

n̂AUC
rest
g =

1

T

∫ T

0

µ̂g(t)dt '
1

T
ω̊Tg µ̂

rest
g [7]

where ω̊g = (ω1,g, · · · , ωm̊g ,g)T and µ̂rest
g = (µ̂1,g, · · · , µ̂m̊g ,g)T with m̊g = |{tj,g | tj,g 6 T}|.

Based on the equation [7] of the approximation of nAUC in the group g, the test hypotheses may be
re-expressed in terms of model fixed parameters such as

H0 : n̂AUC
rest
g = n̂AUC

rest
g̃ ⇐⇒

1

T
ω̊Tg

(
X̊

[g]
0 γ̂ + X̊gβ̂

g
)

=
1

T
ω̊Tg̃

(
X̊

[g̃]
0 γ̂ + X̊g̃β̂

g̃
)

[8]

H1 : n̂AUC
rest
g 6= n̂AUC

rest
g̃ ⇐⇒

1

T
ω̊Tg

(
X̊

[g]
0 γ̂ + X̊gβ̂

g
)
6= 1

T
ω̊Tg̃

(
X̊

[g̃]
0 γ̂ + X̊g̃β̂

g̃
)

with (g, g̃) ∈ (1, · · · , G)2, g 6= g̃ and X̊ [g]
0 and X̊g respectively defined as X [g]

0 and Xg but
restricted to the time interval [0, T ]. Because β and γ are the parameters of a mixed model and
assuming normality hypothesis, it follows that their respective Maximum Likelihood estimates are
approximately normally distributed following the laws N (β̂, V̂ar(β̂)) and N (γ̂, V̂ar(γ̂)) and
implies that both µ̂rest

g and n̂AUC
rest

g are normally distributed. Let note Σ̂ the variance-covariance
matrix of the estimated fixed parameters given by the inverse of the Fisher information matrix
and Σ̂g the sub-variance covariance matrix of (γ̂T , β̂gT

)T ∈ Mdim(γ̂)+Kg ,1(R). By construction

we obtain, E(µ̂rest
g ) = X̊

[g]
0 γ + X̊gβ

g, Var(µ̂rest
g ) = (X̊

[g]
0 X̊g)Σ̂

g(X̊
[g]
0 X̊g)

T and E(n̂AUC
rest

g ) =
1
T
ω̊Tg E(µ̂rest

g ), Var(n̂AUC
rest

g ) = 1
T 2 ω̊

T
g (X̊

[g]
0 X̊g)Σ̂

g(X̊
[g]
0 X̊g)

T ω̊g. Consequently, the asymptotic
normal distribution of the estimated difference of the restricted nAUC between the two groups can
be inferred with

∆n̂AUC
rest
g−g̃ ∼ N

(
E
(

∆n̂AUC
rest
g−g̃

)
,Var

(
∆n̂AUC

rest
g−g̃

))

with E(∆n̂AUC
rest

g−g̃) = 1
T
ω̊g̃TE(µ̂rest

g̃ ) − 1
T
ω̊Tg E(µ̂rest

g ) and Var(∆n̂AUC
rest

g−g̃) =

ω̊T (X̊0 X̊)Σ̂(X̊0 X̊)ω̊, ω̊ ∈ Mm̊g+m̊g̃ ,1(R) being defined as 1
T

(0T , ω̊Tg̃ )T − 1
T

(ω̊Tg ,0
T )T .
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For a test of the null hypothesis defined in [8], we can build the standard normally distributed
Z-statistic given by

Z =
∆n̂AUC

rest
g−g̃√

Var
(

∆n̂AUC
rest
g−g̃

)
Under the null hypothesis, the Z-statistics follows a N (0, 1). By weighted averaging incomplete

measures, the impact of potential heteroscedasticity is reduced due to the AUC-based approach. If
still variance heterogeneity between the group occur, the Z-statistics can be modified into a Student’s
t-test like statistics with degree of freedom τ (equals to∞ in case of Z-statistic). As matter of fact,
in case of remaining heterogeneity, data specific to each group should be fitted with specific and
independant mixed effects model. The T-statistic resulting from this procedure will differ from our
Z-statistic by its standard deviation simply defined as the squared root of the sum of the variances of
the group-specific nAUC, and with a degree of freedom defined by the Satterthwaite approximation
[41, 42],

τ =

(
Var(n̂AUC

rest
g ) + Var(n̂AUC

rest
g̃ )
)2

Var(n̂AUC
rest
g )

ng−1 +
Var(n̂AUC

rest
g̃ )

ng̃−1

Similarly, in case of small sample size, our Z-test can be modified into Student’s t-test with degree
of freedom defined by the Kenward-Roger approximation[43]. Similarly to Bailer[44], a 100(1-α)%
confidence interval for ∆n̂AUC

rest

g−g̃ can be derived from the statistic, as

∆n̂AUC
rest
g−g̃ ± zτ,α/2

√
Var
(

∆n̂AUC
rest
g−g̃

)
where zτ,α/2 is the (1-α/2)100th percentile of the distribution.

An extension to k-sample design is straightforward deriving a one-way ANOVA testing the equality
of normalized AUCs. Similarly to our Z-statistics, nAUCs are compared on the same interval of
calculation [0, T ] with T = ming∈{1,··· ,G}(Tg).

{
H0 : n̂AUC

rest
1 = n̂AUC

rest
2 = · · · = n̂AUC

rest
K ,

H1 : ∃(i, j) | n̂AUC
rest
i 6= n̂AUC

rest
j

where K is the number of groups compared by the k-sample test, K 6 G. Similarly to classic
one-way ANOVA, we define the statistic F following Fisher law as

F =

SSbetween
K−1

SSwithin
NK−K

∼ F (K − 1, NK −K)

where NK =
∑K

g=1 ng and SSbetween and SSwithin define respectively the inter- and intra-group
variability and are calculated as:

SSbetween =

K∑
g=1

ng

(
n̂AUC

rest
g −

1

K

K∑
k=1

n̂AUC
rest
k

)2

7



A PREPRINT - MAY 26, 2021

SSwithin =

K∑
g=1

n2gVar(n̂AUC
rest
g )

4 Simulation study

In this section, we conduct a simulation study to analyze the statistical properties of our approach.
The simulation setting is driven by the motivating examples described in section 2.

4.1 Generation of simulated data

We simulate longitudinal data mimicking a randomized HIV therapeutic vaccine trial involving
two groups of treatment in which the outcome of interest is the HIV RNA load measurement. We
simulated data using a LMEM as described by [9]:

Yij,g =γ0 + 1[g=1]

K1∑
k=1

β1
kφ

1
k(tij,1) + 1[g=2]

K2∑
k=1

β2
kφ

2
k(tij,2)

+ b0i +

Ki∑
k=1

bkiΨ
i
k(tij,g) + εij [9]

where Yij,g is the outcome of the ith subject belonging to the gth group at the jth time point where
i ∈ {1, · · · , ng}, j ∈ {1, · · · ,mg} and g ∈ {1, 2}. In this model, the non group-specific function
f0 is a global intercept labelled γ0 while random effects are described by individual smooth cubic
B-splines curves defined as linear combination of the cubic B-spline basis Ψi = (Ψi

1, · · · ,Ψi
Ki

)T

with bi = (b1i, · · · , bKii)T as regression coefficients, ∀i ∈ {1, · · · , N}, N = n1 + n2. Similarly,
the group-specific fixed effects are modeled by cubic B-spline curves with φg = (φg1, · · · , φ

g
Kg

)T

and βg = (βg1 , · · · , β
g
Kg

)T as spline basis and regression coefficients, respectively. Random effects
describing the inter-individual variability are assumed to be normally distributed b ∼ N (0,Ω) as
well as the error terms εij ∼ N (0, σ2

e). Based on the HIV RNA load data from the Vac-IL2 trial
(see section 2, Motivating Examples), we evaluated the regression coefficient estimates γ0,β

1,β2

and b as well as the parameters Kg and Ki being respectively the number of spline basis involved
in the group-specific and individual spline curves. The model involving a global intercept γ0, the
splines basis have been built without including intercept terms making Kg and Ki equal to the sum
of the number of internal knots and the degree (fixed at 3 in our case) of the respective spline curves.

For the purpose of examining the properties of the proposed approach developed to test the equality
of nAUCs, we generate numerous vaccine trials. As illustrated in Figure 1, we simulated two
types of mean trajectory profiles: one in which the timing of viral rebound is similar in control and
treatment group but the magnitude of the rebound may differ, and one in which the timing of viral
rebound is expected to be longer in the treatment group compared to the control group. Finally,
outcomes are measured at a constant time interval such as t = (0, 1, 2, · · · , 24)T weeks and the
number of patients by group n = n1 = n2 varied amongst 20, 50 and 100. They reproduce the
trajectories found in the Vac-IL2 and LIGHT trials (see section 2, Motivating Examples). Based
on the Vac-IL2 data, we set the values of σ2

e = 0.2, the fixed intercept γ0 = −0.44 and the fixed
parameters of the first group of treatment (g = 1) seen as the control group, β1 (see Table 1).
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The five fixed parameters of the treatment group in both profiles β2 have been chosen such as
given values of ∆nAUC1−2 are targeted to specific values. To test the properties of the method, we
simulated data with ∆nAUC1−2 taking values of 0, −0.1, and −0.25 log10 cp/ml. We defined the
number of fixed splines basis as K1 = K2 = 5 for both profiles with the two internal knots fixed at
(0.25, 5.62) weeks for both groups in profile 1 and (0.25, 5.62) and (3.23, 7.63) weeks in profile 2
for control and vaccine groups respectively. Similarly, we fixed the number of random spline basis
Ki = 5 with (2.0, 4.5) weeks as internal knots in Profile 1 and (2.0, 4.5) and (5.0, 8.0) weeks in
profile 2 for control and vaccine groups, respectively. Number and positions of internal knots have
been optimally chosen on Vac-IL2 data by applying the R-package freeknotspline [45] using AIC as
optimization criterion.

The covariance matrix of the random effects Ω is defined as diagonal such as Ω = σ2
b IKi+1 where

the value of σ2
b has been chosen according to the targeted values of Var(nAUCg). The estimated

variances of nAUC were 0.027 and 0.021 respectively in the control and the treatment group in
Vac-IL2 trial. Hence, in simulations, we tested the impact of the intra-group variability when
Var(nAUCg) was equal to 0.02 and 0.1, in both groups.

Figure 1. Simulated mean trajectories of HIV RNA load over time for both profiles 1 and 2.

Note. Red solid line represents Group 1 (Control), dashed, dot dashed and dotted lines represent Group 2 (treatment) when ∆nAUC
with Group 1 is equal to 0, −0.1 and −0.25, respectively. Orange dashed line and area delimit the LOD = log10(50). LOD, limit of
detection

Table 1. Fixed parameter values used to simulate control and vaccine groups for both profiles, according to
∆nAUC values. The value of the global intercept was fixed at γ0 = −0.44.

Treatment group Profile 1 Profile 2
Control Group, β1 (−0.55, 4.72, 4.96, 5.18, 4.64) (−0.55, 4.72, 4.96, 5.18, 4.64)
∆nAUC = 0, β2 (−0.55, 4.72, 4.96, 5.18, 4.64) (1.38, 5.57, 4.53, 5.20, 4.74)
∆nAUC = 0.1, β2 (−0.54, 4.61, 4.85, 5.07, 4.54) (1.35, 5.44, 4.43, 5.09, 4.63)
∆nAUC = 0.25, β2 (−0.52, 4.46, 4.69, 4.90, 4.39) (1.31, 5.26, 4.28, 4.92, 4.48)

We generated MAR monotonic missing data as follows. For each subject i at each time point j, the
outcome Yij,g was labelled as missing if Yij,g ∈ {Yij,g|∃ j

′
6 j, {Yij′ ,g > α}∩{Yij′−1,g > α}}, with

α being a fixed threshold. A patient dropped out from the trial if his/her HIV RNA load exceeded
the threshold α at two consecutive time points. The subsequent measurements were considered
as missing. We investigated the impact of the missing data on the robustness of the method by
considering three values for the threshold α: 100 000 (5 log10), 50 000 (∼ 4.7 log10) and 10 000
(4 log10) cp/ml. As illustrated in Figure 2 for the Profile 1, the percentage of drop-out in each trial
was inversely linked to the value of α. Due to the difference of nAUC between the two groups,
each value of α generated both equal (∆nAUC = 0, blue curves) and unequal (∆nAUC 6= 0, blue
curve for control and green/pink curves for treatment group) drop-out rates. While α = 100 000
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Figure 2. Percentages of censored follow up when data simulated by both profiles are impacted by the
threshold of lost of follow up α.

Note. Lines display percentages obtained for the Profile 1 with solid and dashed lines representing data simulated with
Var(nAUC) = 0.02 and 0.1 respectively. Blue lines describe both Group 1 (Control) and Group 2 (treatment) when ∆nAUC with
Group 1 is equal to 0, green and pink lines represent Group 2 when ∆nAUC = 0.1 and 0.25 respectively. Marks display percentages
obtained for the Profile 2 with empty and full marks representing data simulated with Var(nAUC) = 0.02 and 0.1 respectively. The
squares, triangles and circles describe Group 2 when ∆nAUC = 0, 0.1 and 0.25 with the control group in blue, respectively. Vertical
dotted lines highlight the positions of α = 100 000, 50 000 and 10 000 cp/ml.

cp/ml leaded to approximately 30% of drop-out in control group and respectively 30%, 15% and
5% in treatment group when ∆nAUC = 0, 0.1 and 0.25, for Var(nAUC) = 0.02, these percentages
increased respectively until 75%, 75%, 60% and 35% for α = 50 000. Finally, the choice of α =
10 000 allowed to test the method with extremely high percentages of drop-out which were in the
neighbourhood of 100%. The consideration of the second profile of data simulation leaded to a
slight increase of these percentages of approximately 7% when the variance of nAUC was equal to
0.1 and 10% for 0.02.

We also generated left-censored outcomes using the limit of detection for viral load at 50 ∼ 1.7 log10

cp/ml, which has been chosen in accordance with values typically encountered in our motivating
examples. This choice of LOD generated mean percentages of undetectable data in each group
ranging from 7.30% to 7.70% for Profile 1 and from 7.30% to 8.70% for Profile 2, representing
approximately 2 time points with undetectable outcome over 25.

4.2 Analysis of simulated data

We analysed the simulated data using a well-specified model. Formulas for nAUC are derived from
[9]. MEM estimations took into account left-censored outcomes using an hybrid EM-algorithm
implemented in the R-package lmec [46]. Let note (γ̂0, β̂

1, β̂2)T the vector of the estimated fixed
parameters where β̂g = (β̂g1 , · · · , β̂

g
Kg

)T , for g ∈ {1, 2}. Using the model in [9], the expected value

of Y in the gth group at any time tj,g is µ̂j,g = γ̂0 +
∑Kg

k=1 β̂
g
kφ

g
k(tj,g), which allows to approximate

the nAUC in each group, its variance and the difference in nAUC as follows:

n̂AUCg = Kγgγ̂0 +

Kg∑
k=1

β̂gkCkg

10
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∆n̂AUC1−2 = γ̂0(Kγ2 −Kγ1) +

K2∑
k=1

β̂2
kCk2 −

K1∑
k=1

β̂1
kCk1

Var(n̂AUCg) = (Kγg)
2Var(γ̂0) +

Kg∑
k=1

(Ckg)
2Var(β̂gk) + 2

Kg−1∑
k=1

Kg∑
k̃=k+1

CkgCk̃gCov(β̂gk , β̂
g

k̃
)

+ 2

Kg∑
k=1

KγgCkgCov(γ̂0, β̂
g
k)

where Ckg and Kγg are defined by Ckg = 1
Tg

∑mg
j=2

(tj,g−tj−1,g)

2
[φgk(tj,g) + φgk(tj−1,g)] and

Kγg = 2
Tg

∑mg
j=2

(tj,g−tj−1,g)

2
.

For each combination of simulated datasets and missing data patterns, 1 000 replications were
performed with the objective of evaluating the robustness of the method to test the equality of
areas under the curves between the two groups through its type-I Error, its power and the bias
in the estimation of the difference of nAUC. We compared the results provided by our method
with a standard two-sample t-test for the difference of nAUC between the two groups, i.e. H0 :
nAUC2−nAUC1 = 0 where nAUCg = 1

ng

∑ng
i=1 nAUCi with nAUCi defined by [1]. We performed

this test without accounting for missing data and using two common adhoc approaches: the last
observation carried forward (LOCF) where missing data are imputed by the last observed value
before the follow up censoring, and the mean imputation where missing observations are imputed
by the mean of the observations before this follow up censoring.

In addition to the standard two-sample t-test, we compared our method with the t-test version of the
non-parametric two-sample test proposed by Vardi et al.[25]. This test was developed to compare a
one-dimensional variable such as AUC between two groups of treatment when individual follow-up
are subject to informative homogeneous or heterogeneous censoring. In order to be able to compare
the results provided by this test and our method, we applied this test to normalized AUC. The test is
based on U-statistics defined as

Um1,m2
=

1

m1m2

m1∑
i1=1

m2∑
i2=1

Di1,i2

where m1 and m2 are respectively the number of subjects in the first and the second compared
groups, g1 and g2, whileDi1,i2 is defined as the paired cross-treatment contrast for the cross-treatment
pair (i1, i2) ∈ g1 × g2:

Di1,i2 =
1

Ti1 ∧ Ti2

∫ Ti1∧Ti2

0

[Yi2,g2(t)− Yi1,g1(t)] dt

=
1

Ti1 ∧ Ti2

[
AUCi2

∣∣
[0,Ti1

∧Ti2
]
− AUCi1

∣∣
[0,Ti1

∧Ti2
]

]
where Ti1 ∧ Ti2 = min(Ti1 , Ti2). The variable Di1,i2 is then defined as the difference of nAUC

between the subjects i1 and i2, restricted to their common time of follow up. Similarly to the
simulation studies conducted in their paper, we defined the variance of the U-statistic as the
Equation (2.15) in Vardi’s paper [25]:

σ̂2
m1,m2

=

m1∑
i1=1

(
Di1. −D..

)2
m1(m1 − 1)

+

m2∑
i2=1

(
D.i2 −D..

)2
m2(m2 − 1)
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where Di1. =
∑

i2
Di1,i2/m2, D.i2 =

∑
i1
Di1,i2/m1 and D.. = Um1,m2 and we considered the

following null hypothesis H0 : the distribution of D is symmetric about 0.

Five procedures are then compared for testing the equality of nAUC including three adhoc methods
respectively called Indiv. nAUC Data, Indiv. nAUC LOCF and Indiv. nAUC Mean Imp., the
non-parametric test called NP nAUC and our approach called MEM nAUC.

4.3 Simulation results

Table 2. Comparison of the robustness of the test of equality of nAUC calculated as individual summary
measures and mixed model summary statistics. Individual trajectories are subject to missing data and/or
limit of detection. Simulations were performed for ng = 50 subjects by group, mean trajectories following
both profiles and for 1 000 replications.

Profile 1 Profile 2Methods Type-I error Power Type-I error PowerData
Pattern

∆nAUC 0 -0.1 -0.25 0 -0.1 -0.25
LOD α Var(nAUC) 0.02 0.1 0.02 0.1 0.02 0.1 0.02 0.1 0.02 0.1 0.02 0.1

Indiv. nAUC 0.060 0.060 0.95 0.33 1.00 0.96 0.046 0.053 0.94 0.35 1.00 0.97
NP nAUC 0.060 0.046 0.95 0.33 1.00 0.96 0.046 0.053 0.94 0.35 1.00 0.97∅ ∅
MEM nAUC 0.059 0.055 0.96 0.41 1.00 0.99 0.044 0.056 0.95 0.44 1.00 1.00
Control 0 0 0 0 0 0 0 0 0 0 0 0Mean missing

rate (%)a Treatment 0 0 0 0 0 0 0 0 0 0 0 0
Indiv. nAUC 0.056 0.049 0.96 0.35 1.00 0.97 0.062 0.063 0.89 0.30 1.00 0.97
NP nAUC 0.056 0.049 0.96 0.35 1.00 0.97 0.062 0.063 0.89 0.30 1.00 0.9750 ∅
MEM nAUC 0.063 0.053 0.95 0.35 1.00 0.97 0.047 0.055 0.94 0.37 1.00 0.97
Control 0 0 0 0 0 0 0 0 0 0 0 0Mean missing

rate (%) Treatment 0 0 0 0 0 0 0 0 0 0 0 0
Indiv. nAUC
1. Data 0.060 0.054 0.49 0.16 1.00 0.79 0.540 0.526 0.92 0.37 1.00 0.97
2. LOCF 0.052 0.045 0.84 0.32 1.00 0.96 0.281 0.170 0.31 0.11 1.00 0.84
3. Mean Imp. 0.059 0.053 0.51 0.16 1.00 0.80 0.529 0.500 0.83 0.65 1.00 0.94
NP nAUC 0.053 0.053 0.93 0.32 1.00 0.96 0.057 0.053 0.79 0.32 1.00 0.96

1.105

MEM nAUC 0.064 0.054 0.94 0.33 1.00 0.96 0.053 0.060 0.92 0.35 1.00 0.97
Control 28 38 28 38 27 39 28 38 28 38 28 39Mean missing

rate (%) Treatment 28 38 15 28 5 16 37 46 22 35 8 21
Indiv. nAUC
1. Data 0.050 0.052 0.05 0.05 0.13 0.16 0.946 0.881 0.82 0.79 0.70 0.78
2. LOCF 0.046 0.051 0.77 0.29 1.00 0.95 0.483 0.233 0.11 0.06 1.00 0.71
3. Mean Imp. 0.051 0.050 0.05 0.05 0.14 0.17 0.940 0.845 0.81 0.76 0.70 0.77
NP nAUC 0.048 0.053 0.81 0.27 1.00 0.93 0.069 0.075 0.77 0.44 1.00 0.97

5.104

MEM nAUC 0.063 0.060 0.84 0.31 1.00 0.95 0.048 0.051 0.76 0.31 1.00 0.96
Control 77 69 77 69 77 69 77 69 77 69 77 69Mean missing

rate (%) Treatment 77 69 59 58 32 41 85 76 70 65 41 48
Indiv. nAUC
1. Data 0.041 0.057 0.04 0.06 0.12 0.07 0.894 0.868 0.91 0.87 0.85 0.80
2. LOCF 0.058 0.043 0.20 0.15 0.81 0.68 0.555 0.421 0.18 0.11 0.13 0.17
3. Mean Imp. 0.039 0.050 0.04 0.06 0.10 0.07 0.746 0.725 0.83 0.76 0.80 0.73
NP nAUC 0.055 0.053 0.43 0.19 1.00 0.77 0.972 0.651 1.00 0.92 1.00 1.00

1.104

MEM nAUC 0.059 0.058 0.31 0.19 0.91 0.60 0.051 0.073 0.23 0.19 0.84 0.58
Control 100 99 100 99 100 99 100 99 100 99 100 99Mean missing

rate (%) Treatment 100 99 100 98 100 95 100 100 100 99 100 97

Note: AUC = area under the curve ; nAUC = normalized AUC ; NP = Non Parametric ; Individual adhoc meth-
ods (Indiv. nAUC): 1. Data = Raw data, 2. LOCF = Last observation carried forward, 3. Mean Imp. = Mean
Imputation. a Missing rate: Percentage of subjects dropping out before the end of the study.

The results of our simulations evaluating the robustness of the test of equality of nAUC are displayed
in Table 2. Although only results for simulations involving ng = 50 patients by group are presented
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Figure 3. Comparison of the estimated bias and standard error of ∆nAUC obtained by the three individual
methods Indiv. nAUC Data, Indiv. nAUC LOCF, Indiv. nAUC Mean Imp., the non-parametric test Non Param.
and our method MEM nAUC. Both criteria were estimated for data subject to a LOD, with or without censored
follow up, with ng = 50 subjects by group, mean trajectories following both profiles, for 1 000 replications.

Note. Pink dashed lines and triangles represent Ind. nAUC LOCF, green dot-dashed lines and crosses represent Indiv. nAUC Mean
Imp., green solid lines and circles represent MEM nAUC, blue solid lines and stars represent NP nAUC and purple dotted lines with
squares represent Indiv. nAUC Data. In standard Error plots, black dashed lines display the theoretical values (0.028 when
Var(nAUC) = 0.02 and 0.063 for 0.1) ; LOCF: Last observation carried forward

in the main body of the article, extended results for ng = 20 and 100 can be found in Appendix C,
Tables C.1a and C.2a. In these simulations, as expected with a well specified model, when there
is no censored follow up and no left censoring using individual nAUC, non-parametric approach
or our method based on MEM nAUC are identical in term of Type-I error, which are kept to their
nominal level of 5% (between 0.044 and 0.06). However, the power seems to be consistently higher
for MEM nAUC in particular when the inter-individual variability is high. When introducing
the LOD at 50 cp/ml, the results are similar for profile 1 but tend to show a superiority of MEM
nAUC for profile 2 in which there are a larger number of left-censored observations due to delay in
viral rebound in one group. This is explained by the fact that MEM nAUC, contrary to individual
nAUC involved either in indiv. nAUC or NP nAUC methods, accounts for left censoring instead of
considering censored data fixed to their censorship level value. When the threshold of HIV RNA
defining drop-out, α, is equal to 100 000 and 50 000 cp/ml, all individual methods (with or without
adjustment for missing data) fail in term of Type-I error in the second profile with lagged increasing
trajectories of viral load (see Figure 1). Even when the type-I error is controlled such as for Profile 1
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(with the same shape of mean trajectories see Figure 1), the power for raw data and mean imputation
approaches are low for most settings. While the NP nAUC method shows controlled type-I Error
between 0.048 and 0.057 for profile 1 and 2 when α is equal to 100 000 cp/ml and for profile 1
when the threshold is equal to 50 000 cp/ml, we observe an inflation of the type-I Error up to 0.075
for the second profile. On the contrary, the MEM nAUC method shows type-I error between 0.048
and 0.064 for profile 1 and 2. When variability is low, the power is also good and higher than 76%
for the two methods. In all cases, the power found in these settings is similar in magnitude to the
power obtained when there is no censored follow up and no left censoring for viral load. When
the threshold α is equal to 10 000 copies/ml, while all individual methods and the non-parametric
approach fail to control the type-I Error for the profile 2, our approach MEM nAUC successfully
gets a type-I Error around the nominal value for both profiles. This result is mainly driven by the
difference of the shapes of the mean trajectories for the two compared groups in Profile 2. In fact,
as shown in Figure 1, the difference of nAUC appears as quite homogeneously distributed over the
time of follow up in Profile 1 leading to robust results for all methods despite an early drop out
for a high percentage of subjects. However, in profile 2, the value of ∆nAUC resulting from the
compensation of the beginning and the end of the dynamics, only the parametric method is able to
capture the true difference of nAUC regardless of the premature censored follow up for more than
80% of individuals.

In addition, we graphically illustrated the estimated bias and standard error for ∆nAUC obtained
for each method in Figure 3. For all profiles, when there is no drop-out or when the threshold α is
high enough (equal to 100 000 and 50 000 cp/ml), the bias is closer to 0 for MEM nAUC compared
to other methods. Also, the standard error of ∆nAUC calculated with MEM nAUC is similar
to the non-parametric approach and closer to all the adhoc individual methods to the theoretical
values of standard error of ∆nAUC, respectively 0.028 for Var(nAUC) = 0.02 and 0.063 for
Var(nAUC) = 0.1. This mostly explains the comparable robustness between MEM nAUC and
NP nAUC and their better performances in term of power compared to individual methods. When
α is equal to 10 000 cp/ml, the inflated type-I Errors observed for individual and non-parametric
methods are explained by biased estimates of ∆nAUC which are not compensated by an increased
value of the standard error, unlike the MEM nAUC method.

4.4 Relaxing the correct model specification assumption

The validity of the method relies on the correct specification of the MEM as described in [3] in
the section Method. To relax this assumption, we conducted additional simulations to evaluate the
method when data are fitted with another MEM. To evaluate the performances in a setting closer
to real-data, the number and position of the knots in the MEM defined in [9] were also estimated
with the data. We used the R-package freeknotspline to estimate and replace the two sets of fixed
two internal knots (2.0, 4.5) and (5.0, 8.0) involved in the build of group-specific spline curves
by a set of knots optimizing the fit of data. Moreover, spline basis were built with external knots
chosen as (0, Tg) instead of (0, 24) considering the real observed time of follow up, which can be
modified with censored follow up. For each simulation, the number of internal knots for a given
group is optimized between 1 and 3 as well as their position using AIC as optimization criterion.
Three other selection criteria have been tested: BIC, adjAIC, adjGCV and compared to AIC. Similar
results of power and type-I Error have been obtained for the 4 criteria (results not shown). Spline
basis involved in random effects were similarly built chosen (0, Ti) as boundary knots and the
number of internal knots chosen between 1 and 2. This adaptive feature of the model allows to
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build group-specific spline basis taken into account both left-censored and missing data. The results
obtained by this model are displayed in Table 3 for ng = 50 subjects by group. Similar results are
presented in Appendix in Tables C.1b and C.2b for ng = 20 and 100, respectively.

Table 3. Robustness of the test of equality of nAUC calculated as mixed model summary statistics
considering the MEM [9] with adaptive spline basis. Individual trajectories are subject to missing data and/or
LOD. Simulations were performed for ng = 50 subjects by group, mean trajectories following both profiles
and for 1 000 replications.

Profile 1 Profile 2Method Type-I error Power Type-I error PowerData
Pattern

∆nAUC 0 -0.1 -0.25 0 -0.1 -0.25
LOD α Var(nAUC) 0.02 0.1 0.02 0.1 0.02 0.1 0.02 0.1 0.02 0.1 0.02 0.1
∅ ∅ Adap. MEM 0.060 0.060 0.96 0.41 1.00 0.99 0.046 0.054 0.95 0.42 1.00 1.00
50 ∅ Adap. MEM 0.063 0.056 0.95 0.35 1.00 0.97 0.050 0.051 0.94 0.37 1.00 0.98

1.105 Adap. MEM 0.060 0.054 0.94 0.33 1.00 0.96 0.050 0.060 0.91 0.35 1.00 0.97
5.104 Adap. MEM 0.060 0.059 0.84 0.31 1.00 0.95 0.049 0.050 0.77 0.30 1.00 0.95
1.104 Adap. MEM 0.070 0.061 0.31 0.17 0.89 0.54 0.061 0.078 0.26 0.17 0.83 0.54

Note: AUC = area under the curve ; nAUC = normalized AUC ; LOD = Limit of detection.

In all settings except for high level of censored follow up with α =10 000, using Adaptive MEM
led to equivalent Type-I error (between 0.046 and 0.063 instead of 0.044 and 0.064) and power than
with the well-specified model, for both profiles. Using Adaptive MEM slightly increased the type-I
Error when the threshold for drop-out is 10 000 (between 0.061 and 0.078 instead of 0.051 and
0.073) while the estimated power remained unchanged. Altogether, even when the MEM structure
is not known, this simulation shows that it is possible to use Adaptive MEM for the modeling of the
marker trajectories without invalidating the method, making it more relevant on real data.

5 Application on Real clinical data

As illustrative examples, we applied the presented approach to the log-transformed HIV RNA load
data from the Vac-IL2 and LIGHT trials (see section 2, Motivating Examples). Exploratory plots
of the individual and mean HIV RNA load dynamics for control and vaccine groups are shown in
Figures 4a and 4b, for VAC-IL2 and LIGHT trials respectively. As illustrated in table in Figure 4c,
longitudinal data in both trials are subject to left-censoring. While two values of LOD are considered
in Vac-IL2 trial, 20 and 50 cp/ml (∼ 1.3 and 1.7 log10 cp/ml), impacting a total of 28.2% and 33.5%
of observations for control and vaccine groups, only a LOD at 40 cp/ml (∼ 1.6 log10 cp/ml) is
involved in LIGHT trial, leading to 27.9% and 29.8% of observations in the respective groups. In
addition to left-censoring, those data are impacted by drop-outs. In LIGHT trial, ART resumption
was required in case of serious AIDS or non-AIDS adverse events, when two consecutive of CD4+
T cells counted below 350 cells/mm3 within at least a two weeks time interval as well as for specific
patient or physician willingness. Approximately 20% of patients were concerned by these rules and
resumed ART before the end of the predefined 12 weeks of ATI (see Figure 4d) being considered
as drop-outs. In Vac-IL2 trial, 63% and 84% of drop-outs occurred in vaccine and control group
respectively, as the result of HIV RNA load exceeding 50 000 cp/ml at 4 or 6 weeks post-ATI or
exceeding 10 000 cp/ml after 8 weeks of ART interruption.

We applied the proposed approach discussed in the manuscript using the MEM described by [9]
where the number and the position of internal knots for both population and individual levels are
optimized on data using the R-package freeknotspline and AIC criteria. Also, the structure of the
covariance matrix of random effects being unknown, we estimated this matrix as unstructured
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Figure 4. Exploratory plots and table for the control and vaccine groups from the Vac-IL2 and LIGHT HIV
therapeutic vaccine trials. Observations are subject to LODs of 40 cp/ml or 20 and 50 cp/ml for LIGHT and
Vac-IL2 trial respectively. LOD, limit of detection.

(a) Outcome trajectories for the control and vaccine groups
of the Vac-IL2 HIV therapeutic vaccine trial, with two LOD
= log10(50) and log10(20) cp/ml.

(b) Outcome trajectories for the control and vaccine groups
of the LIGHT HIV therapeutic vaccine trial, with LOD
= log10(40) cp/ml.

% LODNumber of LOD by patient
mean (IQR)

Vac-IL2 Trial
Control 1.903 (1.00-2.00) 28.2%

Vaccine 2.406 (1.75-3.00) 33.5%
LIGHT Trial
Control 1.656 (1.00-2.00) 27.9%

Vaccine 1.763 (1.00-2.00) 29.8%

(c) Mean number by patient and global
percentage of observations below the LOD

(d) Percentage of missing data over time.

Note. In (a) and (b), thick lines describe mean dynamics and thin lines individual ones, solid lines represent control group and
dashed lines represent vaccine group. In (d), black lines with circles describe data from LIGHT trial, grey lines with crosses describe
data from Vac-IL2 trial, solid lines represent control groups and dashed lines represent vaccine groups.

instead of diagonal. Moreover, we verified the applicability of our method on these real data by
checking the normality of the distribution of the residuals provided by the MEM as well as the
homoscedasticity of its error model for both trials (see Appendix E). We compared the results
obtained by our approach, where the difference of nAUC between the two groups of treatment is
calculated with fixed parameter estimates, with the traditional ones where the nAUC is calculated
using the trapezoidal method for every individual and compared at group level with a two-sample
t-test. Similarly to the study of simulated data, estimate of individual nAUCs are computed using
either log-transformed raw data without any transformation, LOCF or mean imputation adhoc
approaches. In addition, we applied the non-parametric approach NP nAUC briefly defined in
section 4, Simulation study. The results are gathered in Table 4. In vac-IL2, the proposed approach
concluded a significant difference between the two groups of treatment with a p-value of 0.031.
Similar result is obtained with raw data with p-value slightly lower than 0.05. However, both LOCF,
mean imputation adhoc methods and non-parametric method are unable to reject the null hypothesis.
All the tests lead to the same conclusion of no difference between groups in the LIGHT study.
Considering the mean trajectories of the control and vaccine groups displayed in Figures 4a and 4b,
all the results obtained with our new approach are consistent with expected conclusions.
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Table 4. Summary of results from both Vac-IL2 and LIGHT studies
Methods Estimate (SE) 95% CI p-value Estimate (SE) 95% CI p-value

Vac-IL2 trial LIGHT trial
Data -0.346 (0.170) [-0.680 ; -0.013] 0.046 -0.030 (0.175) [-0.312 ; 0.372] 0.864
LOCF -0.382 (0.198) [-0.770 ; 0.007] 0.060 -0.018 (0.186) [-0.382 ; 0.346] 0.924
Mean Imp. -0.345 (0.312) [-0.957 ; 0.266] 0.276 0.217 (0.245) [-0.263 ; 0.697] 0.959
NP nAUC -0.349 (0.205) [-0.751 ; 0.053] 0.089 0.042 (0.178) [-0.306 ; 0.390] 0.813
Adap. MEM -0.459 (0.213) [-0.877 ; -0.041] 0.031 0.095 (0.216) [-0.329 ; 0.519] 0.660

Note: SE: Standard Error ; CI: Confidence Interval ; NP = Non Parametric ; Individual adhoc methods (Indiv.
nAUC): 1. Data = Raw data, 2. LOCF = Last observation carried forward, 3.Mean Imp. = Mean Imputation.

6 Discussion

In this paper, we proposed a splines-MEM based approach to estimate and compare the normalized
area under the longitudinal outcome curve when observations are subject to left-censoring, induced
by an LOD, and MAR monotonic missing data, due to drop-out. We demonstrated in a simulation
study that incomplete data leads to biased estimates of nAUC resulting in invalid inferences
regarding the difference in nAUC between groups with individual methods even when using
simple adhoc missing data correction, such as LOCF and mean imputation. Compared to the
latter, we illustrated the superiority of our approach in term of type-I error and power. In addition,
although the non-parametric approach developed by Vardi et al. [25] provided as robust statistical
properties as our proposed method while the percentages of left-censored data remained lower
than 50%, corresponding to a threshold of ART resumption higher than 100 000 copies/ml, the
lack of information induced by higher percentages of drop out resulted in weaker results under
certain conditions of simulation and more biased estimations of the difference of nAUC. We also
highlighted that when the amount of data with drop-out is as high as 80% such as in a situation
when ART are resumed if HIV RNA viral load exceeds 10 000 copies/mL in ATI trial, only the
parametric approach appeared efficient to compare nAUC between groups. An application of two
ATI trials for HIV illustrates the superiority of our method on real data.

Limitations of the proposed method include some assumptions induced by the use of MEM such
as the normality and the homoscedasticity. However, we demonstrated that on clinical data these
assumptions are realistic. As briefly noticed in section 3 (Method), two other versions of the
proposed method are presented in Appendix replacing the estimation of ∆nAUC through the most
commonly used trapezoid method by its estimation with either Lagrange or Spline interpolation
methods. No significant differences of robustness have been observed in the application of those
three methods on our well defined and tightened simulated trial designs. However, Lagrange
and Splines methods could present more robust results in case of sparse designs. Also, in our
simulations, we assumed a balanced longitudinal design with equal number of measurements
and constant time points for every subject. Although clinical trials are commonly designed
with the same monitoring for all participants, in reality the observed follow up may deviate
from the expected one. Moreover, some clinical trials could be designed to compare different
monitoring designs among group in addition to treatment efficacy. As defined, the proposed method,
being based on a discrete method of AUC calculation, should be biased by unbalanced times of
measurements among groups with varying number of time points as well as different and irregular
time steps between groups. As mentioned by Chandrasekhar et al. [18], the consideration of time
as continuous variable in the AUC calculation could be a solution to handle this problem. To
this end, we could either refine the time grid to mimick continuous time in the AUC calculation
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step, or use more complex AUC approximation methods such as Gaussian quadrature methods.
The choice of Gaussian quadrature methods requires thus the use of a resampling procedure,
such as bootstrapping to estimate the standard error. In clinical trials, the sample size calculation,
resulting in the determination of the number of participants in each arm needed to detect a clinically
relevant treatment effect, is one of the major steps in designing the study. The proposed statistics
being defined as classical Z-statistics, typical formulas of sample size calculation can be derived
from it. As defined by Hazra et al. [47], the general formula for two-sided test can be given by
n = (Z1−α/2 + Z1−β)2 × σ2/δ2 where α represents the accepted type-I error, β the type-II error,
σ the standard deviation of the outcome being study and δ the size effect defined as the targeted
∆nAUC/2 in our case. Adjusted formulas can also be derived from this latter to account for
unequal sized groups or unequal variance of outcomes using pooled variances. Simulations can
be found in Appendix (see Figure F.1 in Appendix F) and showed good concordance between
theoretical and practical power when there is no missing data. When missing data arise due to
left censoring (LOD) or informative drop out, one need to take it into account in the sample size
calculation.

The simulation study has been led under model correct specification assumption, i.e. the model
used to analyse the data corresponds to the true data generation process. We further relaxed this
assumption by using adaptive splines model for which some parameters, such as the location and
number of knots for splines are supposed unknown.

Various extensions of this work could be guided to address the problem when there is a high
proportion of drop-outs. The incorporation of prior information could be done through several
ways. The study of more constrained splines through the addition of penalty on spline coefficients
(P-splines) [48] or monotony and boundary conditions [49] (natural splines) is an option. In the
same perspective, future research aims to extend this method to the use of mechanistic models
[50]. In addition to introducing biological interpretation of the parameters, these models could
incorporate more easily additional information such as asymptotic behaviors with steady states.
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github.com/marie-alexandre/AUCcomparison.git. A reference manual has been included
in the package (https://github.com/marie-alexandre/AUCcomparison/blob/master/
Reference_manual.pdf) describing how to implement the proposed method.
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A Definition of the nAUC by Lagrange interpolation method

We consider a dataset labelled D = {(tj, yj)|j = 1, · · · ,m} where yj is defined as the value of the
response y at the jth time point. Our objective is to approximate the area under the response curve
on the interval [t1, tm].

A.1 General description of the method

The Lagrange method is an interpolation method used to approximate polynomial functions. This
method consists on an approximation of the functional value y (e.g. HIV RNA load curve) by a
polynomial function of degree P , between two adjacent points (tj−1, yj−1) and (tj, yj). For the
sake of simplicity, we chose cubic polynomial functions as approximation fixing P = 3. However,
equivalent method can be derived for higher values of P . We note ỹj : [tj−1, tj]→ R, the function
approximating y on the interval [tj−1, tj], with (aj, bj, cj, dj)

T the vector of the P + 1 polynomial
coefficients. By definition, ỹj can be written

ỹj(t) = aj + bjt+ cjt
2 + djt

3 ∀t ∈ [tj−1, tj ], ∀j ∈ {3, · · · ,m− 1} [A.1]

To estimate the vector of polynomial coefficients, this equation is fitted to the four (P + 1) nearest
data points (tj−2, yj−2), (tj−1, yj−1), (tj, yj) and (tj+1, yj+1). As developed below, the use of the
Lagrange multiplier formulas enables to estimate the four coefficients aj , bj , cj and dj . Once
these coefficients estimated, the area under the approximation curve on the interval [tj−1, tj] can be
calculated by integrating [A.1] on its interval of definition.

AUC
∣∣
[tj−1,tj ]

=

∫ tj

tj−1

ỹj(t)dt [A.2]

= aj(tj − tj−1) +
bj
2

(t2j − t2j−1) +
cj
3

(t3j − t3j−1) +
dj
4

(t4j − t4j−1)

This method requiring four points of interpolation, whose one located before and another after
the interval of interest, the calculation appears impossible on the first and last intervals [t1, t2] and
[tm−1, tm]. To overcome this problem, we reduce by one the degree of the polynomial function such
as the response of interest y is then approximated by quadratic polynomial function (P = 2), using
only three (P + 1) points of interpolation instead of four.

ỹj(t) = aj + bjt+ cjt
2 for

 t1 6 t 6 t2

tm−1 6 t 6 tm

On the first interval [t1, t2](j=2), the three chosen points are (tj−1, yj−1) = (t1, y1), (tj, yj) = (t2, y2)
and (tj+1, yj+1) = (t3, y3) whereas those points are (tj−2, yj−2) = (tm−2, ym−2), (tj−1, yj−1) =
(tm−1, ym−1) and (tj, yj) = (tm, ym) on the last one, [tm−1, tm](j=m). As mentioned above, the
three coefficients aj , bj and cj are calculated through Lagrange multiplier formulas, leading to local
approximations of AUC [A.3] and [A.4].

AUC
∣∣
[t1,t2]

= a2(t2 − t1) +
b2
2

(t22 − t21) +
c2
3

(t32 − t31) [A.3]

2
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AUC
∣∣
[tm−1,tm]

= am(tm − tm−1) +
bm
2

(t2m − t2m−1) +
cm
3

(t3m − t3m−1) [A.4]

Once all locals AUC estimated, the global AUC is defined as the cumulative area written:

AUC =

m∑
j=2

AUC
∣∣
[tj−1,tj ]

[A.5]

A.2 Estimation of polynomial coefficients by Lagrange multiplier

The objective is to estimate the coefficients of the interpolation functions ỹj, ∀j ∈ {2, · · · ,m}.
To this end, we use the Lagrange polynomials which enables to change the expressions of our
polynomials ỹ by definition of interpolation points. By noting {(x0, y0), · · · , (xP , yP )} the set of
distinct interpolation points on [tj−1, tj], the polynomial function ỹj can be rewrite in the Lagrange
form as

ỹj(t) =

P∑
p=0

yp

 P∏
l=0
l 6=p

t− xl
xp − xl


︸ ︷︷ ︸

Lp(t)

where Lp is called the Lagrange polynomials.

Thereafter, we decided to split our m− 1 intervals into two subsets due to the fact that the number
of interpolation points used to approximate the function y impacts the shape of the Lagrange
multiplier formulas. Consequently, we build the subset of external intervals corresponding to the
first and last intervals within P + 1 = 3 interpolation points are involved. All the other intervals are
gathered inside the second subset called intern intervals.

On internal intervals (cubic interpolations)

As previously mentioned, four interpolation points are used in each internal interval, therefore
P = 3. By applying the Lagrange form [51], we rewrite ỹj as

ỹj(t) = y0 ×L0(t) + y1 ×L1(t) + y2 ×L2(t) + y3 ×L3(t)

= y0

(
t− x1
x0 − x1

× t− x2
x0 − x2

× t− x3
x0 − x3

)
+ y1

(
t− x0
x1 − x0

× t− x2
x1 − x2

× t− x3
x1 − x3

)
+ y2

(
t− x0
x2 − x0

× t− x1
x2 − x1

× t− x3
x2 − x3

)
+ y3

(
t− x0
x3 − x0

× t− x1
x3 − x1

× t− x2
x3 − x2

)

To find the expressions of the polynomial coefficients, we bring together the terms linked to the same
power of t and, by comparison with [A.1], we identify the four coefficients. Moreover, by replacing
(x0, y0) by (tj−2, yj−2), (x1, y1) by (tj−1, yj−1), (x2, y2) by (tj, yj) and (x3, y3) by (tj+1, yj+1), the
definitions of the four coefficients aj , bj , cj and dj involved become

3
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aj = −
P=3∑
p=0

yj−2+p

P=3∏
l=0
l 6=p

tj−2+l

P=3∏
l=0
l 6=p

(tj−2+p − tj−2+l)

bj =

P=3∑
p=0

yj−2+p

P−1=2∑
l1=0
l1 6=p

P=3∑
l2=l1+1
l2 6=p

tj−2+l1 · tj−2+l2

P=3∏
l=0
l 6=p

(tj−2+p − tj−2+l)

cj = −
P=3∑
p=0

yj−2+p

P=3∑
l=0
l 6=p

tj−2+l

P=3∏
l=0
l 6=p

(tj−2+p − tj−2+l)

dj =

P=3∑
p=0

yj−2+p

P=3∏
l=0
l6=p

(tj−2+p − tj−2+l)

On external intervals (quadratic interpolations)

Inside the two external intervals, only three interpolation points are considered (P = 2). By
applying the same steps than in internal intervals, and replacing (x0, y0) by (t1, y1), (x1, y1) by
(t2, y2) and (x2, y2) by (t3, y3) on [t1, t2] and (x0, y0) by (tm−2, ym−2), (t1, y1) by (tm−1, ym−1) and
(x2, y2) by (tm, ym) on [tm−1, tm], we identify the six polynomials coefficients by

a2 =

P=2∑
p=0

y1+p

P=2∏
l=0
l 6=p

t1+l

P=2∏
l=0
l 6=p

(t1+p − t1+l)

am =

P=2∑
p=0

ym−2+p

P=2∏
l=0
l6=p

tm−2+l

P=2∏
l=0
l 6=p

(tm−2+p − tm−2+l)

b2 = −
P=2∑
p=0

y1+p

P=2∑
l=0
l 6=p

t1+l

P=2∏
l=0
l 6=p

(t1+p − t1+l)

bm = −
P=2∑
p=0

ym−2+p

P=2∑
l=0
l6=p

tm−2+l

P=2∏
l=0
l 6=p

(tm−2+p − tm−2+l)

c2 =

P=2∑
p=0

y1+p
P=2∏
l=0
l 6=p

(t1+p − t1+l)

cm =

P=2∑
p=0

ym−2+p

P=2∏
l=0
l 6=p

(tm−2+p − tm−2+l)

A.3 Literal expression of AUC

Based on the definitions of the polynomial coefficients established above and on equations [A.2],
the literal expression of the AUC on intervals [tj−1, tj], for j = 3, · · · ,m− 1, is given by

AUC
∣∣
[tj−1,tj ]

= aj(tj − tj−1) +
bj
2

(t2j − t2j−1) +
cj
3

(t3j − t3j−1) +
dj
4

(t4j − t4j−1)

4
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=

P=3∑
p=0

yj−2+p
P=3∏
l=0
l 6=p

(tj−2+p − tj−2+l)

×C[j][p] [A.6]

where

C[j][p] =[− (tj − tj−1)(
P=3∏
l=0
l6=p

tj−2+l) +
(t2j − t2j−1)

2 (
P−1=2∑
l1=0
l1 6=p

P=3∑
l2=l1+1
l2 6=p

tj−2+l1 tj−2+l2)
−

(t3j − t3j−1)

3 (
P=3∑
l=0
l6=p

tj−2+l) +
(t4j − t4j−1)

4 ]
Similarly, using equations [A.3] and [A.4], we found the following expressions on intervals [t1, t2]
and [tm−1, tm].

AUC
∣∣
[t1,t2]

=

P=2∑
p=0

y1+p
P=2∏
l=0
l 6=p

(t1+p − t1+l)

×C[2][p] [A.7]

AUC
∣∣
[tm−1,tm]

=

P=2∑
p=0

ym−2+p
P=2∏
l=0
l 6=p

(tm−2+p − tm−2+l)

×C[m][p] [A.8]

where

C[2][p] = (t2 − t1)

P=2∏
l=0
l 6=p

t1+l

− (t22 − t21)

2

P=2∑
l=0
l 6=p

t1+l

+
(t32 − t31)

3

C[m][p] = (tm − tm−1)

P=2∏
l=0
l 6=p

tm−2+l

− (t2m − t2m−1)

2

P=2∑
l=0
l 6=p

tm−2+l

+
(t3m − t3m−1)

3

By combining [A.5], [A.6], [A.7] and [A.8], we obtain the expression of the global AUC.

AUC =

P=2∑
p=0 [

y1+p × C[2][p]

P=2∏
l=0
l 6=p

(t1+p − t1+l)

+
ym−2+p × C[m][p]

P=2∏
l=0
l 6=p

(tm−2+p − tm−2+l)] +

m−1∑
j=3

P=3∑
p=0

yj−2+p × C[j][p]

P=3∏
l=0
l 6=p

(tj−2+p − tj−2+l)

[A.9]

A.4 Application of the Lagrange method with our mixed effect model

In this subsection, we develop literal expressions of the approximated normalized AUC in each
group g and its variance, n̂AUCg and Var(n̂AUCg) respectively. We are also interested in the
difference of nAUC between two given vaccine arms g and g̃ labelled ∆n̂AUCg−g̃ as well as the

5
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resulting expression of its variance, Var(∆n̂AUCg−g̃). As mentioned in the main body of the article,
we note Yij,g the outcome of the subject i belonging to the group of treatment g at its jth time point
tij,g, where i ∈ {1, · · · , N}, j ∈ {1, · · · ,mi} and g ∈ {1, · · · , G}. The outcome of interest Y is
described by the linear mixed effects model given by

Yij,gi = f0(tij,gi) +

G∑
g=1

1[gi=g] × Fg(tij,g) + hi(tij,gi) + εij

where the function f0 represents the non group-specific terms, the functions Fg are linear
combinations of time-depending and group specific functions labelled fg such as Fg(tij,g) =∑Kg

k=1 β
g
kf

k
g (tij,g) and hi are time-dependent functions describing inter-individual variability. Be-

cause, only f0 and Fg functions are involved in literal expressions of interest, any further information
are given to specify random effects. For sake of simplicity, we fixed the f0 as global intercept,
f0(tij,g) = γ0. Consequently, the model can be re-write as

Yij,gi = γ0 +

G∑
g=1

1[g=gi] ×
Kg∑
k=1

βgkf
k
g (tij,g) + hi(tij,gi) + εij

Based on this definition, the expected value of the estimation of Y in the gth group at the jth time
point, µ̂j,g, is defined as

µ̂j,g = γ̂0 +

Kg∑
k=1

β̂gkf
k
g (tj,g) [A.10]

where γ̂0 and β̂g = (β̂g1 , · · · , β̂
g
Kg

)T are maximum likelihood estimates of the fixed parameters of
the MEM.

Literal expression of nAUC and its variance

The literal expression of the estimated nAUC in group g is obtained by replacing the outcome yj
in Equation [A.9] by [A.10] and dividing the resulting expression by the time of follow up Tg (as
described in the main article). After rearranging the equation, it follows

n̂AUCg = γ̂0K
g
γ0 +

Kg∑
k=1

β̂gkCkg [A.11]

6
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where

Kg
γ0

=
1

Tg (
P=2∑
p=0 [

Cg
[2][p]

P=2∏
l=0
l 6=p

(t1+p,g − t1+l,g)

+
Cg

[mg ][p]

P=2∏
l=0
l 6=p

(tmg−2+p,g − tmg−2+l,g)]
+

mg−1∑
j=3

P=3∑
p=0

Cg
[j][p]

P=3∏
l=0
l 6=p

(tj−2+p,g − tj−2+l,g))
Ckg =

1

Tg (
P=2∑
p=0 [

fkg (t1+p,g)Cg
[2][p]

P=2∏
l=0
l 6=p

(t1+p,g − t1+l,g)

+
fkg (tmg−2+p,g)Cg

[mg ][p]

P=2∏
l=0
l 6=p

(tmg−2+p,g − tmg−2+l,g)]
+

mg−1∑
j=3

P=3∑
p=0

fkg (tj−2+p,g)Cg
[j][p]

P=3∏
l=0
l 6=p

(tj−2+p,g − tj−2+l,g))


Cg
[2][p]

= (t2,g − t1,g)

P=2∏
l=0
l 6=p

t1+l,g −

(
t22,g − t21,g

)
2

P=2∑
l=0
l 6=p

t1+l,g +

(
t32,g − t31,g

)
3

Cg
[mg ][p]

=
(
tmg,g − tmg−1,g

) P=2∏
l=0
l 6=p

tmg−2+l,g −

(
t2mg,g

− t2mg−1,g

)
2

P=2∑
l=0
l 6=p

tmg−2+l,g

+

(
t3mg,g

− t3mg−1,g

)
3

Cg
[j][p]

= − (tj,g − tj−1,g)

P=3∏
l=0
l 6=p

tj−2+l,g +

(
t2j,g − t2j−1,g

)
2

P−1=2∑
l1=0
l1 6=p

P=3∑
l2=l1+1
l2 6=p

tj−2+l1,g · tj−2+l2,g

−

(
t3j,g − t3j−1,g

)
3

P=3∑
l=0
l 6=p

tj−2+l,g +

(
t4j,g − t4j−1,g

)
4

Based on the expression [A.11], we defined its variance

Var(n̂AUCg) = (Kg
γ0)2Var(γ̂0) +

Kg∑
k=1

(Ckg)
2Var(β̂gk) + 2

Kg−1∑
k=1

Kg∑
k̃=k+1

CkgCk̃gCov
(
β̂gk , β̂

g

k̃

)
+ 2Kg

γ0

Kg∑
k=1

CkgCov(γ̂0, β̂
g
k)

Literal expression of ∆nAUC and its variance

To define the literal expression of ∆nAUC identified as the difference of nAUC between the groups
of treatment g and g̃, we found the following equation

∆n̂AUCg−g̃ = n̂AUCg̃ − n̂AUCg = γ̂0(K g̃
γ0 −K

g
γ0) +

Kg̃∑
k=1

β̂g̃kCkg̃ −
Kg∑
k=1

β̂gkCkg

It follows the expression of its variance

Var(∆n̂AUCg−g̃) =
(
K g̃
γ0 −K

g
γ0

)2
Var(γ̂0) +

Kg̃∑
k=1

(Ckg̃)
2 Var(β̂g̃k) [A.12]

7
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+ 2

Kg̃−1∑
k=1

Kg̃∑
k̃=k+1

Ckg̃Ck̃g̃Cov
(
β̂g̃k , β̂

g̃

k̃

)
+

Kg∑
k=1

(Ckg)
2 Var(β̂gk)

+ 2

Kg−1∑
k=1

Kg∑
k̃=k+1

CkgCk̃gCov
(
β̂gk , β̂

g

k̃

)
− 2

Kg̃∑
k0=1

Kg∑
k1=1

Ck0g̃Ck1gCov
(
β̂g̃k0 , β̂

g
k1

)
+ 2

(
K g̃
γ0 −K

g
γ0

)Kg̃∑
k=1

Ckg̃Cov
(
γ̂0, β̂

g̃
)
−

Kg∑
k=1

CkgCov
(
γ̂0, β̂

g
k

)

Matrix formulation

As mentioned in the main article, the linear mixed effects model can be re-expressed through matrix
formulation involving the re-expression of the nAUC. Similar to the trapezoid method, the nAUC
can be written as linear combination of the response of interest at each time point, as

nAUCg =
1

Tg

mg∑
j=1

ωlagrj,g Y j,g =
1

Tg
ωlagrg

T
Y g

where ωlagrg = (ωlagr1,g , · · · , ωlagrmg ,g)
T , Y g = (Y 1,g, · · · , Y mg ,g)

T , with

wlagrj,g =



C[2][j−1],g

P=2∏
l=0,

l 6=(j−1)

(tj,g − t1+l,g)

+

3∑
p=3−
(j−1)

C[j−1+p][3−p],g
P=3∏
l=0,

l 6=(3−p)

(tj,g − tj−3+p+l,g)

, j ∈ {1, 2, 3}

C[mg ][j−(mg−2)],g

P=2∏
l=0,

l 6=j−(mg−2)

(tj,g − tmg−2+l,g)

+

mg−j∑
p=0

C[j−1+p][3−p],g
P=3∏
l=0

l 6=(3−p)

(tj,g − tj−3+p+l,g)

, j ∈
{mg−2,
mg−1,
mg}

3∑
p=0

C[j−1+p][3−p],g
P=3∏
l=0,

l6=(3−p)

(tj,g − tj−3+p+l,g)

, otherwise

8
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B Definition of the nAUC by Spline interpolation method

We consider a dataset labelled D = {(tj, yj)|j = 1, · · · ,m} where yj is defined as the value of the
response y at the jth time point. Our objective is to approximate the area under the response curve
on the interval [t1, tm].

B.1 General description of the method

The spline method is an interpolation method providing approximation of smooth functions such
as splines curves or polynomials functions. Similarly to the Lagrange method, this one consists
on an approximation of the functional value y by polynomial functions of degree P where the
global polynomial function of interpolation is replaced by local ones connected at fixed knots. In
this interpolation method, the knots are directly defined as the data points. In addition, constraints
of differentiability must be taken into account. In fact, splines are built in such way that both
the fitted curve and its first P − 1 derivatives are continuously differentiable. For the sake of
simplicity, we chose to fix P = 3. Consequently, on each interval [tj−1, tj], the approximation
function ỹj : [tj−1, tj]→ R can be written as

ỹj(t) = aj + bjt+ cjt
2 + djt

3 ∀t ∈ [tj−1, tj ], ∀j ∈ {2, · · · ,m} [B.1]

Due to differentiability constraints, we want both the first and the second derivative of ỹj to be
continuous. Differentiating [B.1] twice, we obtain the linear expression in [B.2] which can be
re-write, considering that ỹ′′j (tj−1) = y

′′
j−1 and ỹ′′j (tj) = y

′′
j , as [B.3]

ỹ
′′

j (t) = 2cj + 6djt ∀t ∈ [tj−1, tj ] [B.2]

ỹ
′′

j (t) =
y
′′

j−1

hj
(tj − t) +

y
′′

j

hj
(t− tj−1) [B.3]

where hj = tj − tj−1. We can then go back to the function ỹ by integrating [B.3].

ỹ
′

j(t) =
−y′′j−1

2hj
(tj − t)2 +

y
′′

j

2hj
(t− tj−1)2 + C1 [B.4]

ỹj(t) =
−y′′j−1

6hj
(tj − t)3 +

y
′′

j

6hj
(t− tj−1)3 + C1t+ C2 [B.5]

where C1 and C2 are two integration constants. The relations between (yj−1,yj) and their second
derivatives (y′′j−1,y′′j ) can be found by evaluating [B.5] at both times tj−1 and tj as

yj−1 =
y
′′

j−1

6hj
(tj − tj−1)3 + C1tj−1 + C2

yj =
y
′′

j

6hj
(tj − tj−1)3 + C1tj + C2

The two integration constants C1 and C2 can be identified by solving the following system of two
equations 

C1tj−1 + C2 = yj−1 −
y
′′

j−1

6hj
(tj − tj−1)

3

C1tj + C2 = yj −
y
′′

j

6hj
(tj − tj−1)

3

9
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leading to the 2 following expressions
C1 =

1

hj
(yj − yj−1)− hj

6

(
y
′′

j − y
′′

j−1

)
C2 =

1

hj
(yj−1tj − yjtj−1)− hj

6

(
y
′′

j−1tj − y
′′

j tj−1

)

Combining these two formulas with [B.4] and [B.5], we obtain:

ỹ
′

j(t) =
−y′′j−1

2hj
(tj − t)2 +

y
′′

j

2hj
(t− tj−1)2 +

1

hj
(yj − yj−1)− hj

6
(y
′′

j − y
′′

j−1) [B.6]

ỹj(t) =
y
′′

j−1

6hj
(tj − t)3 +

y
′′

j

6hj
(t− tj−1)3 +

1

hj
[yj(t− tj−1) + yj−1(tj − t)] [B.7]

− hj
6

[
y
′′

j (t− tj−1) + y
′′
(tj − t)

]

Our goal is to express the approximation function ỹ as a function of our interpolation points
corresponding to the data points

{
(tj, yj),∀j ∈ {1, · · · ,m}

}
. However, we can observe that the

second derivatives y′′j−1 and y′′j remain unknown. Consequently, we have to define them based on
known variables such as yj, ∀j ∈ {1, · · · ,m}. To achieve this goal, let use the first derivative of
ỹj written in [B.6]. Because the data point (tj−1, yj−1) belongs to the two intervals [tj−2, tj−1] and
[tj−1, tj], we can evaluate this equation and its equivalence on [tj−1, tj−1] at time t = tj−1, which
gives the two following equations

y
′

j−1 = 
ỹ
′

j−1(tj−1) =
hj−1

2
y
′′

j−1 +
(yj−1 − yj−2)

hj−1
− hj−1

6
(y
′′

j−1 − y
′′

j−2) on [tj−2, tj−1]

ỹ
′

j(tj−1) = −hj
2
y
′′

j−1 +
(yj − yj−1)

hj
− hj

6
(y
′′

j − y
′′

j−1) on [tj−1, tj ]

where hj−1 = tj−1 − tj−2. By differentiability constraints ensuring the continuity of the first
derivative, these two equations are supposed to be equal which provides the relationship between
the zero and the second order of derivation of ỹj .

hj−1
6

y
′′

j−2 +
(hj + hj−1)

3
y
′′

j−1 +
hj
6
y
′′

j =
1

hj
(yj − yj−1)− 1

hj−1
(yj−1 − yj−2) [B.8]

This equation allows us to generate m− 2 equations, for j ∈ {3, · · · ,m}. Because m unknown y′′j
must be defined, two additional equations are required. To this end, let consider two new equations
defined by boundary conditions. Three types of splines-boundary conditions are commonly used.
The Clamped or End-slope spline boundary conditions consider the first derivative at the endpoints
as known such as ỹ′2(t1) = f

′
1 and ỹ′m(tm) = f

′
m. Using [B.6], we obtain the following two equations

h2
3
y
′′

1 +
h2
6
y
′′

2 =
1

h2
(y2 − y1)− f

′

1

hm
3
y
′′

m +
hm
6
y
′′

m−1 = f
′

m −
1

hm
(ym − ym−1)

[B.9]

The second boundary condition, called Natural spline, assumes the second derivatives at the
endpoints as known ỹ′′2 (t1) = f

′′
1 and ỹ′′m(tm) = f

′′
m and usually fixed at zero. Consequently, the two

10
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additional equations become

{
y
′′

1 = f
′′

1

y
′′

m = f
′′

m

[B.10]

Finally, the third one, called Not-a-knot spline boundary condition, supposes that the third derivative
is continuous at y2 and ym−1 leading to ỹ(3)

2 (t2) = ỹ
(3)
3 (t2) and ỹ(3)

m−1(tm−1) = ỹ
(3)
m (tm−1), where

the third derivative ỹ(3) is calculated by differentiating [B.3].

ỹ
(3)
j (t) =

y
′′
j − y

′′
j−1

hj
=⇒


ỹ
(3)
2 (t2) =

y
′′
2 − y

′′
1

h2
ỹ
(3)
3 (t2) =

y
′′
3 − y

′′
2

h3

ỹ
(3)
m−1(tm−1) =

y
′′
m−1 − y

′′
m−2

hm−1
ỹ(3)m (tm−1) =

y
′′
m − y

′′
m−1

hm

Combining these equations provides two new relations:


1

h2
y
′′

1 −
(

1

h2
+

1

h3

)
y
′′

2 +
1

h3
y
′′

3 = 0

1

hm−1
y
′′

m−2 −
(

1

hm−1
+

1

hm

)
y
′′

m−1 +
1

hm
y
′′

m = 0
[B.11]

By combining one of those three boundary conditions ([B.9],[B.10] or [B.11]) with [B.8], we finally
get m equations that can be re-write with matrix formulation. By noting Y ′′

= (y
′′
1 , · · · , y

′′
m)T and

Y = (y1, · · · , ym)T , the system of m equations can be re-formulate as

AY
′′
= BY + F =⇒ Y

′′
= A−1(BY + F )

whereA ∈Mm×m(R) is assumed to be an invertible matrix,B ∈Mm×m(R) and F ∈Mm×1(R).
The vector F is only dependent on the boundary conditions with F = (f

′
1, 0, · · · , 0, f

′
m)T or

F = (f
′′
1 , 0, · · · , 0, f

′′
m)T for the clamped and natural spline boundary conditions respectively while

F = 0 when not-a-knot spline conditions are considered. Similarly, we define A1, Am, B1 and
Bm vectors depending only on boundary conditions leading to

A =

[ A1 ]

h2
6

h3+h2
3

h3
6

0 0

0 h3
6

h4+h3
3

h4
6

hj
6

hj+hj+1

3

hj+1

6

hm−2

6
hm−1+hm−2

3
hm−1

6
0

0 0 hm−1

6
hm+hm−1

3
hm
6

[ Am ]





- Not-a-knot spline conditions:
A1 =

(
1
h2
,−
(

1
h2

+ 1
h3

)
, 1
h3
,0
)

Am =
(
0, 1

hm−1
,−
(

1
hm−1

+ 1
hm

)
, 1
hm

)
- Clamped conditions:

A1 =
(
h2
3
, h2

6
,0
)

Am =
(
0, hm

6
, hm

3

)
- Natural spline conditions:

A1 = (1,0) ; Am = (0, 1)

11
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B =

[ B1 ]

1
h2
−
(

1
h3

+ 1
h2

)
1
h3

0 0

0

1
hj
−
(

1
hj

+ 1
hj+1

)
1

hj+1

0

0 0 1
hm−1

−
(

1
hm

+ 1
hm−1

)
1
hm

[ Bm ]





- Not-a-knot spline conditions:
B1 = 0 ; Bm = 0

- Clamped conditions:
B1 =

(
−1
h2
, 1
h2
,0
)

Bm =
(
0, 1

hm
, −1
hm

)
- Natural spline conditions:

B1 = 0 ; Bm = 0

We define the matrixU ∈Mm×m(R) as the product of the inverse matrix ofAwithB,U = A−1B,
therefore Y ′′

= UY +A−1F . By definition of the matrix multiplication, the jth term of the vector
Y

′′ can be written as linear combination of yj , for j ∈ {1, · · · ,m}:

y
′′

j =

m∑
p=1

ujpyp +

m∑
p=1

a−1jp fp [B.12]

Once the vector Y ′′ estimated, the function ỹ : 7−→ ỹ(t) can be defined through the equation [B.7].

B.2 Literal expression of AUC

The AUC on the interval [tj−1, tj] can be calculated by integrating on its interval of definition the
function ỹj defined in [B.7].

AUC
∣∣
[tj−1,tj ]

=

∫ tj

tj−1

ỹj(t)dt

=

∫ tj

tj−1

[
y
′′
j−1

6hj
(tj − t)3 +

y
′′
j

6hj
(t− tj−1)3 +

1

hj
[yj(t− tj−1) + yj−1(tj − t)]

−hj
6

[
y
′′
j (t− tj−1) + y

′′
j−1(tj − t)

]]
dt

= −
h3
j

24

(
y
′′
j + y

′′
j−1

)
+

1

2
hj(yj + yj−1)

As cumulative area, the overall AUC on [t1, tm] is equal to

AUC =

m∑
j=2

[
−
h3j
24

(y
′′

j + y
′′

j−1) +
hj
2

(yj + yj−1)

]

Considering the relationship between y′′j and yj in [B.12], we obtain the equation [B.13].

AUC =

m∑
j=2

[
−
h3j
24

m∑
p=1

(
(ujp + uj−1p)yp + (a−1jp + a−1j−1p)fp

)
+
hj
2

(yj + yj−1)

]
[B.13]

B.3 Application of the Spline method with our mixed effects model

In this subsection, we develop the literal expressions of the approximated normalized AUC in
each group g and its variance, n̂AUCg and Var(n̂AUCg) respectively. We are also interested in the

12
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difference of nAUC between two given vaccine arms g and g̃ labelled ∆n̂AUCg−g̃ as well as the
resulting expression of its variance, Var(∆n̂AUCg−g̃). As mentioned in the main body of the article,
we note Yij,g the outcome of the subject i belonging to the group of treatment g at its jth time point
tij,g, where i ∈ {1, · · · , N}, j ∈ {1, · · · ,mi} and g ∈ {1, · · · , G}. The outcome of interest Y is
described by the linear mixed effects model given by

Yij,gi = f0(tij,gi) +

G∑
g=1

1[gi=g] × Fg(tij,g) + hi(tij,gi) + εij

where the function f0 represents the non group-specific terms, the functions Fg are linear
combinations of time-depending and group specific functions labelled fg such as Fg(tij,g) =∑Kg

k=1 β
g
kf

k
g (tij,g) and hi are time-dependent functions describing inter-individual variability. Be-

cause, only f0 and Fg functions are involved in literal expressions of interest, any further information
are given to specify random effects. For sake of simplicity, we fixed the f0 as global intercept,
f0(tij,g) = γ0. Consequently, the model can be re-write as

Yij,gi = γ0 +

G∑
g=1

1[g=gi] ×
Kg∑
k=1

βgkf
k
g (tij,g) + hi(tij,gi) + εij

Based on this definition, the expected value of the estimation of Y in the gth group at the jth time
point, µ̂j,g, is defined as

µ̂j,g = γ̂0 +

Kg∑
k=1

β̂gkf
k
g (tj,g) [B.14]

where γ̂0 and β̂g = (β̂g1 , · · · , β̂
g
Kg

)T are maximum likelihood estimates of the fixed parameters of
the MEM.

Literal expression of nAUC and its variance

The literal expression of the estimated nAUC in group g is obtained by replacing the outcome yj
in Equation [B.13] by [B.14] and dividing the resulting expression by the time of follow up Tg (as
described in the main article).

n̂AUCg = γ̂0K
g
γ0 +

Kg∑
k=1

β̂gkCkg +Kg [B.15]

where

Kg
γ0 =

1

Tg

mg∑
j=2

[
−
h3j,g
24

mg∑
p=1

(ujp,g + uj−1p,g) + hj,g

]

Ckg =
1

Tg

mg∑
j=2

[
−
h3j,g
24

mg∑
p=1

(ujp,g + uj−1p,g)f
k
g (tp,g) +

hj,g
2

(
fkg (tj,g) + fkg (tj−1,g)

)]

Kg =
1

Tg

mg∑
j=2

[
−
h3j,g
24

mg∑
p=1

(a−1jp,g + a−1j−1p,g)fp,g

]
(constant)

13
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Based on the expression [B.15] and knowing that Kg is a simple constant, we defined its variance

Var(n̂AUCg) = (Kg
γ0)2Var(γ̂0) +

Kg∑
k=1

(Ckg)
2Var(β̂gk) + 2

Kg−1∑
k=1

Kg∑
k̃=k+1

CkgCk̃gCov
(
β̂gk , β̂

g

k̃

)
+ 2Kg

γ0

Kg∑
k=1

CkgCov(γ̂0, β̂
g
k)

Literal expression of ∆nAUC and its variance

To define the literal expression of ∆nAUC built as the difference of nAUC between the groups of
treatment g and g̃, we found

∆n̂AUCg−g̃ = n̂AUCg̃ − n̂AUCg

= γ̂0(K g̃
γ0 −K

g
γ0) +

Kg̃∑
k=1

β̂g̃kCkg̃ −
Kg∑
k=1

β̂gkCkg +Kg̃ −Kg

By definition of the variance, we get a similar literal expression of Var∆n̂AUCg−g̃ to the one
obtained with the Lagrange method (see Equation [A.12]).

Matrix formulation

As mentioned in the main article, the linear mixed-effects model can be re-expressed through matrix
formulation involving the re-expression of the nAUC. Similar to the trapezoid method, the nAUC
can be written as linear combination of the response of interest at each time point, as

nAUCg =
1

Tg

mg∑
j=1

[
ωsplj,g Y j,g +Gj,g

]
=

1

Tg

(
ωsplg

T
Y g +Gg

)

where ωsplg = (ωspl1,g , · · · , ωsplmg ,g)
T , Y g = (Y 1,g, · · · , Y mg ,g)

T andGg =
(
G1,g, · · · , Gmg ,g

)T with

ωsplj,g =

mg∑
p=2

−
h3
p,g

24
(upj,g + up−1j,g) +


tj+1,g − tj,g

2
, j = 1

tj,g − tj−1,g

2
, j = mg

tj+1,g − tj−1,g

2
, otherwise

=

mg∑
p=2

−
h3
p,g

24
(upj,g + up−1j,g) + ωtrapj,g

Gj,g =

mg∑
p=2

[(
a−1
pj,g + a−1

p−1j,g

)
fj,g
]

∀j ∈ {1, · · · ,mg}

with ωtrapj,g defined in the main article by Equation [5] as the weights found for the trapezoid method.

14
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C Robustness of the test of equality of nAUC, 20 and 100 patients by group

Table C.1. Comparison of the robustness of the test of equality of nAUC. Individual trajectories are subject
to missing data and/or LOD. Simulations were performed for ng = 20 subjects by group, mean trajectories
following both profiles and for 1 000 replications.

Profile 1 Profile 2Methods Type-I error Power Type-I error PowerData
Pattern

∆nAUC 0 -0.1 -0.25 0 -0.1 -0.25
LOD α Var(nAUC) 0.02 0.1 0.02 0.1 0.02 0.1 0.02 0.1 0.02 0.1 0.02 0.1

Indiv. nAUC 0.058 0.060 0.60 0.17 1.00 0.69 0.054 0.062 0.57 0.18 1.00 0.67
NP nAUC 0.058 0.060 0.60 0.17 1.00 0.69 0.054 0.062 0.57 0.18 1.00 0.67∅ ∅
MEM nAUC 0.061 0.070 0.63 0.22 1.00 0.80 0.060 0.082 0.62 0.23 1.00 0.81
Indiv. nAUC 0.063 0.064 0.61 0.18 1.00 0.72 0.057 0.062 0.49 0.16 1.00 0.66
NP nAUC 0.063 0.064 0.61 0.18 1.00 0.72 0.057 0.062 0.49 0.16 1.00 0.6650 ∅
MEM nAUC 0.073 0.068 0.61 0.19 1.00 0.73 0.065 0.074 0.60 0.19 1.00 0.71
Indiv. nAUC
1. Data 0.056 0.061 0.27 0.09 0.94 0.44 0.230 0.258 0.46 0.34 0.95 0.37
2. LOCF 0.052 0.059 0.45 0.18 1.00 0.66 0.138 0.112 0.17 0.09 0.94 0.47
3. Mean Imp. 0.056 0.062 0.27 0.09 0.95 0.44 0.221 0.248 0.47 0.33 0.97 0.63
NP nAUC 0.056 0.068 0.55 0.18 1.00 0.67 0.066 0.071 0.41 0.16 1.00 0.64

1.105

MEM nAUC 0.074 0.072 0.58 0.19 1.00 0.69 0.057 0.081 0.57 0.19 1.00 0.67
Indiv. nAUC
1. Data 0.059 0.063 0.06 0.06 0.11 0.11 0.639 0.110 0.45 0.18 0.99 0.66
2. LOCF 0.050 0.055 0.39 0.17 0.99 0.62 0.226 0.149 0.07 0.07 0.85 0.37
3. Mean Imp. 0.057 0.065 0.07 0.06 0.11 0.12 0.615 0.477 0.45 0.43 0.37 0.46
NP nAUC 0.050 0.056 0.42 0.16 0.99 0.60 0.067 0.081 0.36 0.19 1.00 0.66

5.104

MEM nAUC 0.056 0.067 0.46 0.18 1.00 0.64 0.058 0.094 0.42 0.17 1.00 0.65
Indiv. nAUC
1. Data 0.066 0.072 0.07 0.05 0.08 0.07 0.507 0.489 0.54 0.48 0.49 0.42
2. LOCF 0.049 0.055 0.12 0.11 0.46 0.32 0.268 0.198 0.10 0.09 0.09 0.09
3. Mean Imp. 0.061 0.066 0.06 0.05 0.07 0.07 0.372 0.367 0.44 0.37 0.43 0.38
NP nAUC 0.045 0.055 0.19 0.13 0.82 0.42 0.683 0.315 0.90 0.55 1.00 0.86

1.104

MEM nAUC 0.034 0.074 0.16 0.12 0.75 0.42 0.063 0.059 0.18 0.14 0.66 0.40

(a) Results for nAUC calculated as individual summary measures and mixed model summary statistics
provided by the well-specified MEM.

Profile 1 Profile 2Method Type-I error Power Type-I error PowerData
Pattern

∆nAUC 0 -0.1 -0.25 0 -0.1 -0.25
LOD α Var(nAUC) 0.02 0.1 0.02 0.1 0.02 0.1 0.02 0.1 0.02 0.1 0.02 0.1
∅ ∅ Adap. MEM 0.066 0.071 0.63 0.23 1.00 0.80 0.060 0.081 0.61 0.22 1.00 0.80

50 ∅ Adap. MEM 0.071 0.071 0.62 0.20 1.00 0.72 0.062 0.071 0.56 0.20 1.00 0.70
1.105 Adap. MEM 0.068 0.071 0.60 0.19 1.00 0.69 0.052 0.086 0.56 0.20 1.00 0.70
5.104 Adap. MEM 0.064 0.069 0.46 0.18 1.00 0.64 0.056 0.098 0.40 0.16 0.99 0.65
1.104 Adap. MEM 0.044 0.079 0.19 0.13 0.74 0.40 0.068 0.081 0.19 0.14 0.60 0.37

(b) Results for nAUC calculated as mixed model summary statistics provided by the adaptive MEM.
Note: AUC = area under the curve ; nAUC = normalized AUC ; NP = Non Parametric ; LOD = Limit of detection
; Individual adhoc methods (Indiv. nAUC): 1. Data = Raw data, 2. LOCF = Last observation carried forward, 3.
Mean Imp. = Mean Imputation.
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Table C.2. Comparison of the robustness of the test of equality of nAUC. Individual trajectories are subject
to missing data and/or LOD. Simulations were performed for ng = 100 subjects by group, mean trajectories
following both profiles and for 1 000 replications.

Profile 1 Profile 2Methods Type-I error Power Type-I error PowerData
Pattern

∆nAUC 0 -0.1 -0.25 0 -0.1 -0.25
LOD α Var(nAUC) 0.02 0.1 0.02 0.1 0.02 0.1 0.02 0.1 0.02 0.1 0.02 0.1

Indiv. nAUC 0.062 0.052 1.00 0.56 1.00 1.00 0.055 0.057 1.00 0.60 1.00 1.00
NP nAUC 0.062 0.052 1.00 0.56 1.00 1.00 0.055 0.057 1.00 0.60 1.00 1.00∅ ∅
MEM nAUC 0.058 0.056 1.00 0.68 1.00 1.00 0.056 0.056 1.00 0.72 1.00 1.00
Indiv. nAUC 0.058 0.049 1.00 0.58 1.00 1.00 0.085 0.061 0.99 0.51 1.00 1.00
NP nAUC 0.058 0.049 1.00 0.58 1.00 1.00 0.085 0.061 0.99 0.51 1.00 1.0050 ∅
MEM nAUC 0.059 0.054 1.00 0.58 1.00 1.00 0.051 0.057 1.00 0.61 1.00 1.00
Indiv. nAUC
1. Data 0.040 0.056 0.80 0.24 1.00 0.98 0.859 0.825 0.98 0.94 1.00 1.00
2. LOCF 0.060 0.052 0.99 0.53 1.00 1.00 0.513 0.248 0.50 0.15 1.00 0.98
3. Mean Imp. 0.042 0.058 0.82 0.25 1.00 0.98 0.844 0.783 0.99 0.93 1.00 1.00
NP nAUC 0.058 0.059 1.00 0.52 1.00 1.00 0.102 0.057 0.97 0.55 1.00 1.00

1.105

MEM nAUC 0.060 0.057 1.00 0.54 1.00 1.00 0.052 0.056 1.00 0.56 1.00 1.00
Indiv. nAUC
1. Data 0.054 0.045 0.06 0.06 0.21 0.29 0.999 0.993 0.98 0.97 0.93 0.98
2. LOCF 0.050 0.056 0.97 0.48 1.00 1.00 0.771 0.415 0.15 0.08 1.00 0.93
3. Mean Imp. 0.055 0.047 0.06 0.06 0.24 0.31 0.998 0.991 0.98 0.97 0.93 0.98
NP nAUC 0.061 0.054 0.98 0.45 1.00 1.00 0.110 0.140 0.96 0.75 1.00 1.00

5.104

MEM nAUC 0.055 0.051 0.99 0.49 1.00 1.00 0.055 0.062 0.96 0.50 1.00 1.00
Indiv. nAUC
1. Data 0.054 0.066 0.06 0.05 0.21 0.09 0.990 0.990 1.00 0.99 0.99 0.98
2. LOCF 0.056 0.054 0.36 0.24 0.96 0.95 0.833 0.634 0.29 0.17 0.20 0.25
3. Mean Imp. 0.051 0.063 0.06 0.05 0.17 0.07 0.945 0.949 0.98 0.95 0.98 0.96
NP nAUC 0.049 0.065 0.71 0.34 1.00 0.97 1.000 0.930 1.00 1.00 1.00 1.00

1.104

MEM nAUC 0.056 0.063 0.42 0.20 0.96 0.73 0.040 0.068 0.24 0.23 0.91 0.68

(a) Results for nAUC calculated as individual summary measures and mixed model summary statistics
provided by the well-specified MEM.

Profile 1 Profile 2Method Type-I error Power Type-I error PowerData
Pattern

∆nAUC 0 -0.1 -0.25 0 -0.1 -0.25
LOD α Var(nAUC) 0.02 0.1 0.02 0.1 0.02 0.1 0.02 0.1 0.02 0.1 0.02 0.1
∅ ∅ Adap. MEM 0.054 0.053 1.00 0.67 1.00 1.00 0.057 0.054 1.00 0.70 1.00 1.00

50 ∅ Adap. MEM 0.061 0.053 1.00 0.58 1.00 1.00 0.056 0.055 1.00 0.61 1.00 1.00
1.105 Adap. MEM 0.058 0.059 1.00 0.54 1.00 1.00 0.054 0.056 1.00 0.56 1.00 1.00
5.104 Adap. MEM 0.058 0.048 0.99 0.49 1.00 1.00 0.055 0.058 0.96 0.49 1.00 1.00
1.104 Adap. MEM 0.059 0.069 0.40 0.19 0.94 0.69 0.063 0.064 0.28 0.19 0.90 0.62

(b) Results for nAUC calculated as mixed model summary statistics provided by the adaptive MEM.
Note: AUC = area under the curve ; nAUC = normalized AUC ; NP = Non Parametric ; LOD = Limit of detection
; Individual adhoc methods (Indiv. nAUC): 1. Data = Raw data, 2. LOCF = Last observation carried forward, 3.
Mean Imp. = Mean Imputation.
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D Robustness of the test of equality of nAUC estimated with Lagrange and
Spline interpolation methods

Table D.1. Comparison of the robustness of the test of equality of nAUC calculated as individual summary
measures and mixed model summary statistics. Individual trajectories are subject to missing data and/or
limit of detection. Simulations were performed for ng = 20 subjects by group, mean trajectories following
both profiles and for 1 000 replications. Results obtained with the Lagrange interpolation method

Profile 1 Profile 2Methods Type-I error Power Type-I error PowerData
Pattern

∆nAUC 0 -0.1 -0.25 0 -0.1 -0.25
LOD α Var(nAUC) 0.02 0.1 0.02 0.1 0.02 0.1 0.02 0.1 0.02 0.1 0.02 0.1

Indiv. nAUC 0.055 0.059 0.59 0.17 1.00 0.69 0.054 0.060 0.58 0.19 1.00 0.67
NP nAUC 0.055 0.059 0.59 0.17 1.00 0.9 0.054 0.060 0.58 0.19 1.00 0.67∅ ∅
MEM nAUC 0.069 0.072 0.63 0.23 1.00 0.80 0.064 0.081 0.63 0.23 1.00 0.80
Indiv. nAUC 0.063 0.062 0.61 0.18 1.00 0.72 0.059 0.062 0.49 0.16 1.00 0.66
NP nAUC 0.063 0.062 0.61 0.18 1.00 0.72 0.059 0.062 0.49 0.16 1.00 0.6650 ∅
MEM nAUC 0.068 0.071 0.62 0.19 1.00 0.72 0.065 0.069 0.56 0.20 1.00 0.71
Indiv. nAUC
1. Data 0.057 0.063 0.27 0.09 0.94 0.44 0.224 0.256 0.45 0.34 0.95 0.64
2. LOCF 0.054 0.059 0.45 0.18 1.00 0.66 0.141 0.114 0.16 0.09 0.94 0.47
3. Mean Imp. 0.058 0.063 0.27 0.09 0.95 0.44 0.218 0.245 0.47 0.33 0.96 0.63

NP nAUC 0.055 0.065 0.54 0.18 1.00 0.67 0.066 0.071 0.40 0.15 1.00 0.64

1.105

MEM nAUC 0.068 0.070 0.60 0.19 1.00 0.69 0.054 0.087 0.55 0.20 1.00 0.71
Indiv. nAUC
1. Data 0.061 0.063 0.06 0.06 0.11 0.11 0.633 0.516 0.45 0.45 0.35 0.46
2. LOCF 0.050 0.056 0.39 0.17 0.99 0.62 0.228 0.151 0.07 0.07 0.85 0.36
3. Mean Imp. 0.057 0.064 0.07 0.06 0.11 0.12 0.612 0.476 0.45 0.43 0.37 0.45

NP nAUC 0.050 0.055 0.42 0.17 0.99 0.61 0.063 0.076 0.35 0.19 0.99 0.65

5.104

MEM nAUC 0.064 0.068 0.46 0.18 1.00 0.64 0.058 0.099 0.41 0.17 0.99 0.65
Indiv. nAUC
1. Data 0.064 0.073 0.07 0.06 0.08 0.08 0.490 0.481 0.53 0.47 0.47 0.40
2. LOCF 0.050 0.055 0.12 0.11 0.46 0.32 0.272 0.198 0.11 0.09 0.09 0.09
3. Mean Imp. 0.061 0.068 0.06 0.05 0.07 0.07 0.365 0.364 0.44 0.37 0.43 0.38

NP nAUC 0.044 0.055 0.19 0.12 0.82 0.41 0.668 0.318 0.89 0.54 1.00 0.85

1.104

MEM nAUC 0.033 0.071 0.16 0.12 0.74 0.41 0.054 0.062 0.17 0.14 0.65 0.39

Note: AUC = area under the curve ; nAUC = normalized AUC ; NP = Non Parametric ; LOD = Limit of detection ;
Individual adhoc methods (Indiv. nAUC): 1. Data = Raw data, 2. LOCF = Last observation carried forward, 3. Mean
Imp. = Mean Imputation.
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Table D.2. Comparison of the robustness of the test of equality of nAUC calculated as individual summary
measures and mixed model summary statistics. Individual trajectories are subject to missing data and/or
limit of detection. Simulations were performed for ng = 50 subjects by group, mean trajectories following
both profiles and for 1 000 replications. Results obtained with the Lagrange interpolation method

Profile 1 Profile 2Methods Type-I error Power Type-I error PowerData
Pattern

∆nAUC 0 -0.1 -0.25 0 -0.1 -0.25
LOD α Var(nAUC) 0.02 0.1 0.02 0.1 0.02 0.1 0.02 0.1 0.02 0.1 0.02 0.1

Indiv. nAUC 0.061 0.059 0.95 0.34 1.00 0.96 0.049 0.054 0.94 0.36 1.00 0.97
NP nAUC 0.061 0.045 0.95 0.34 1.00 0.96 0.049 0.054 0.94 0.36 1.00 0.97∅ ∅
MEM nAUC 0.060 0.062 0.96 0.41 1.00 0.99 0.045 0.055 0.95 0.43 1.00 1.00
Indiv. nAUC 0.060 0.046 0.96 0.35 1.00 0.97 0.063 0.061 0.87 0.30 1.00 0.97
NP nAUC 0.060 0.046 0.96 0.35 1.00 0.97 0.063 0.061 0.87 0.30 1.00 0.9750 ∅
MEM nAUC 0.065 0.054 0.95 0.35 1.00 0.97 0.047 0.051 0.94 0.38 1.00 0.98
Indiv. nAUC
1. Data 0.061 0.055 0.50 0.16 1.00 0.79 0.533 0.524 0.82 0.66 1.00 0.94
2. LOCF 0.051 0.045 0.84 0.31 1.00 0.96 0.292 0.171 0.30 0.11 1.00 0.83
3. Mean Imp. 0.059 0.053 0.51 0.16 1.00 0.80 0.526 0.499 0.83 0.65 1.00 0.96

NP nAUC 0.054 0.051 0.93 0.32 1.00 0.96 0.062 0.053 0.77 0.31 1.00 0.96

1.105

MEM nAUC 0.063 0.053 0.94 0.33 1.00 0.97 0.050 0.055 0.92 0.36 1.00 0.97
Indiv. nAUC
1. Data 0.051 0.054 0.05 0.06 0.13 0.16 0.944 0.876 0.81 0.79 0.69 0.77
2. LOCF 0.046 0.051 0.77 0.29 1.00 0.95 0.490 0.235 0.11 0.06 1.00 0.70
3. Mean Imp. 0.051 0.049 0.05 0.05 0.14 0.17 0.939 0.840 0.81 0.76 0.69 0.76

NP nAUC 0.046 0.052 0.81 0.27 1.00 0.93 0.058 0.073 0.74 0.42 1.00 0.96

5.104

MEM nAUC 0.062 0.059 0.84 0.31 1.00 0.95 0.048 0.051 0.77 0.31 1.00 0.96
Indiv. nAUC
1. Data 0.041 0.057 0.05 0.06 0.12 0.07 0.880 0.860 0.90 0.86 0.83 0.77
2. LOCF 0.058 0.043 0.20 0.15 0.81 0.68 0.561 0.422 0.19 0.11 0.13 0.17
3. Mean Imp. 0.039 0.050 0.04 0.06 0.10 0.07 0.741 0.722 0.82 0.75 0.79 0.72

NP nAUC 0.055 0.054 0.44 0.19 1.00 0.77 0.967 0.650 1.00 0.92 1.00 1.00

1.104

MEM nAUC 0.055 0.056 0.31 0.19 0.91 0.59 0.046 0.072 0.24 0.19 0.84 0.58

Note: AUC = area under the curve ; nAUC = normalized AUC ; NP = Non Parametric ; LOD = Limit of detection ;
Individual adhoc methods (Indiv. nAUC): 1. Data = Raw data, 2. LOCF = Last observation carried forward, 3. Mean
Imp. = Mean Imputation.
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Table D.3. Comparison of the robustness of the test of equality of nAUC calculated as individual summary
measures and mixed model summary statistics. Individual trajectories are subject to missing data and/or
limit of detection. Simulations were performed for ng = 100 subjects by group, mean trajectories following
both profiles and for 1 000 replications. Results obtained with the Lagrange interpolation method

Profile 1 Profile 2Methods Type-I error Power Type-I error PowerData
Pattern

∆nAUC 0 -0.1 -0.25 0 -0.1 -0.25
LOD α Var(nAUC) 0.02 0.1 0.02 0.1 0.02 0.1 0.02 0.1 0.02 0.1 0.02 0.1

Indiv. nAUC 0.060 0.051 1.00 0.56 1.00 1.00 0.059 0.056 1.00 0.61 1.00 1.00
NP nAUC 0.060 0.051 1.00 0.56 1.00 1.00 0.059 0.056 1.00 0.61 1.00 1.00∅ ∅
MEM nAUC 0.058 0.056 1.00 0.68 1.00 1.00 0.057 0.056 1.00 0.73 1.00 1.00
Indiv. nAUC 0.056 0.049 1.00 0.58 1.00 1.00 0.092 0.062 0.99 0.51 1.00 1.00
NP nAUC 0.056 0.049 1.00 0.58 1.00 1.00 0.092 0.062 0.99 0.51 1.00 1.0050 ∅
MEM nAUC 0.059 0.056 1.00 0.58 1.00 1.00 0.054 0.058 1.00 0.62 1.00 1.00
Indiv. nAUC
1. Data 0.038 0.057 0.80 0.25 1.00 0.98 0.853 0.816 0.98 0.94 1.00 1.00
2. LOCF 0.060 0.053 0.99 0.53 1.00 1.00 0.520 0.252 0.49 0.14 1.00 0.98
3. Mean Imp. 0.042 0.058 0.81 0.25 1.00 0.98 0.837 0.781 0.99 0.93 1.00 1.00

NP nAUC 0.057 0.058 1.00 0.52 1.00 1.00 0.125 0.053 0.96 0.54 1.00 1.00

1.105

MEM nAUC 0.061 0.058 1.00 0.53 1.00 1.00 0.054 0.056 1.00 0.57 1.00 1.00
Indiv. nAUC
1. Data 0.052 0.045 0.06 0.06 0.21 0.28 0.999 0.992 0.98 0.97 0.92 0.98
2. LOCF 0.049 0.057 0.97 0.48 1.00 1.00 0.776 0.415 0.14 0.08 1.00 0.93
3. Mean Imp. 0.053 0.048 0.06 0.06 0.24 0.31 0.998 0.898 0.98 0.97 0.93 0.98

NP nAUC 0.062 0.052 0.98 0.45 1.00 1.00 0.085 0.126 0.95 0.73 1.00 1.00

5.104

MEM nAUC 0.056 0.051 0.99 0.48 1.00 1.00 0.055 0.064 0.96 0.50 1.00 1.00
Indiv. nAUC
1. Data 0.051 0.065 0.07 0.05 0.22 0.09 0.989 0.988 1.00 0.99 0.99 0.98
2. LOCF 0.055 0.054 0.36 0.24 0.96 0.95 0.835 0.642 0.30 0.17 0.19 0.24
3. Mean Imp. 0.051 0.062 0.06 0.05 0.17 0.07 0.942 0.949 0.98 0.95 0.98 0.96

NP nAUC 0.051 0.059 0.71 0.33 1.00 0.97 0.999 0.926 1.00 1.00 1.00 1.00

1.104

MEM nAUC 0.054 0.063 0.42 0.20 0.96 0.73 0.040 0.065 0.26 0.23 0.91 0.68

Note: AUC = area under the curve ; nAUC = normalized AUC ; NP = Non Parametric ; LOD = Limit of detection ;
Individual adhoc methods (Indiv. nAUC): 1. Data = Raw data, 2. LOCF = Last observation carried forward, 3. Mean
Imp. = Mean Imputation.
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Table D.4. Comparison of the robustness of the test of equality of nAUC calculated as individual summary
measures and mixed model summary statistics. Individual trajectories are subject to missing data and/or
limit of detection. Simulations were performed for ng = 20 subjects by group, mean trajectories following
both profiles and for 1 000 replications. Results obtained with the Spline interpolation method

Profile 1 Profile 2Methods Type-I error Power Type-I error PowerData
Pattern

∆nAUC 0 -0.1 -0.25 0 -0.1 -0.25
LOD α Var(nAUC) 0.02 0.1 0.02 0.1 0.02 0.1 0.02 0.1 0.02 0.1 0.02 0.1

Indiv. nAUC 0.056 0.060 0.60 0.17 1.00 0.69 0.053 0.064 0.58 0.19 1.00 0.67
NP nAUC 0.056 0.060 0.60 0.17 1.00 0.69 0.053 0.064 0.58 0.19 1.00 0.67∅ ∅
MEM nAUC 0.066 0.071 0.63 0.23 1.00 0.80 0.060 0.081 0.62 0.22 1.00 0.81
Indiv. nAUC 0.060 0.063 0.61 0.18 1.00 0.72 0.057 0.065 0.50 0.16 1.00 0.67
NP nAUC 0.060 0.063 0.61 0.18 1.00 0.72 0.057 0.065 0.50 0.16 1.00 0.6750 ∅
MEM nAUC 0.072 0.071 0.62 0.19 1.00 0.72 0.063 0.071 0.57 0.20 1.00 0.71
Indiv. nAUC
1. Data 0.056 0.065 0.27 0.09 0.94 0.44 0.236 0.264 0.47 0.34 0.95 0.64
2. LOCF 0.051 0.059 0.45 0.18 1.00 0.66 0.135 0.110 0.17 0.09 0.94 0.48
3. Mean Imp. 0.057 0.061 0.27 0.09 0.95 0.44 0.228 0.250 0.48 0.33 0.97 64

NP nAUC 0.055 0.067 0.55 0.18 1.00 0.68 0.063 0.072 0.42 0.17 1.00 0.65

1.105

MEM nAUC 0.068 0.071 0.60 0.19 1.00 0.70 0.052 0.085 0.57 0.20 1.00 0.70
Indiv. nAUC
1. Data 0.059 0.064 0.06 0.06 0.11 0.12 0.647 0.526 0.47 0.47 0.38 0.47
2. LOCF 0.050 0.056 0.39 0.17 0.99 0.62 0.223 0.148 0.07 0.07 0.85 0.37
3. Mean Imp. 0.057 0.065 0.07 0.06 0.11 0.12 0.621 0.480 0.45 0.44 0.37 0.46

NP nAUC 0.049 0.058 0.42 0.16 0.99 0.61 0.071 0.085 0.42 0.21 0.99 0.67

5.104

MEM nAUC 0.064 0.069 0.46 0.18 1.00 0.64 0.057 0.098 0.41 0.16 0.99 0.65
Indiv. nAUC
1. Data 0.065 0.071 0.07 0.05 0.08 0.07 0.529 0.504 0.55 0.49 0.50 0.43
2. LOCF 0.049 0.055 0.12 0.11 0.46 0.32 0.265 0.195 0.10 0.08 0.09 0.10
3. Mean Imp. 0.061 0.063 0.07 0.05 0.07 0.07 0.376 0.372 0.44 0.38 0.44 0.38

NP nAUC 0.045 0.055 0.19 0.13 0.81 0.41 0.072 0.339 0.93 0.56 1.00 0.87

1.104

MEM nAUC 0.035 0.075 0.17 0.12 0.76 0.42 0.070 0.061 0.18 0.15 0.68 0.39

Note: AUC = area under the curve ; nAUC = normalized AUC ; NP = Non Parametric ; LOD = Limit of detection ;
Individual adhoc methods (Indiv. nAUC): 1. Data = Raw data, 2. LOCF = Last observation carried forward, 3. Mean
Imp. = Mean Imputation.
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Table D.5. Comparison of the robustness of the test of equality of nAUC calculated as individual summary
measures and mixed model summary statistics. Individual trajectories are subject to missing data and/or
limit of detection. Simulations were performed for ng = 50 subjects by group, mean trajectories following
both profiles and for 1 000 replications. Results obtained with the Spline interpolation method

Profile 1 Profile 2Methods Type-I error Power Type-I error PowerData
Pattern

∆nAUC 0 -0.1 -0.25 0 -0.1 -0.25
LOD α Var(nAUC) 0.02 0.1 0.02 0.1 0.02 0.1 0.02 0.1 0.02 0.1 0.02 0.1

Indiv. nAUC 0.059 0.046 0.95 0.33 1.00 0.96 0.047 0.054 0.94 0.35 1.00 0.97
NP nAUC 0.059 0.046 0.95 0.33 1.00 0.96 0.047 0.054 0.94 0.35 1.00 0.97∅ ∅
MEM nAUC 0.058 0.055 0.97 0.41 1.00 0.99 0.042 0.055 0.95 0.44 1.00 1.00
Indiv. nAUC 0.059 0.049 0.96 0.35 1.00 0.97 0.059 0.060 0.89 0.31 1.00 0.97
NP nAUC 0.059 0.049 0.96 0.35 1.00 0.97 0.059 0.060 0.89 0.31 1.00 0.9750 ∅
MEM nAUC 0.062 0.053 0.95 0.35 1.00 0.97 0.047 0.055 0.94 0.37 1.00 0.97
Indiv. nAUC
1. Data 0.060 0.053 0.49 0.16 1.00 0.80 0.546 0.533 0.83 0.68 1.00 0.94
2. LOCF 0.054 0.045 0.84 0.32 1.00 0.96 0.276 0.168 0.32 0.11 1.00 0.84
3. Mean Imp. 0.059 0.053 0.51 0.16 1.00 0.81 0.534 0.503 0.84 0.65 1.00 0.94

NP nAUC 0.052 0.049 0.93 0.32 1.00 0.96 0.052 0.055 0.81 0.33 1.00 0.96

1.105

MEM nAUC 0.064 0.053 0.94 0.33 1.00 0.96 0.054 0.061 0.92 0.35 1.00 0.97
Indiv. nAUC
1. Data 0.048 0.052 0.05 0.05 0.14 0.17 0.948 0.886 0.83 0.81 0.72 0.80
2. LOCF 0.047 0.050 0.77 0.29 1.00 0.95 0.480 0.232 0.11 0.06 1.00 0.71
3. Mean Imp. 0.051 0.049 0.05 0.05 0.15 0.18 0.943 0.848 0.81 0.77 0.71 0.78

NP nAUC 0.049 0.053 0.81 0.27 1.00 0.93 0.087 0.092 0.80 0.47 1.00 0.97

5.104

MEM nAUC 0.063 0.059 0.84 0.31 1.00 0.95 0.047 0.052 0.76 0.31 1.00 0.96
Indiv. nAUC
1. Data 0.039 0.059 0.04 0.06 0.12 0.07 0.907 0.888 0.92 0.88 0.86 0.81
2. LOCF 0.059 0.043 0.20 0.15 0.81 0.68 0.546 0.414 0.18 0.11 0.13 0.17
3. Mean Imp. 0.037 0.051 0.04 0.06 0.10 0.07 0.752 0.725 0.83 0.76 0.80 0.74

NP nAUC 0.055 0.055 0.43 0.19 1.00 0.76 0.979 0.684 1.00 0.93 1.00 1.00

1.104

MEM nAUC 0.058 0.056 0.32 0.19 0.91 0.60 0.050 0.073 0.24 0.19 0.84 0.58

Note: AUC = area under the curve ; nAUC = normalized AUC ; NP = Non Parametric ; LOD = Limit of detection ;
Individual adhoc methods (Indiv. nAUC): 1. Data = Raw data, 2. LOCF = Last observation carried forward, 3. Mean
Imp. = Mean Imputation.
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Table D.6. Comparison of the robustness of the test of equality of nAUC calculated as individual summary
measures and mixed model summary statistics. Individual trajectories are subject to missing data and/or
limit of detection. Simulations were performed for ng = 100 subjects by group, mean trajectories following
both profiles and for 1 000 replications. Results obtained with the Spline interpolation method

Profile 1 Profile 2Methods Type-I error Power Type-I error PowerData
Pattern

∆nAUC 0 -0.1 -0.25 0 -0.1 -0.25
LOD α Var(nAUC) 0.02 0.1 0.02 0.1 0.02 0.1 0.02 0.1 0.02 0.1 0.02 0.1

Indiv. nAUC 0.061 0.050 1.00 0.56 1.00 1.00 0.054 0.056 1.00 0.60 1.00 1.00
NP nAUC 0.061 0.050 1.00 0.56 1.00 1.00 0.054 0.056 1.00 0.60 1.00 1.00∅ ∅
MEM nAUC 0.058 0.056 1.00 0.68 1.00 1.00 0.056 0.057 1.00 0.72 1.00 1.00
Indiv. nAUC 0.058 0.048 1.00 0.58 1.00 1.00 0.081 0.058 0.99 0.52 1.00 1.00
NP nAUC 0.058 0.048 1.00 0.58 1.00 1.00 0.081 0.058 0.99 0.52 1.00 1.0050 ∅
MEM nAUC 0.059 0.054 1.00 0.58 1.00 1.00 0.055 0.057 1.00 0.61 1.00 1.00
Indiv. nAUC
1. Data 0.040 0.056 0.80 0.25 1.00 0.98 0.867 0.832 0.99 0.95 1.00 1.00
2. LOCF 0.060 0.052 0.99 0.53 1.00 1.00 0.503 0.242 0.51 0.15 1.00 0.98
3. Mean Imp. 0.042 0.058 0.82 0.25 1.00 0.98 0.848 0.786 0.99 0.93 1.00 1.00

NP nAUC 0.058 0.060 1.00 0.52 1.00 1.00 0.086 0.060 0.97 0.59 1.00 1.00

1.105

MEM nAUC 0.058 0.057 1.00 0.54 1.00 1.00 0.051 0.057 1.00 0.57 1.00 1.00
Indiv. nAUC
1. Data 0.054 0.045 0.06 0.06 0.23 0.30 0.999 0.993 0.99 0.98 0.94 0.98
2. LOCF 0.050 0.056 0.97 0.48 1.00 1.00 0.763 0.407 0.15 0.08 1.00 0.93
3. Mean Imp. 0.055 0.046 0.06 0.06 0.24 0.32 0.998 0.991 0.98 0.97 0.93 0.98

NP nAUC 0.059 0.054 0.98 0.45 1.00 1.00 0.158 0.174 0.97 0.78 1.00 1.00

5.104

MEM nAUC 0.058 0.051 0.99 0.49 1.00 1.00 0.056 0.063 0.96 0.50 1.00 1.00
Indiv. nAUC
1. Data 0.054 0.067 0.07 0.05 0.21 0.09 0.993 0.995 1.00 0.99 0.99 0.98
2. LOCF 0.057 0.054 0.36 0.24 0.96 0.95 0.826 0.632 0.28 0.16 0.20 0.25
3. Mean Imp. 0.051 0.062 0.06 0.05 0.17 0.07 0.946 0.951 0.98 0.95 0.98 0.97

NP nAUC 0.050 0.063 0.71 0.33 1.00 0.97 1.000 0.939 1.00 1.00 1.00 1.00

1.104

MEM nAUC 0.057 0.063 0.42 0.20 0.97 0.73 0.042 0.069 0.25 0.23 0.91 0.68

Note: AUC = area under the curve ; nAUC = normalized AUC ; NP = Non Parametric ; LOD = Limit of detection ;
Individual adhoc methods (Indiv. nAUC): 1. Data = Raw data, 2. LOCF = Last observation carried forward, 3. Mean
Imp. = Mean Imputation.

22



A PREPRINT - MAY 26, 2021

E Study of the residuals of the mixed effects models applied on real clinical
data.

In order to verify the applicability of the developed method on the real clinical data, we checked for
the two trials both the normality of the distribution of the residuals obtained by the mixed effects
model and the homoscedasticity of its error model.

To evaluate the normality of the distribution of the residuals, we performed a Kolmogorov-Smirnov
test on the residuals after removing the censored data. We obtained p-values of 0.1213 and 0.2347
for the LIGHT and VAC-IL2 trials respectively which tend to conclude that our residuals are nor-
mally distributed. We also used graphical validation and plotted both the distribution (Figure E.1a)
and the QQplot (Figure E.1b) of the residuals obtained for the two clinical trials LIGHT and Vac-IL2.

To evaluate the homoscedasticity of the error model of the mixed effects models, we performed a
Breush-Pagan test on non-censored data and we plotted the residuals against the fitted values to
check the dispersion of the residuals (Figure E.1c). We obtained p-values of 0.29 and 0.66 for the
LIGHT and Vac-IL2 trials respectively, which tend to conclude the homoscedasticity of residuals
can not be rejected for both trials
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(a) Density of the residuals of the Vac-IL2 and LIGHT therapeutic vaccine trials on the left and right side respectively.
Black histograms and red dashed lines represent observed densities while orange areas represent theoretical densities
of the residuals defined by the mean and the standard deviation of the observed residuals.

(b) QQplot of the residuals of the Vac-IL2 and LIGHT therapeutic vaccine trials on the left and right side respectively.

(c) Residuals versus predicted HIV RNA load for the Vac-IL2 and LIGHT therapeutic vaccine trials on the left and right
side respectively. Black dots represent observed data while orange dots represent left-censored data.

Figure E.1. Study of the residuals of the mixed effects model fitting HIV RNA load of the Vac-IL2 (left side)
and LIGHT (right side) therapeutic vaccine trials.
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F Study of the sample size

Figure F.1. Study of Type-I Error and Power as function of Sample size. Solid lines represent power and
type-I error obtained by our MEM: in orange, without LOD or missing data ; in yellow, with LOD and without
missing data ; in green, LOD with α = 100000 ; in blue, LOD with α = 50000 and in pink, LOD with α = 10000

cp/ml. Dashed lines represent theoretical power provided by the formula (see section Discussion). The
horizontal red lines display the threshold of 5% for type-I error and 80% for power.

25


	1 Introduction
	2 Motivating Examples
	3 Method
	3.1 Definition of the AUC by interpolation method
	3.2 Estimation of nAUC by mixed effects model
	3.3 Statistical testing of difference between groups

	4 Simulation study
	4.1 Generation of simulated data
	4.2 Analysis of simulated data
	4.3 Simulation results
	4.4 Relaxing the correct model specification assumption

	5 Application on Real clinical data
	6 Discussion
	A Definition of the nAUC by Lagrange interpolation method
	A.1 General description of the method
	A.2 Estimation of polynomial coefficients by Lagrange multiplier
	A.3 Literal expression of AUC
	A.4 Application of the Lagrange method with our mixed effect model

	B Definition of the nAUC by Spline interpolation method
	B.1 General description of the method
	B.2 Literal expression of AUC
	B.3 Application of the Spline method with our mixed effects model

	C Robustness of the test of equality of nAUC, 20 and 100 patients by group
	D Robustness of the test of equality of nAUC estimated with Lagrange and Spline interpolation methods
	E Study of the residuals of the mixed effects models applied on real clinical data.
	F Study of the sample size

