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Article

Between-group comparison of area
under the curve in clinical trials with
censored follow-up: Application to HIV
therapeutic vaccines

Marie Alexandre1,2 , M�elanie Prague1,2 and

Rodolphe Thi�ebaut1,2

Abstract

In clinical trials, longitudinal data are commonly analyzed and compared between groups using a single summary statistic

such as area under the outcome versus time curve (AUC). However, incomplete data, arising from censoring due to a

limit of detection or missing data, can bias these analyses. In this article, we present a statistical test based on splines-

based mixed-model accounting for both the censoring and missingness mechanisms in the AUC estimation. Inferential

properties of the proposed method were evaluated and compared to ad hoc approaches and to a non-parametric

method through a simulation study based on two-armed trial where trajectories and the proportion of missing data

were varied. Simulation results highlight that our approach has significant advantages over the other methods. A real

working example from two HIV therapeutic vaccine trials is presented to illustrate the applicability of our approach.
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1 Introduction

The area under the curve (AUC) is a summary measure commonly used in various applications when the outcome

of interest is based on a quantitative variable such as a biomarker concentration. In pharmacokinetics, the AUC

of the drug concentration versus time is typically analyzed to account for drug exposure and clearance from the

body1 or to evaluate the bioequivalence of vaccines,2 or the quality of life by summarizing individual scores.3–6 In

preclinical cancer drug screening tumor xenograft experiments, the ratio or the difference of AUC can be used to

replace the commonly used treatment-to-control ratio7,8 or summarize symptoms9 to evaluate therapy effective-

ness. In infectious diseases, the AUC can summarize the exposure to the HIV virus10 or influenza.11,12 When AUC

is an outcome to be compared between arms in a clinical trial, estimates can be biased because of incomplete data.

Two frequent sources for the lack of completeness can arise: censoring due to a limit of detection (LOD) of assay

and study drop out.
In this context, various methods for the calculation of AUC have been proposed. Allisson et al.13 and Venter

et al.14 compared different approaches based on incremental AUC. Incremental AUC consists in computing the

AUC only for observations that are above a threshold, which can be viewed as particularly compelling when there
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is left-censored observations. However, Potteiger et al.15 pointed out the potential bias in resulting conclusions
when using incremental AUC even in presence of complete data. Wilding et al.16 have developed an approach to
evaluate treatment effect by comparing longitudinal data from two groups of patients through AUC calculation
when data are subject to missing completely at random (MCAR) missingness process. Bell et al.17 extended this
method to missing at random (MAR) data and incorporated the within-subject variability through random effects
using linear mixed effects models (LMEMs). In both cases, the comparison of the mean AUC using maximum
likelihood (ML) between groups was more robust than the comparison of the average individuals’ AUC with
standard two-sample t-tests. Furthermore, the estimation of the mean AUC using LMEM can be adapted to
outcomes subject to left-censoring.18

In this paper, we propose a statistical parametric test for AUC based on splines-based MEMs which is
extending the previously described approaches by adding flexibility in the modeling, accounting for left-
censored data and dealing with MAR monotonic censored follow-up. Estimation of parameters in LMEMs
model is possible using ML-based approach leading to robust inference in presence of right-censored19 and
left-censored outcome.20,21 To do so, we use an expectation-maximization EM algorithm for computing the
maximum likelihood in nonlinear mixed effects models with censored response as describe in Vaida et al.22

Multiple other non-parametric approaches have been developed to solve this type of problem. Schisterman and
Rotnizky23 developed a semi-parametric estimator of a K-sample U-statistic when data are missing at random
combining information from both outcomes and auxiliary variables. Thereafter, Spritzler et al.24 extended these
results by proposing a valid semi-parametric two-sample test of equal AUC when observations are MAR mono-
tonic and/or missing completely at random (MCAR). Both works are based on weighting approaches and thus
require strong assumptions on the missing data process. Alternative non parametric tests have been developed by
Vardi et al.25 based on permutation tests. However, parametric approaches may help in the situation of incom-
plete data.

This work was motivated by the evaluation of HIV therapeutic vaccine in clinical trials where high rate of
censoring can occur. The goal of the vaccines in HIV-infected patients is to boost the immune system to control
the viral replication when antiretroviral treatments (ART) are interrupted. Hence, analytical treatment interrup-
tion (ATI) is the ultimate way to assess the ability of new vaccine strategies to control viral replication after ART
discontinuation.26 However, HIV-infected patients undergoing ATIs are subject to high risks of immune damage
with expansion of the existing reservoir, clinical symptoms, resistance emergence, increased risk of HIV trans-
mission as well as loss of therapeutic benefits from ART.27,28 Therefore, ATI periods are short and patients are
followed carefully. Specification of criteria determining ART resumption may vary from one study to another:
development of Grade-3 adverse events or AIDS-related events, the CD4 cell count fell below 350 cells/mm3, or a
HIV RNA load exceeding a given virologic threshold.29–34 Following these criteria, ART resumption may occur
before the end of the planned ATI period leading to missing data comparable to study drop out. Also, HIV RNA
viral load is subject to left censoring due to LOD usually around 50 copies/mL.20 Therefore, the comparison of
AUC in HIV therapeutic vaccine trials constitutes a particularly relevant context for the application of the
method described in the paper.

The article is structured as follows. In section 2, we briefly describe two HIV therapeutic vaccine studies which
motivated the development of our ML based-model proposed approach to estimate the difference of mean AUCs
between two groups of patients when observations are left-censored and subject to follow-up censoring presented
in section 3. In section 4, we investigate the inferential properties of this method and compare them with both
traditional methods and a non-parametric test through simulation studies. To illustrate the applicability of the
approach, we provide a real working example from the two motivating examples in section 5. To conclude, we
summarize the paper and propose future research in section 6.

2 Motivating examples

In this paper, we focus on two HIV therapeutic vaccine trials testing the efficacy of vaccines through ART
interruption in HIV-1-infected patients. The first one is the HIV therapeutic vaccine trial VRI02 ANRS 149
LIGHT.35 This study is a randomized double-blind, two-arm placebo-controlled Phase-II trial. Its primary objec-
tive was to evaluate the virological efficacy after ART interruption of a therapeutic immunization compared to a
placebo. The therapeutic immunization is based on a recombinant DNA vaccine (GTU-MultiHIV B) and a
lipopeptide vaccine (LIPO-5). This study enrolled 105 patients (35 in the placebo control group vs. 70 in the
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vaccinated group) whose 91 of them (32 placebo and 59 vaccinated) experienced ATI. HIV RNA load was

repeatedly measured at times 0, 2, 4, 6, 8 and 12weeks after ATI. The second study is the HIV therapeutic

vaccine trial ANRS 093 Vac-IL2 (Vac-IL2).36 This study is a randomized two-arm placebo-controlled Phase-II

trial enrolling 71 patients (37 in the control group and 34 in the vaccinated group). Its primary objective was to

evaluate the immunogenicity of a therapeutic immunization strategy combining two different vaccines, recombi-

nant ALVAC-HIV (vCP1433) and Lipo-6T (HIV-1 lipopeptides), followed by the administration of subcutaneous

interleukin-2 (IL-2). Therapeutic immunization was followed by 12weeks of ATI with repeated measures of HIV

RNA load at times 0, 1, 2, 3, 4, 6, 8, 10, 12weeks after ATI.

3 Method

3.1 Definition of the AUC by interpolation method

We consider N subjects divided into G vaccine arms, with N ¼
XG

g¼1
ng, with ng being the number of patient in

group g. Let Yij;g be the response measured for the subject i belonging to group g at its jth time point, tij;g, with

i 2 f1; � � � ;Ng; j 2 f1; � � � ;mig and g 2 f1; � � � ;Gg. Moreover, we define ftij;gg as the set of time points at which

data are observed for the patient i and mi ¼ jftij;ggj the cardinal of this set. At group level, we equivalently note

ftj;gg ¼ [i2gðftij;ggÞ the set of time points at which outcome of interest is measured for at least one patient in g,

whose mg is the cardinal. As defined, this framework allows the consideration of unbalanced group design and

group-specific time points. The area under the response of interest curve can be calculated by the trapezoid

interpolation method. The AUC summary measure for the ith subject belonging to the group g and summary

statistics for the entire group g can then be approximated by the following equations. Without loss of generality,

we define the lower limit of the integration interval as well as the first time point in each group as zero

AUCi ¼
Z Ti

0

Yi;gðtÞdt ’
Xmi

j¼2

ðtij;g � tij�1;gÞ
2

ðYij;g þ Yij�1;gÞ

AUCg ¼
Z Tg

0

YgðtÞdt ’
Xmg

j¼2

ðtj;g � tj�1;gÞ
2

ðYj;g þ Yj�1;gÞ

where Yj;g is defined as the mean value of the outcome Y in the gth group at its jth time point, Yj;g ¼
1
ng

X
i2gYij;g; Ti ¼ maxjð tij;g

� �Þ and Tg ¼ maxjðftj;ggÞ the individual and group time of follow-up. Whereas the

trapezoid method is known as the cumulative area over m – 1 time period in which the value of interest Y is

approximated by a straight line between two adjacent points ðtj�1; yj�1Þ and (tj, yj), two other interpolation

methods have been studied in this work to approximate AUC using either global or piecewise cubic polynomials

instead of linear function: (1) the Lagrange method and (2) the Spline method (see Online Appendices A and B for

more details, respectively). These methods are not described in the main body of the article as they provide similar

results to the described trapezoid interpolation method.
When calculating individual’s AUC, it is usual to divide the AUC by the delay of follow-up to take into

account the variability in follow-up due to early drop-out for example.37–40 Although we propose in this article a

method based on modeling that would allow to work directly on the raw AUC, we will use a normalized AUC

(nAUC), that is the AUC divided by the number of days/weeks of follow-up, for the sake of comparison with

individual level methods. The nAUC are given by equations (1) and (2)

nAUCi ¼ 1

Ti

Z Ti

0

Yi;gðtÞdt ’ 1

Ti

Xmi

j¼2

ðtij;g � tij�1;gÞ
2

ðYij;g þ Yij�1;gÞ (1)

nAUCg ¼ 1

Tg

Z Tg

0

YgðtÞdt ’ 1

Tg

Xmg

j¼2

ðtj;g � tj�1;gÞ
2

ðYj;g þ Yj�1;gÞ (2)
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3.2 Estimation of nAUC by mixed effects model

We assume the MEM given by equation (3) to describe the outcome Yij;g of the subject i in the group gi at the jth

time point

Yij;gi ¼ f0ðtij;giÞ þ
XG
g¼1

11½gi¼g� � Fgðtij;gÞ þ hiðtij;giÞ þ eij (3)

where the function f0 gathers all non-group-specific terms, e.g. an intercept, the functions Fg are non-linear

smooth functions of time describing the fixed effect specific to each group and hi are polynomial time-

dependent random effects modeling the inter-individual variability. In the following, the functions Fg are set to

linear combinations such as Fgðtij;gÞ ¼
XKg

k¼1
bgkf

k
gðtij;gÞ where Kg is the number of time-dependent components

describing the group-specific dynamics, e.g. spline basis, and bgk are the regression coefficients.

For generalization purpose, the LMEM given in equation (3) can be re-expressed with matrix formulation as

follow

Y ¼ X0cþ Xbþ Zbþ e

where Y is the vector of the outcome of interest, X0, X, and Z are respectively the design matrices for the non-group-

and group-specific fixed effects and random effects. Because vaccine or randomized controlled trials involve often

adjustment of treatment effects on covariates, such as baseline covariates, the use of MEM allows it through the

definition of the design matrices, whether at population, group or individual level. The vectors c; b and b are the

unknown non group- and group-specific fixed parameters and the random parameters respectively, while e is

the vector of error terms supposedly normally distributed such as EðeÞ ¼ 0 and VarðeÞ ¼ H. Moreover, we

assume that EðbÞ ¼ 0 and VarðbÞ ¼ X, with b??e. By construction, the matrix X is defined as a diagonal block

matrix such as X ¼ diag X1; � � � ;XGÞð , where each sub-matrix Xg is group-specific. Similarly, the vector b can be

written as bT ¼ b1
T

; � � � ; bGT
� �

, each vector bg being only specific to the group g. It can be demonstrated that the

estimate of the nAUC in group g (2) can be re-expressed as a linear combination of the responses at each time, as

nAUCg ¼ 1

Tg

Xmg

j¼1

wj;gYj;g ¼ 1

Tg
wg

TYg (4)

where wg ¼ ðw1;g; � � � ;wmg;gÞT; Yg ¼ ðY1;g; � � � ;Ymg;gÞT, with

wj;g ¼

tjþ1;g � tj;g
2

; j ¼ 1

tj;g � tj�1;g

2
; j ¼ mg

tjþ1;g � tj�1;g

2
; otherwise

8>>>>>><>>>>>>:
(5)

In our method, the approximation of the summary statistics nAUC is obtained post-estimation of the MEM

parameters. To this end, we denote blg ¼ EðbYgÞ being the expected value of the estimation of Y in the gth group,

where blg ¼ ðbl1;g; � � � ; blmg;gÞT with blj;g ¼ Eð bYj;gÞ and bYg ¼ ð bY1;g; � � � ; bYmg;gÞT. It follows that blj;g is expressed as a

linear combination of the fixed parameter estimates denoted bb and bc for the group- and non-group-specific.

Indeed, by noting X
½g�
0 the sub-matrix of X0 corresponding to the group g, we obtain blg ¼ X

½g�
0 bcþ Xg

bbg leading to

blj;g ¼
XdimðbcÞ
v¼1

X
½g�
0jv � bcv þXKg

v¼1

Xgjv � bbg

v

Replacing Yg by blg in equation (4), the approximation of nAUC in the group g, dnAUCg, can be written as

dnAUCg ¼ 1

Tg
wT
gblg (6)
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3.3 Statistical testing of difference between groups

We want to identify whether or not two groups of treatment can be differentiated by their mean value of the area
under the response curve. Consequently, we defined the hypotheses of interest for the two compared groups g and
~g as the equality and the difference of their nAUC for the null hypothesis, H0 and the alternative one, H1,
respectively.

While the mechanism of follow-up censoring and the resulting missing data have no direct impact on the
method of the MEM estimation, the statistical test must be written to take it into account. The presence of
informative censoring impacting directly the time of follow-up and thus the time interval of AUC calculation for
each group, ½0;Tg�, the statistical test is build to compare the mean value of AUC on the same time interval. To do
this, we define the upper integration limit for nAUC calculation as T ¼ minðTg;T~gÞ given the time restricted
nAUC for each group calculated as

dnAUC
rest

g ¼ 1

T

Z T

0

blgðtÞdt ’
1

T
x˚
T

g blrestg (7)

where x˚ g ¼ ðx1;g; � � � ;xm
˚
g;g
ÞT and blrestg ¼ ðbl1;g; � � � ; blm

˚
g;g
ÞT with m

˚

g ¼ jftj;gjtj;g � Tgj.
Based on equation (7) of the approximation of nAUC in the group g, the test hypotheses may be re-expressed

in terms of model fixed parameters such as

H0 : dnAUC
rest

g ¼ dnAUC
rest

~g () 1

T
x˚
T

g X˚
½g�
0 bcþ X˚ gbbg� �

¼ 1

T
x˚
T

~g X˚
½~g�
0 bcþ X˚ ~gbb~g

� �
(8)

H1 : dnAUC
rest

g 6¼ dnAUC
rest

~g () 1

T
x˚
T

g X˚
½g�
0 bcþ X˚ gbbg� �

6¼ 1

T
x˚ ~gT X˚

½~g�
0 bcþ X˚ ~gbb~g

� �

where ðg; ~gÞ 2 ð1; � � � ;GÞ2; g 6¼ ~g and X˚
½g�
0 and X˚ g, respectively, defined as X

½g�
0 and Xg but restricted to the time

interval ½0;T�. Because b and c are the parameters of a mixed model and assuming normality hypothesis, it follows
that their respective maximum likelihood estimates are approximately normally distributed following the laws

Nðbb;dVarðbbÞÞ and Nðbc;dVarðbcÞÞ and implies that both blrestg and dnAUC
rest

g are normally distributed. Let note bR the

variance-covariance matrix of the estimated fixed parameters given by the inverse of the Fisher information

matrix and bRg the sub-variance covariance matrix of ðbcT; bbgTÞT 2 M
dimðbcÞþKg;1

ðRÞ. By construction we obtain,

Eðblrestg Þ ¼ X˚
½g�
0 cþ X˚ gb

g; Varðblrestg Þ ¼ ðX˚ ½g�0 X˚ gÞbRgðX˚ ½g�0 X˚ gÞT and Eð dnAUC
rest

g Þ ¼ 1
Tx

˚ T

g Eðblrestg Þ;Varð dnAUC
rest

g Þ ¼
1
T2 x

˚ T

g ðX˚
½g�
0 X˚ gÞbRgðX˚ ½g�0 X˚ gÞT x˚ g. Consequently, the asymptotic normal distribution of the estimated difference of

the restricted nAUC between the two groups can be inferred with

D dnAUC
rest

g�~g �N E D dnAUC
rest

g�~g

� �
;Var D dnAUC

rest

g�~g

� �� �

with EðD dnAUC
rest

g�~gÞ ¼ 1
Tx

˚
~gTEðblrest~g Þ � 1

T x˚
T

g Eðblrestg Þ and VarðD dnAUC
rest

g�~gÞ ¼ x˚
TðX˚ 0 X˚ ÞbRðX˚ 0 X˚ Þ x˚ ; x˚ 2

M
m
˚
gþm̊ ~g;1

ðRÞ being defined as 1
T ð0T;x˚

T

~g ÞT � 1
T ðx˚

T

g ; 0
TÞT. For a test of the null hypothesis defined in equation

(8), we can build the standard normally distributed Z-statistic given by

Z ¼ D dnAUC
rest

g�~gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var D dnAUC

rest

g�~g

� �r

Under the null hypothesis, the Z-statistics follows a Nð0; 1Þ. By weighted averaging incomplete measures, the
impact of potential heteroscedasticity is reduced due to the AUC-based approach. If still variance heterogeneity

Alexandre et al. 5



between the group occur, the Z-statistics can be modified into a Student’s t-test like statistics with degree of

freedom s (equals to1 in case of Z-statistic). As matter of fact, in case of remaining heterogeneity, data specific to

each group should be fitted with specific and independent mixed effects model. The T-statistic resulting from this

procedure will differ from our Z-statistic by its standard deviation simply defined as the squared root of the sum

of the variances of the group-specific nAUC, and with a degree of freedom defined by the Satterthwaite

approximation41,42

s ¼
Var dnAUC

rest

g

� �
þ Var dnAUC

rest

~g

� �� �2
Var dnAUC

rest

g

� �
ng�1

þ Var dnAUC~g
rest

� �
ng�1

Similarly, in case of small sample size, our Z-test can be modified into Student’s t-test with degree of freedom

defined by the Kenward-Roger approximation.43 Similarly to Bailer,44 a 100(1�a)% confidence interval for

D dnAUC
rest

g�~g can be derived from the statistic, as

D dnAUC
rest

g�~g�zs;a=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var D dnAUC

rest

g�~g

� �r

where zs;a=2 is the (1�a/2)100th percentile of the distribution.
An extension to k-sample design is straightforward deriving a one-way ANOVA testing the equality of nor-

malized AUCs. Similarly to our Z-statistics, nAUCs are compared on the same interval of calculation ½0;T� with
T ¼ ming2f1;���;GgðTgÞ.

H0 : dnAUC
rest

1 ¼ dnAUC
rest

2 ¼ � � � ¼ dnAUC
rest

K ;

H1 : 9ði; jÞ j dnAUC
rest

i 6¼ dnAUC
rest

j

8<:
where K is the number of groups compared by the k-sample test, K � G. Similarly to classic one-way ANOVA,

we define the statistic F following Fisher law as

F ¼
SSbetween

K�1
SSwithin

NK�K

�FðK� 1;NK � KÞ

where NK ¼
XK

g¼1
ng and SSbetween and SSwithin define respectively the inter- and intra-group variability and are

calculated as

SSbetween ¼
XK
g¼1

ng dnAUC
rest

g � 1

K

XK
k¼1

dnAUC
rest

k

 !2

SSwithin ¼
XK
g¼1

n2gVarð dnAUC
rest

g Þ

4 Simulation study

In this section, we conduct a simulation study to analyze the statistical properties of our approach. The simulation

setting is driven by the motivating examples described in section 2.
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4.1 Generation of simulated data

We simulate longitudinal data mimicking a randomized HIV therapeutic vaccine trial involving two groups of
treatment in which the outcome of interest is the HIV RNA load measurement. We simulated data using a
LMEM as described by (9)

Yij;g ¼ c0 þ 11½g¼1�
XK1

k¼1

b1k/
1
kðtij;1Þ þ 11½g¼2�

XK2

k¼1

b2k/
2
kðtij;2Þ

þ b0i þ
XKi

k¼1

bkiW
i
kðtij;gÞ þ eij

(9)

where Yij;g is the outcome of the ith subject belonging to the gth group at the jth time point where i 2
f1; � � � ; ngg; j 2 f1; � � � ;mgg and g 2 f1; 2g. In this model, the non-group-specific function f0 is a global intercept
labeled c0, while random effects are described by individual smooth cubic B-splines curves defined as linear
combination of the cubic B-spline basis Wi ¼ ðWi

1; � � � ;Wi
Ki
ÞT with bi ¼ ðb1i; � � � ; bKiiÞT as regression coefficients,

8i 2 f1; � � � ;Ng; N ¼ n1 þ n2. Similarly, the group-specific fixed effects are modeled by cubic B-spline curves with
/g ¼ ð/g

1; � � � ;/g
Kg
ÞT and bg ¼ ðbg1; � � � ; bgKg

ÞT as spline basis and regression coefficients, respectively. Random
effects describing the inter-individual variability are assumed to be normally distributed b�Nð0;XÞ as well as
the error terms eij �Nð0; r2eÞ. Based on the HIV RNA load data from the Vac-IL2 trial (see section 2, Motivating
Examples), we evaluated the regression coefficient estimates c0; b

1; b2 and b as well as the parameters Kg and Ki

being respectively the number of spline basis involved in the group-specific and individual spline curves. The
model involving a global intercept c0, the splines basis have been built without including intercept terms making
Kg and Ki equal to the sum of the number of internal knots and the degree (fixed at 3 in our case) of the respective
spline curves.

For the purpose of examining the properties of the proposed approach developed to test the equality of
nAUCs, we generate numerous vaccine trials. As illustrated in Figure 1, we simulated two types of mean trajec-
tory profiles: one in which the timing of viral rebound is similar in control and treatment group but the magnitude
of the rebound may differ, and one in which the timing of viral rebound is expected to be longer in the treatment
group compared to the control group. Finally, outcomes are measured at a constant time interval such as t ¼
ð0; 1; 2; � � � ; 24ÞT weeks and the number of patients by group n ¼ n1 ¼ n2 varied amongst 20, 50 and 100. They
reproduce the trajectories found in the Vac-IL2 and LIGHT trials (see section 2, Motivating Examples). Based on
the Vac-IL2 data, we set the values of r2e ¼ 0:2, the fixed intercept c0 ¼ �0:44 and the fixed parameters of the first
group of treatment (g¼ 1) seen as the control group, b1 (see Table 1). The five fixed parameters of the treatment
group in both profiles b2 have been chosen such as given values of DnAUC1�2 are targeted to specific values. To
test the properties of the method, we simulated data with DnAUC1�2 taking values of 0, –0.1 and –0.25 log10 cp/
ml. We defined the number of fixed splines basis as K1 ¼ K2 ¼ 5 for both profiles with the two internal knots fixed
at ð0:25; 5:62Þ weeks for both groups in profile 1 and ð0:25; 5:62Þ and ð3:23; 7:63Þ weeks in profile 2 for control and
vaccine groups, respectively. Similarly, we fixed the number of random spline basis Ki¼ 5 with ð2:0; 4:5Þ weeks as
internal knots in profile 1 and ð2:0; 4:5Þ and ð5:0; 8:0Þ weeks in Profile 2 for control and vaccine groups, respec-
tively. Number and positions of internal knots have been optimally chosen on Vac-IL2 data by applying the R-
package freeknotspline45 using AIC as optimization criterion.

The covariance matrix of the random effects X is defined as diagonal such as X ¼ r2bIKiþ1 where the value of r2b
has been chosen according to the targeted values of VarðnAUCgÞ. The estimated variances of nAUC were 0.027
and 0.021, respectively, in the control and the treatment group in Vac-IL2 trial. Hence, in simulations, we tested
the impact of the intra-group variability when VarðnAUCgÞ was equal to 0.02 and 0.1, in both groups.

We generated MAR monotonic missing data as follows. For each subject i at each time point j, the outcome
Yij;g was labeled as missing if Yij;g 2 fYij;gj9 j0 � j; fYij0;g 	 ag \ fYij0�1;g 	 agg, with a being a fixed threshold. A
patient dropped out from the trial if his/her HIV RNA load exceeded the threshold a at two consecutive time
points. The subsequent measurements were considered as missing. We investigated the impact of the missing data
on the robustness of the method by considering three values for the threshold a: 100,000 (5log10), 50,000
(� 4:7log10) and 10,000 (4log10) cp/ml. As illustrated in Figure 2 for the profile 1, the percentage of drop-out
in each trial was inversely linked to the value of a. Due to the difference of nAUC between the two groups, each
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value of a generated both equal (DnAUC ¼ 0, blue curves) and unequal (DnAUC 6¼ 0, blue curve for control and
green/pink curves for treatment group) drop-out rates. While a ¼ 100,000 cp/ml leaded to approximately 30% of
drop-out in control group and respectively 30%, 15% and 5% in treatment group when DnAUC ¼ 0; 0:1 and
0.25, for VarðnAUCÞ ¼ 0:02, these percentages increased respectively until 75%, 75%, 60% and 35% for a ¼
50,000. Finally, the choice of a ¼ 10,000 allowed to test the method with extremely high percentages of drop-out
which were in the neighborhood of 100%. The consideration of the second profile of data simulation leaded to a
slight increase of these percentages of approximately 7% when the variance of nAUC was equal to 0.1 and 10%
for 0.02.

We also generated left-censored outcomes using the limit of detection for viral load at 50� 1:7log10 cp/ml,
which has been chosen in accordance with values typically encountered in our motivating examples. This choice of
LOD generated mean percentages of undetectable data in each group ranging from 7.30% to 7.70% for profile 1
and from 7.30% to 8.70% for profile 2, representing approximately two time points with undetectable
outcome over 25.

Table 1. Fixed parameter values used to simulate control and vaccine groups for both profiles, according to DnAUC values.

Treatment group Profile 1 Profile 2

Control group, b1 ð�0:55; 4:72; 4:96; 5:18; 4:64Þ ð�0:55; 4:72; 4:96; 5:18; 4:64Þ
DnAUC¼ 0; b2 ð�0:55; 4:72; 4:96; 5:18; 4:64Þ ð1:38; 5:57; 4:53; 5:20; 4:74Þ
DnAUC¼ 0:1; b2 ð�0:54; 4:61; 4:85; 5:07; 4:54Þ ð1:35; 5:44; 4:43; 5:09; 4:63Þ
DnAUC¼ 0:25; b2 ð�0:52; 4:46; 4:69; 4:90; 4:39Þ ð1:31; 5:26; 4:28; 4:92; 4:48Þ
Note: The value of the global intercept was fixed at c0 ¼ �0:44.

Figure 2. Percentages of censored follow-up when data simulated by both profiles are impacted by the threshold of lost of follow-up
a. Note: Lines display percentages obtained for the profile 1 with solid and dashed lines representing data simulated with
VarðnAUCÞ ¼ 0:02 and 0.1, respectively. Blue lines describe both Group 1 (Control) and Group 2 (treatment) when DnAUC with
Group 1 is equal to 0, green and pink lines represent Group 2 when DnAUC ¼ 0:1 and 0.25, respectively. Marks display percentages
obtained for the Profile 2 with empty and full marks representing data simulated with VarðnAUCÞ ¼ 0:02 and 0.1, respectively. The
squares, triangles and circles describe Group 2 when DnAUC ¼ 0, 0.1 and 0.25 with the control group in blue, respectively. Vertical
dotted lines highlight the positions of a ¼ 100,000, 50,000 and 10,000 cp/ml.

Figure 1. Simulated mean trajectories of HIV RNA load over time for both profiles 1 and 2. Note: Red solid line represents Group 1
(Control), dashed, dot dashed and dotted lines represent Group 2 (treatment) when DnAUC with Group 1 is equal to 0, –0.1 and
–0.25, respectively. Orange dashed line and area delimit the LOD¼ log10ð50Þ. LOD: limit of detection.
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4.2 Analysis of simulated data

We analyzed the simulated data using a well-specified model. Formulas for nAUC are derived from equation (9).
MEM estimations took into account left-censored outcomes using an hybrid EM-algorithm implemented in the

R-package lmec.46 Let note ðbc0;bb1;bb2ÞT the vector of the estimated fixed parameters where bbg ¼ ðbbg

1; � � � ; bbg

Kg
ÞT, for

g 2 f1; 2g. Using the model in equation (9), the expected value of Y in the gth group at any time tj;g isblj;g ¼ bc0 þXKg

k¼1
bbg

k/
g
kðtj;gÞ, which allows to approximate the nAUC in each group, its variance and the difference

in nAUC as follows

dnAUCg ¼ Kcgbc0 þXKg

k¼1

bbg

kCkg

D dnAUC1�2 ¼ bc0ðKc2 � Kc1Þ þ
XK2

k¼1

bb2

kCk2 �
XK1

k¼1

bb1

kCk1

Varð dnAUCgÞ ¼ ðKcgÞ2Varðbc0Þ þXKg

k¼1

ðCkgÞ2Varðbbg

kÞ þ 2
XKg�1

k¼1

XKg

~k¼kþ1

CkgC~kgCovðbbg

k;
bbg

~kÞ

þ2
XKg

k¼1

KcgCkgCovðbc0; bbg

kÞ

where Ckg and Kcg are defined by Ckg ¼ 1
Tg

Xmg

j¼2

ðtj;g � tj�1;gÞ
2

½/g
kðtj;gÞ þ /g

kðtj�1;gÞ� and Kcg ¼ 2
Tg

Xmg

j¼2

ðtj;g � tj�1;gÞ
2

.

For each combination of simulated datasets and missing data patterns, 1000 replications were performed with
the objective of evaluating the robustness of the method to test the equality of areas under the curves between the
two groups through its type-I error, its power and the bias in the estimation of the difference of nAUC. We
compared the results provided by our method with a standard two-sample t-test for the difference of nAUC

between the two groups, i.e. H0 : nAUC2 � nAUC1 ¼ 0 where nAUCg ¼ 1
ng

Xng

i¼1
nAUCi with nAUCi defined by

equation (1). We performed this test without accounting for missing data and using two common ad hoc
approaches: the last observation carried forward (LOCF) where missing data are imputed by the last observed
value before the follow-up censoring, and the mean imputation where missing observations are imputed by the
mean of the observations before this follow-up censoring.

In addition to the standard two-sample t-test, we compared our method with the t-test version of the non-
parametric two-sample test proposed by Vardi et al.25 This test was developed to compare a one-dimensional
variable such as AUC between two groups of treatment when individual follow-up is subject to informative
homogeneous or heterogeneous censoring. In order to be able to compare the results provided by this test and
our method, we applied this test to normalized AUC. The test is based on U-statistics defined as

Um1;m2
¼ 1

m1m2

Xm1

i1¼1

Xm2

i2¼1

Di1;i2

where m1 and m2 are respectively the number of subjects in the first and the second compared groups, g1 and g2,
while Di1;i2 is defined as the paired cross-treatment contrast for the cross-treatment pair ði1; i2Þ 2 g1 � g2

Di1;i2 ¼
1

Ti1 ^ Ti2

Z Ti1
^Ti2

0

Yi2;g2ðtÞ � Yi1;g1ðtÞ
� �

dt

¼ 1

Ti1 ^ Ti2

AUCi2 ½0;Ti1
^Ti2

� �AUCi1 ½0;Ti1
^Ti2

�
			 i			
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where Ti1 ^ Ti2 ¼ minðTi1 ;Ti2Þ. The variable Di1;i2 is then defined as the difference of nAUC between the subjects

i1 and i2, restricted to their common time of follow-up. Similarly to the simulation studies conducted in their

paper, we defined the variance of the U-statistic as equation (2.15) in Vardi’s paper25

br2
m1;m2

¼
Xm1

i1¼1

Di1: �D::

� �2
m1ðm1 � 1Þ þ

Xm2

i2¼1

D:i2 �D::

� �2
m2ðm2 � 1Þ

where Di1: ¼
X

i2
Di1;i2=m2; D:i2 ¼

X
i1
Di1;i2=m1 and D:: ¼ Um1;m2

and we considered the following null hypothesis

H0 : the distribution of D is symmetric about 0.
Five procedures are then compared for testing the equality of nAUC including three ad hoc methods respec-

tively called Indiv. nAUC Data, Indiv. nAUC LOCF and Indiv. nAUCMean Imp., the non-parametric test called

NP nAUC and our approach called MEM nAUC.

4.3 Simulation results

The results of our simulations evaluating the robustness of the test of equality of nAUC are displayed in Table 2.

Although only results for simulations involving ng¼ 50 patients by group are presented in the main body of the

article, extended results for ng¼ 20 and 100 can be found in Online Appendix C, Tables C.2a and C.3a. In these

simulations, as expected with a well-specified model, when there is no censored follow-up and no left censoring

using individual nAUC, non-parametric approach or our method based on MEM nAUC are identical in term of

type-I error, which are kept to their nominal level of 5% (between 0.044 and 0.06). However, the power seems to

be consistently higher for MEM nAUC in particular when the inter-individual variability is high. When intro-

ducing the LOD at 50 cp/ml, the results are similar for profile 1 but tend to show a superiority of MEM nAUC for

profile 2 in which there are a larger number of left-censored observations due to delay in viral rebound in one

group. This is explained by the fact that MEM nAUC, contrary to individual nAUC involved either in indiv.

nAUC or NP nAUC methods, accounts for left censoring instead of considering censored data fixed to their

censorship level value. When the threshold of HIV RNA defining drop-out, a, is equal to 100,000 and 50,000 cp/

ml, all individual methods (with or without adjustment for missing data) fail in term of type-I error in the second

profile with lagged increasing trajectories of viral load (see Figure 1). Even when the type-I error is controlled such

as for profile 1 (with the same shape of mean trajectories see Figure 1), the power for raw data and mean

imputation approaches is low for most settings. While the NP nAUC method shows controlled type-I error

between 0.048 and 0.057 for profiles 1 and 2 when a is equal to 100,000 cp/ml and for profile 1 when the threshold

is equal to 50,000 cp/ml, we observe an inflation of the type-I error up to 0.075 for the second profile. On the

contrary, the MEM nAUC method shows type-I error between 0.048 and 0.064 for profiles 1 and 2. When

variability is low, the power is also good and higher than 76% for the two methods. In all cases, the power

found in these settings is similar in magnitude to the power obtained when there is no censored follow-up and no

left censoring for viral load. When the threshold a is equal to 10,000 copies/ml, while all individual methods and

the non-parametric approach fail to control the type-I error for the profile 2, our approach MEM nAUC suc-

cessfully gets a type-I error around the nominal value for both profiles. This result is mainly driven by the

difference of the shapes of the mean trajectories for the two compared groups in Profile 2. In fact, as shown in

Figure 1, the difference of nAUC appears as quite homogeneously distributed over the time of follow-up in profile

1 leading to robust results for all methods despite an early drop out for a high percentage of subjects. However, in

profile 2, the value of DnAUC resulting from the compensation of the beginning and the end of the dynamics, only

the parametric method is able to capture the true difference of nAUC regardless of the premature censored follow-

up for more than 80% of individuals.
In addition, we graphically illustrated the estimated bias and standard error for DnAUC obtained for each

method in Figure 3. For all profiles, when there is no drop-out or when the threshold a is high enough (equal to

100,000 and 50,000 cp/ml), the bias is closer to 0 for MEM nAUC compared to other methods. Also, the standard

error of DnAUC calculated with MEM nAUC is similar to the non-parametric approach and closer to all the ad

hoc individual methods to the theoretical values of standard error of DnAUC, respectively 0.028 for

VarðnAUCÞ ¼ 0:02 and 0.063 for VarðnAUCÞ ¼ 0:1. This mostly explains the comparable robustness between

MEM nAUC and NP nAUC and their better performances in term of power compared to individual methods.

When a is equal to 10,000 cp/ml, the inflated type-I errors observed for individual and non-parametric methods
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are explained by biased estimates of DnAUC which are not compensated by an increased value of the standard

error, unlike the MEM nAUC method.

4.4 Relaxing the correct model specification assumption

The validity of the method relies on the correct specification of the MEM as described in equation (3) in the

section Method. To relax this assumption, we conducted additional simulations to evaluate the method when data

are fitted with another MEM. To evaluate the performances in a setting closer to real-data, the number and

position of the knots in the MEM defined in equation (9) were also estimated with the data. We used the R-

package freeknotspline to estimate and replace the two sets of fixed two internal knots (2.0, 4.5) and (5.0, 8.0)

involved in the build of group-specific spline curves by a set of knots optimizing the fit of data. Moreover, spline

basis was built with external knots chosen as (0, Tg) instead of (0, 24) considering the real observed time of follow-

up, which can be modified with censored follow-up. For each simulation, the number of internal knots for a given

group is optimized between 1 and 3 as well as their position using AIC as optimization criterion. Three other

selection criteria have been tested: BIC, adjAIC, adjGCV and compared to AIC. Similar results of power and

type-I error have been obtained for the four criteria (results not shown). Spline basis involved in random effects

were similarly built chosen (0, Ti) as boundary knots and the number of internal knots chosen between 1 and 2.

This adaptive feature of the model allows to build group-specific spline basis taken into account both left-

censored and missing data. The results obtained by this model are displayed in Table 3 for ng¼ 50 subjects by

group. Similar results are presented in Online Appendix C in Tables C.2b and C.3b for ng¼ 20 and 100,

respectively.
In all settings except for high level of censored follow-up with a ¼10,000, using adaptive MEM led to equiv-

alent type-I error (between 0.046 and 0.063 instead of 0.044 and 0.064) and power than with the well-specified

model, for both profiles. Using adaptive MEM slightly increased the type-I error when the threshold for drop-out

Figure 3. Comparison of the estimated bias and standard error of DnAUC obtained by the three individual methods Indiv. nAUC
Data, Indiv. nAUC LOCF, Indiv. nAUC Mean Imp., the non-parametric test Non Param. and our method MEM nAUC. Both criteria
were estimated for data subject to a LOD, with or without censored follow-up, with ng¼ 50 subjects by group, mean trajectories
following both profiles, for 1000 replications. Note: Pink dashed lines and triangles represent Ind. nAUC LOCF, green dot-dashed lines
and crosses represent Indiv. nAUC Mean Imp., green solid lines and circles represent MEM nAUC, blue solid lines and stars represent
NP nAUC and purple dotted lines with squares represent Indiv. nAUC Data. In standard Error plots, black dashed lines display the
theoretical values (0.028 when VarðnAUCÞ ¼ 0:02 and 0.063 for 0.1); LOCF: last observation carried forward.
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is 10,000 (between 0.061 and 0.078 instead of 0.051 and 0.073), while the estimated power remained unchanged.

Altogether, even when the MEM structure is not known, this simulation shows that it is possible to use adaptive

MEM for the modeling of the marker trajectories without invalidating the method, making it more relevant on

real data.

5 Application on real clinical data

As illustrative examples, we applied the presented approach to the log-transformed HIV RNA load data from the

Vac-IL2 and LIGHT trials (see section 2, Motivating Examples). Exploratory plots of the individual and mean

HIV RNA load dynamics for control and vaccine groups are shown in Figure 4(a) and (b), for VAC-IL2 and

LIGHT trials, respectively. As illustrated in table in Figure 4(c), longitudinal data in both trials are subject to left-

censoring. While two values of LOD are considered in Vac-IL2 trial, 20 and 50 cp/ml (� 1:3 and 1:7log10 cp/ml),

impacting a total of 28.2% and 33.5% of observations for control and vaccine groups, only a LOD at 40 cp/ml

(� 1:6log10 cp/ml) is involved in LIGHT trial, leading to 27.9% and 29.8% of observations in the respective

groups. In addition to left-censoring, those data are impacted by drop-outs. In LIGHT trial, ART resumption was

required in case of serious AIDS or non-AIDS adverse events, when two consecutive of CD4þ T cells counted

below 350 cells/mm3 within at least a two weeks’ time interval as well as for specific patient or physician willing-

ness. Approximately 20% of patients were concerned by these rules and resumed ART before the end of the

predefined 12weeks of ATI (see Figure 4(d)) being considered as drop-outs. In Vac-IL2 trial, 63% and 84% of

drop-outs occurred in vaccine and control group respectively, as the result of HIV RNA load exceeding 50,000 cp/

ml at four or sixweeks post-ATI or exceeding 10,000 cp/ml after eight weeks of ART interruption.
We applied the proposed approach discussed in the manuscript using the MEM described by equation (9)

where the number and the position of internal knots for both population and individual levels are optimized on

data using the R-package freeknotspline and AIC criteria. Also, the structure of the covariance matrix of random

effects being unknown, we estimated this matrix as unstructured instead of diagonal. Moreover, we verified the

applicability of our method on these real data by checking the normality of the distribution of the residuals

provided by the MEM as well as the homoscedasticity of its error model for both trials (see Online Appendix E).

We compared the results obtained by our approach, where the difference of nAUC between the two groups of

Figure 4. Exploratory plots and table for the control and vaccine groups from the Vac-IL2 and LIGHT HIV therapeutic vaccine trials.
Observations are subject to LODs of 40 cp/ml or 20 and 50 cp/ml for LIGHT and Vac-IL2 trial, respectively. LOD: limit of detection.
(a) Outcome trajectories for the control and vaccine groups of the Vac-IL2 HIV therapeutic vaccine trial, with two LOD ¼ log10ð50Þ
and log10ð20Þ cp/ml. (b) Outcome trajectories for the control and vaccine groups of the LIGHT HIV therapeutic vaccine trial, with
LOD ¼ log10ð40Þ cp/ml. (c) Mean number by patient and global percentage of observations below the LOD. (d) Percentage of missing
data over time. Note: In (a) and (b), thick lines describe mean dynamics and thin lines individual ones, solid lines represent control
group and dashed lines represent vaccine group. In (d), black lines with circles describe data from LIGHT trial, grey lines with crosses
describe data from Vac-IL2 trial, solid lines represent control groups and dashed lines represent vaccine groups.
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treatment is calculated with fixed parameter estimates, with the traditional ones where the nAUC is calculated
using the trapezoidal method for every individual and compared at group level with a two-sample t-test. Similarly
to the study of simulated data, estimates of individual nAUCs are computed using either log-transformed raw
data without any transformation, LOCF or mean imputation ad hoc approaches. In addition, we applied the non-
parametric approach NP nAUC briefly defined in section 4, Simulation study. The results are gathered in Table 4.
In vac-IL2, the proposed approach concluded a significant difference between the two groups of treatment with a
p-value of 0.031. Similar result is obtained with raw data with p-value slightly lower than 0.05. However, both
LOCF, mean imputation ad hoc methods and non-parametric method are unable to reject the null hypothesis. All
the tests lead to the same conclusion of no difference between groups in the LIGHT study. Considering the mean
trajectories of the control and vaccine groups displayed in Figure 4(a) and (b), all the results obtained with our
new approach are consistent with expected conclusions.

6 Discussion

In this paper, we proposed a splines-MEM based approach to estimate and compare the normalized area under
the longitudinal outcome curve when observations are subject to left-censoring, induced by an LOD, and MAR
monotonic missing data, due to drop-out. We demonstrated in a simulation study that incomplete data leads to
biased estimates of nAUC resulting in invalid inferences regarding the difference in nAUC between groups with
individual methods even when using simple ad hoc missing data correction, such as LOCF and mean imputation.
Compared to the latter, we illustrated the superiority of our approach in term of type-I error and power. In
addition, although the non-parametric approach developed by Vardi et al.25 provided as robust statistical prop-
erties as our proposed method while the percentages of left-censored data remained lower than 50%, correspond-
ing to a threshold of ART resumption higher than 100,000 copies/ml, the lack of information induced by higher
percentages of drop out resulted in weaker results under certain conditions of simulation and more biased
estimations of the difference of nAUC. We also highlighted that when the amount of data with drop-out is as
high as 80% such as in a situation when ART are resumed if HIV RNA viral load exceeds 10,000 copies/mL in
ATI trial, only the parametric approach appeared efficient to compare nAUC between groups. An application of
two ATI trials for HIV illustrates the superiority of our method on real data.

Limitations of the proposed method include some assumptions induced by the use of MEM such as the
normality and the homoscedasticity. However, we demonstrated that on clinical data these assumptions are
realistic. As briefly noticed in section 3 (Method), two other versions of the proposed method are presented in
Online Appendix replacing the estimation of DnAUC through the most commonly used trapezoid method by its
estimation with either Lagrange or Spline interpolation methods. No significant differences of robustness have
been observed in the application of those three methods on our well defined and tightened simulated trial designs.
However, Lagrange and Splines methods could present more robust results in case of sparse designs. Also, in our
simulations, we assumed a balanced longitudinal design with equal number of measurements and constant time
points for every subject. Although clinical trials are commonly designed with the same monitoring for all partic-
ipants, in reality the observed follow-up may deviate from the expected one. Moreover, some clinical trials could
be designed to compare different monitoring designs among group in addition to treatment efficacy. As defined,
the proposed method, being based on a discrete method of AUC calculation, should be biased by unbalanced
times of measurements among groups with varying number of time points as well as different and irregular time
steps between groups. As mentioned by Chandrasekhar et al.,18 the consideration of time as continuous variable

Table 4. Summary of results from both Vac-IL2 and LIGHT studies.

Methods

Estimate (SE) 95% CI p-value Estimate (SE) 95% CI p-value

Vac-IL2 trial LIGHT trial

Data �0.346 (0.170) [�0.680; �0.013] 0.046 �0.030 (0.175) [�0.312; 0.372] 0.864

LOCF �0.382 (0.198) [�0.770; 0.007] 0.060 �0.018 (0.186) [�0.382; 0.346] 0.924

Mean Imp. �0.345 (0.312) [�0.957; 0.266] 0.276 0.217 (0.245) [�0.263; 0.697] 0.959

NP nAUC �0.349 (0.205) [�0.751; 0.053] 0.089 0.042 (0.178) [�0.306; 0.390] 0.813

Adap. MEM �0.459 (0.213) [�0.877; �0.041] 0.031 0.095 (0.216) [�0.329; 0.519] 0.660

SE: standard error; CI: confidence interval; NP: non parametric; Individual ad hoc methods (Indiv. nAUC): 1. Data: raw data, 2. LOCF: last observation

carried forward, 3.Mean Imp.: mean imputation.
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in the AUC calculation could be a solution to handle this problem. To this end, we could either refine the time

grid to mimic continuous time in the AUC calculation step, or use more complex AUC approximation methods

such as Gaussian quadrature methods. The choice of Gaussian quadrature methods requires thus the use of a

resampling procedure, such as bootstrapping to estimate the standard error. In clinical trials, the sample size

calculation, resulting in the determination of the number of participants in each arm needed to detect a clinically

relevant treatment effect, is one of the major steps in designing the study. The proposed statistics being defined as

classical Z-statistics, typical formulas of sample size calculation can be derived from it. As defined by Hazra

et al.,47 the general formula for two-sided test can be given by n ¼ ðZ1�a=2 þ Z1�bÞ2 � r2=d2 where a represents the
accepted type-I error, b the type-II error, r the standard deviation of the outcome being studied and d the size

effect defined as the targeted DnAUC=2 in our case. Adjusted formulas can also be derived from this latter to

account for unequal sized groups or unequal variance of outcomes using pooled variances. Simulations can be

found in Online Appendix (see Figure F.1 in Online Appendix F) and showed good concordance between the-

oretical and practical power when there is no missing data. When missing data arise due to left censoring (LOD)

or informative drop out, one need to take it into account in the sample size calculation.
The simulation study has been led under model correct specification assumption, i.e. the model used to analyse

the data corresponds to the true data generation process. We further relaxed this assumption by using adaptive

splines model for which some parameters, such as the location and number of knots for splines are supposed

unknown.
Various extensions of this work could be guided to address the problem when there are a high proportion of

drop-outs. The incorporation of prior information could be done through several ways. The study of more

constrained splines through the addition of penalty on spline coefficients (P-splines)48 or monotony and boundary

conditions49 (natural splines) is an option. In the same perspective, future research aims to extend this method to

the use of mechanistic models.50 In addition to introducing biological interpretation of the parameters, these

models could incorporate more easily additional information such as asymptotic behaviors with steady states.
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