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Abstract

This paper aims to propose an explicit formulation of the macroscopic strength criterion for
porous media with spherical voids. The matrix is assumed rigid and perfectly plastic with yield
surface described by the three-parameter strength criterion, which is Lode angle and pressure
dependent and capable of accounting for distinct values of the uniaxial tensile strength, uniaxial
compressive strength (UCS) and equal biaxial compressive strength (eBCS). An exact upper
bound of the macroscopic strength is derived for porous media subjected to purely hydrostatic
loading. Besides, an estimate of the macroscopic strength profile of porous media under axisym-
metric loading is obtained in parametric form. Moreover, a heuristic strength criterion in explicit
form is further developed by examining limit cases of the parametric strength criterion. The
developed strength criteria are assessed by finite-element based numerical solutions. Compared
with the parametric strength criterion which involves cumbersome functions, the heuristic one
is convenient for practical applications. For specific values of the matrix’s strength surface, the
proposed heuristic strength criterion can recover the well-known Gurson criterion. The present
work also addresses the effect of the ratio of matrix’s eBCS to UCS on the macroscopic strength
of porous media. For matrix with distinct values of eBCS and UCS, neglecting the difference be-
tween eBCS and UCS would result in an underestimation of the macroscopic strength, especially
when the pressure is large.

Keywords: Porous materials; Unified strength criterion; Homogenization; Gurson criterion

1. Introduction

Strength prediction of porous media has been one of the research focuses recently. A num-
ber of theoretical investigations have been conducted to determine the macroscopic strength
of porous materials, for various local yield criteria. Gurson (1977) considered hollow sphere
and cylinder geometries to represent porous materials with von Mises matrix, and derived the
effective yield function using kinematic limit analysis. Following this pioneering work, Cazacu
and Revil-Baudard (2017) proposed an analytic yield criterion for porous solids with pressure
insensitive matrix described by a plastic potential depending on the second and third invari-
ants, and compared it with the macroscopic criteria for porous Mises and Tresca materials.
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The study of macroscopic strength of porous material with pressure-sensitive matrix obeying
Drucker-Prager (DP) criterion was conducted by Jeong and Pan (1995) and later extended by
Guo et al. (2008). Recently, Shen et al. (2020) reviewed the macroscopic strength criteria for
porous materials with DP matrix and evaluated them through numerical solutions. Based on an
improvement of the strength predictions for purely shear loading, Shen et al. (2020) proposed
one heuristic strength criterion, which could give better predictions of the macroscopic strength.
For materials with local yield function depending on the third invariant of stress, one can refer
to recent investigations in the context of Tresca matrix (Cazacu et al., 2014), Mohr-Coulomb
(MC) matrix (Anoukou et al., 2016) and matrix described by the strength criterion proposed
by Bigoni and Piccolroaz (Brach et al., 2018). As an alternative method, statical limit analysis
has been adopted to formulate the macroscopic strength criterion for porous materials with von
Mises matrix (Cheng et al., 2014; Shen et al., 2015) and Hill orthotropic matrix (El Ghezal et al.,
2017). Effect of the void shape on the macroscopic strength of porous media was discussed in
Shen et al. (2017) for DP matrix and Monchiet et al. (2008) for Hill-type matrix.

An accurate description of the macroscopic strength of a particular porous material is con-
tingent on the accuracy of the local plasticity model (Revil-Baudard and Cazacu, 2014; Cazacu
and Revil-Baudard, 2017). Strength of geomaterials, such as rocks and concrete are pressure
and Lode angle dependent (Chemenda and Mas, 2016). Neither the von Mises criterion nor the
DP criterion can account for the effect of the third invariant of stress. In contrast, the Tresca
model depends on the third invariant, however it is pressure-independent and hence does not
apply to pressure-dependent materials. Although the MC criterion has been widely adopted
in the mechanics community to describe the shear dominated failure mechanism (Jaeger et al.,
2009; Labuz and Zang, 2012), it neglects the effect of the middle principal stress and fails for
materials with distinct values of uniaxial compressive strength (UCS) and equal biaxial com-
pressive strength (eBCS). Besides, the established strength criterion for porous materials with
MC matrix under axisymmetric loading in Anoukou et al. (2016) is in parametric form, and the
parametric functions are cumbersome. In fact, in the present work we also developed an explicit
formulation of the macroscopic strength criterion for porous MC materials under axisymmetric
loading, which is more applicable for practical applications.

Recent studies have revealed that the eBCS of geomaterials such as concrete and rocks is
larger than their UCS (Kupfer et al., 1969; Brown, 1974; Amadei and Robison, 1986; Hussein
and Marzouk, 2000). Lee et al. (2004) experimentally investigated the failure of plain concrete
and showed the eBCS was about 17% higher than the UCS. Sirijaroonchai et al. (2010) per-
formed equal biaxial compression tests on high-performance fiber-reinforced cement material
and concluded that the eBCS was about 1.5 and 1.6 times the UCS respectively for hooked and
spectra fiber-reinforced cement material. Guo (2014) reviewed the main experimental results
for the eBCS of concrete and pointed out the ratio of eBCS to UCS of concrete lay in 1.15-1.35.
Experimental study of the eBCS and UCS of concrete at early ages has been conducted by
Dong et al. (2016), and experimental results revealed the ratio of eBCS to UCS approximately
decreased from 3.5 to 1.2 within the first 7 d and remained at a value of 1.15 up to the age
of 28 d. Yun et al. (2010) observed that the difference between the BCS and UCS of granite
increased dramatically with the confining pressure up to some threshold value, beyond which the
BCS dropped, but still remained higher than the UCS. In that study, the eBCS of granite was
about 1.13 times the UCS on average. Although the MC criterion can account for the strength
difference under uniaxial tensile and compressive loading, it cannot account for different eBCS
and UCS values. In this respect, the established macroscopic yield functions in the literature
are not expected to be accurate for such porous materials.

Lately, the three-parameter strength criterion has been considered as an appropriate candi-
date to describe the yield surface of geomaterials (Yu, 2017, 2018). Through appropriate choice
of parameter values in the expression of the yield function, the three-parameter strength criterion
can retrieve classical strength criteria, such as the MC and Tresca criteria. It can also linearly
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approximate the well-known Matsuoka-Nakai criterion (Matsuoka and Nakai, 1974) and Willam-
Warnke criterion (Willam, 1975). Thanks to its ability to account for distinct eBCS and UCS,
the three-parameter strength criterion is promising in view of describing the behavior of a wide
class of materials. Motivated by these considerations, here we attempt to derive macroscopic
strength functions for porous media whose local behavior obey the three-parameter strength
criterion.

The paper is organized as follows. In Section 2, the kinematic limit analysis-based homog-
enization is briefly reviewed. In Section 3, the plasticity model of the matrix is presented and
the plastic dissipation function for the three-parameter strength criterion is derived. Section 4
delivers the exact solutions of limit stresses and velocity fields in a hollow sphere subjected to
isotropic loading with plastic behavior obeying the three-parameter strength criterion, which
is used to construct the trial velocity field in the kinematic limit analysis. An exact solution
of the upper bound of the macroscopic strength of the hollow sphere under purely hydrostatic
loading is also given. In Section 5, an estimate of the macroscopic strength for the axisymmetric
loading is proposed in parametric form, followed by an improvement of the established criterion
to allow the exact upper bound solution to be fully retrieved in the case of purely hydrostatic
loading. Numerical assessment of the parametric strength criteria is performed in Section 6. For
practical applications, we develop a heuristic strength criterion in explicit form for porous media
subjected to axisymmetric loading in Section 7. The concluding remarks are given in Section 8.

2. Theoretical background

We consider a porous material occupying a domain Ω consisting of traction-free pores, ω0,
embedded in a rigid, perfectly-plastic matrix ω1. The strength of matrix is specified by a yield
function F(σ) defining a convex set C of plastically admissible stresses:

C = {σ | F(σ) ≤ 0} (1)

We assume that the local flow behavior complies with Hill’s maximum dissipation princi-
ple (Hill, 1950), which states that, among all plastically admissible stresses, the actual stress
corresponding to a given strain rate d maximizes the plastic dissipation:

π(d) = max
σ∗∈C

{σ∗ : d} (2)

This equation identifies π(d) as the support function of the convex set C. The maximum
dissipation principle implies normality (associativity) of the plastic flow rule:

d = γ̇
∂F
∂σ

(3)

where γ̇ is the plastic multiplier, such that γ̇ ≥ 0 and γ̇F = 0 (Kuhn-Tucker conditions). When
the yield surface is not regular, the condition generalises as d ∈ NC(σ), where NC is the cone
of outward normals to C at σ (Maugin, 1992).

The domain Ω is subjected to prescribed velocity boundary conditions on its external bound-
ary ∂Ω corresponding to a given macroscopic strain rate D:

v = D · x, ∀x ∈ ∂Ω (4)

Here we assume that the pores do not intersect the domain boundary. The affine velocity
boundary conditions ensure that the macroscopic strain rate equals the average microscopic
strain rate:

D = ⟨d⟩ = 1

2V

∫
∂Ω

(v ⊗ n+ n⊗ v) dS (5)
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where n is the outward unit normal to the external boundary ∂Ω . The above expression based
on surface integral was adopted because the strain rate is undefined within the pore volume. For
non-porous material, it is equivalent to the classical volume average strain rate. On the other
hand, the macroscopic stress Σ is defined as the volume average of the microscopic stress field:

Σ = ⟨σ⟩ = 1

V

∫
Ω
σ dV (6)

where the stress vanishes within the pores.
We introduce the set K(D) of kinematically and plastically admissible velocity fields:

K(D) =

{
v | v = D · x on ∂Ω and d plastically admissible with d =

1

2
(∇v +∇Tv)

}
(7)

Kinematically admissible velocity fields are continuous within the matrix and satisfy the
affine boundary conditions (4). Plastically admissible strain rates are compatible with the
plastic flow rule (3). Plastically admissible conditions corresponding to the three-parameter
strength criterion will be given in the next section. The set of statically admissible stress fields
is given by

S(σ) =
{
σ | σ = σT, ∇ · σ = 0 in ω1, σ · n = 0 on ∂ω0

}
(8)

where ∂ω0 represents the pore surface. The consistency between macroscopic and microscopic
work rates is expressed by the Hill-Mandel lemma (Hill, 1967):

Σ∗ : D = ⟨σ∗ : d⟩ (9)

which holds for any admissible couple (d, σ∗), where d and σ∗ are not necessarily related by
the flow rule.

Let us introduce the macroscopic dissipation functionΠ(D) = ⟨π(d)⟩. From Eq. (2) together
with Hill’s lemma, it follows that (Suquet, 1985):

Π(D) = sup
Σ∗∈C̄

{Σ∗ : D} (10)

where C̄ is the convex set of plastically admissible macroscopic stresses:

C̄ = {Σ | Σ = ⟨σ⟩,σ ∈ S and σ ∈ C} (11)

By definition, the macroscopic dissipation Π(D) is the support function of C̄. It follows that
the macroscopic flow rule also complies with a normality principle, and that the macroscopic
strength can be obtained from the macroscopic dissipation as

Σ =
∂Π

∂D
(D) (12)

In other words, the set C̄ is defined as C̄ = {Σ ≤ Σc}.
For a given macroscopic strain rate D, the macroscopic dissipation is the solution to the

following variational problem (Lubliner, 2008):

Π(D) = inf
v∗∈K(D)

⟨π(d∗)⟩ (13)

The optimal velocity field v is the solution of the mechanical boundary value problem, and
the corresponding stress field satisfies the local flow rule (Eq. (3)) and the mechanical equilibrium
condition ∇ · σ = 0.

4



In practice, an exact analytical solution to the problem (Eq. (13)) is often beyond reach.
Upper bounds on the dissipation function can then be obtained by considering a trial field
v̂ ∈ K(D):

Π(D) ≤ Π̂(D) = ⟨π(d̂)⟩ (14)

where d̂ = (∇v̂ +∇Tv̂)/2. An estimate of the macroscopic strength can then be calculated as

Σ̂ =
∂Π̂

∂D
(D) (15)

We follow the approach proposed by Guo et al. (2008) and Anoukou et al. (2016), and
consider a class of kinematically admissible trial fields defined by a limited number of adjustable
parameter. Such trial fields thus belong to a subset of the set of kinematically admissible fields,
ṽ ∈ K̃(D) ⊂ K(D). Optimal values of the parameters (leading to the lowest upper bound) are
then obtained by minimizing Π̂:

Π̂(D) = inf
v̂∈K̂(D)

⟨π(d̂)⟩ (16)

3. The three-parameter strength criterion

3.1. Yield function
Shear stress-based strength criteria have been extensively developed to describe failure dom-

inated by shear-slip mechanisms. For any stress state, there exist three principal shear stresses,
among which only two are independent. Different from the classical Tresca and Von Mises cri-
teria, which respectively take into account the maximum shear stress and all the three principal
shear stresses, Yu (1983) proposed a twin-shear yield criterion that assumes that yielding starts
when the sum of the two larger principal shear stresses reaches a critical value. Later, consid-
ering the different effects of the two larger principal shear stresses on the yielding of materials,
Yu and He (1992) proposed a unified yield criterion through a simple and unified mathematical
formula, which has great flexibility for reproducing a series of strength-domain shapes. The
unified yield criterion can fully retrieve the Tresca criterion and linearly approximate the Von
Mises criterion. To account for the effect of normal stresses on the yielding, Yu et al. (1999)
further developed the unified strength theory, which is capable of retrieving the unified yield
criterion and MC criterion. A complete review of the development of Yu’s strength theory can
be found in Yu (2018). As a generalization of the unified strength criterion, the three-parameter
strength criterion is superior in characterizing distinct values of uniaxial tensile strength (UTS),
UCS and eBCS (Yu, 2017).

b = 0

b = 1
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�� 3

� � �
2 1 3
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2
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�
�
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�

�
�
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Fig. 1. Various yield surfaces of the three-parameter strength criterion corresponding to different values of the
parameter b. The yield surface is represented in the deviatoric plane (here the principal deviatoric stresses σ′

1,
σ′

2 and σ′
3 are not ordered).
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The three-parameter strength criterion can be expressed in terms of principal stresses as
follows (Yu, 2017):

F(σ) =
1

2
(1 + b)(1 +M)σ1 −

1

2
(1−M)(bσ2 + σ3) +Nσm −Q (σ2 ≤

1 +M

2
σ1 +

1−M

2
σ3)

(17)

F(σ) =
1

2
(1 +M)(σ1 + bσ2)−

1

2
(1 + b)(1−M)σ3 +Nσm −Q (σ2 ≥

1 +M

2
σ1 +

1−M

2
σ3)

(18)

where the three parameters M , N and Q can be identified from classical experimental tests, as
explained below. The additional variable b ∈ [0, 1] represents the relative effect of the intermedi-
ate principal stress σ2. By varying b from 0 to 1, a series of yield surfaces (i.e. distinct material
models) can be obtained (see Fig. 1).

The above yield functions can also be written in terms of stress invariants (Iσ1 , Jσ2 ) and Lode
angle (θσ):

F(σ) =
(1 + b)M +N

3
Iσ1 +

(1 + b)(3 +M)

2
√
3

√
Jσ2 cos θσ +

(1− b)(1−M)

2

√
Jσ2 sin θσ −Q (0 ≤ θσ ≤ θσc )

(19)

F(σ) =
(1 + b)M +N

3
Iσ1 +

3− 2bM +M

2
√
3

√
Jσ2 cos θσ +

1 + 2b−M

2

√
Jσ2 sin θσ −Q (θσc ≤ θσ ≤ π

3
)

(20)

where cos 3θσ = 3
√
3Jσ3 /(2J

σ
2
3/2), in which Jσ2 = tr(σ′2)/2, Jσ3 = tr(σ′3)/3, σ′ = σ − Iσ1 1/3

and Iσ1 = tr(σ). The angle θσc = arctan(
√
3(1 +M)/(3 −M)) corresponds to the case where

σ2 = (1+M)σ1/2+(1−M)σ3/2, for which the values of the yield functions (Eqs. (17) and (18)
) coincide. Eqs. (19) and (20) denote the dependence of the three-parameter criterion on the
pressure and Lode angle. Since the present study aims at the macroscopic strength criterion for
porous media subjected to axisymmetric loading, the dependence of the macroscopic strength
on the Lode angle is indeed through the sign of JΣ3 .

By evaluating the yield condition corresponding to the yield functions (Eqs. (17) and (18))
in the specific cases of uniaxial tension, uniaxial compression and equal biaxial compression, the
three parameters M , N and Q can be expressed in terms of the UTS (σt), UCS (σc) and eBCS
(σcc). Through introducing α = σt/σc and β = σcc/σc, the following relations are obtained:

M = 1 +
2α(1− 2β)

β(1 + α)
, N =

3α(1 + b)(β − 1)

β(1 + α)
, Q =

1 + b

1 + α
σt (21)

Experimental values for media usually give α ≤ 1 and β ≥ 1. It can be verified that these
assumptions on the strength ratios yield 0 ≤M ≤ 1, N ≥ 0 and Q > 0. If the material exhibits
the same strength under uniaxial compression and equal biaxial compression (i.e. β = 1), we
have N = 0 by Eq. (21) and the three-parameter strength criterion reduces to the unified
strength theory (Yu et al., 1999).

3.2. Maximum plastic dissipation
The maximum plastic dissipation function is essential for the derivation of the homogenized

strength criterion for porous materials. The maximum dissipation functions for classical yield
criteria, such as Tresca, Mises, DP and MC have been developed. However, to the best of our
knowledge, the maximum plastic dissipation for the three-parameter yield criterion has not yet
been proposed.

The maximum dissipation function is given by π(d) = σ : d, where σ satisfies F(σ) = 0 and
is related to d by the flow rule. For all three regimes and arbitrary value of b ∈ [0, 1], it can be
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calculated that:

π(d) =

{
Q

(1+b)M+N tr(d) (d is plastically admissible)
+∞ (else)

(22)

4. Macroscopic strength criterion under purely hydrostatic loading

In this section, we will establish the macroscopic strength criterion for porous media sub-
jected to purely hydrostatic loading. Following Gurson (1977), we consider the simple hollow
sphere model as an idealization of the porous structure, see Fig. 2 in which ri denotes the inner
radius and re is the external radius. The porosity is given by f = r3i /r

3
e . The inner surface is

traction free.

ey

ez

ex

    Matrix
  ( ri ≤ r ≤ re )

eϕ

eϕ

eθ

eρ

er

    Spherical pore
     ( r ≤ ri )

ri 

re v D xx� �� �

Fig. 2. The hollow sphere model.

4.1. Construction of the trial velocity field for a hollow sphere under isotropic loading
To construct the trial velocities used in the kinematic limit analysis, the limit velocity field

in the hollow sphere subjected to isotropic loading is firstly carefully analyzed, followed by the
development of the macroscopic strength criterion for porous media under purely hydrostatic
loading. Since the plastic flow rule depends on the stress states (see Eq. (3)), the static analysis
of the stress field in the hollow sphere subjected to isotropic loading is presented before the
kinematic analysis of the velocity field.

4.1.1. Static analysis
Due to the spherical symmetry of the geometry and loading conditions, the only non-zero

components of stress in the spherical coordinate system represented in Fig. 2 are σr(r), σθ(r)
and σφ(r). In the absence of body force, static equilibrium requires that:

dσr
dr

+ 2
σr − σθ

r
= 0 (23)

In general, we may have either σr > σθ = σφ or σθ = σφ > σr, depending on the sign of the
applied pressure on the external boundary. In any case, it is possible to express the relationship
between the limit stress components in the following form:

σr − σθ = Aσr −B (24)

where the constants A and B can be identified from the corresponding yield function. Inserting
Eq. (24) into the equilibrium equation in Eq. (23) yields an ordinary differential equation for
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σr(r). Integrating along the radius and using the inner free boundary condition, σr(ri) = 0, we
successively obtain

σr(r) =
B

A

[
1−

(ri
r

)2A]
(25)

σθ(r) = σφ(r) =
B

A

[
1 + (A− 1)

(ri
r

)2A]
(26)

(1) Case σr > σθ = σφ.
In this case, the yield function (Eq. (17)) applies, and the two constants A and B in Eq.

(24) are identified as

A =
2[(1 + b)M +N ]

(1 + b)(ι− 1)
, B =

2Q

(1 + b)(ι− 1)
(27)

where ι = M + 4N/[3(1 + b)] = 1 − 2α/[β(1 + α)] < 1. It follows that A < 0 and B < 0.
According to Eqs. (25) and (26), it follows that σθ = σφ ≤ σr < 0. Thus, this case corresponds
to a hollow sphere under isotropic compressive loading.

(2) Case σθ = σφ > σr.
This case corresponds to the yield function (Eq. (18)), and the two constants A and B are

calculated as

A =
2[(1 + b)M +N ]

(1 + b)(ι+ 1)
, B =

2Q

(1 + b)(ι+ 1)
(28)

Obviously, A > 0 and B > 0. With reference to Eqs. (25) and (26), we can then show that
σθ = σφ ≥ σr > 0. This case thus corresponds to a hollow sphere under isotropic tensile loading.

Inserting Eq. (27) or (28) into Eqs. (25) and (26), the limit stresses can be expressed as

σr(r) =
Q

(1 + b)M +N

[
1−

(ri
r

)2Aϵ
]

(29)

σθ(r) = σφ(r) =
Q

(1 + b)M +N

[
1 + (Aϵ − 1)

(ri
r

)2Aϵ
]

(30)

where Aϵ = 2[(1 + b)M + N ]/[(1 + b)(ι + ϵ)], in which ϵ = 1 for isotropic tensile loading and
ϵ = −1 for isotropic compressive loading. In particular, the limit pressure p applied on the
external surface of the sphere is easily obtained as p = −σr(re) (p is assumed positive for
compressive loading).

4.1.2. Kinematic analysis
Due to the spherical symmetry of the geometry and loading conditions, the velocity field is

purely radial, i.e. v = vrer, and the non-zero strain rate components are given by

dr =
dvr
dr

, dθ = dφ =
vr
r

(31)

It can be verified from the definition of the Lode angle that the case σr > σθ = σφ corresponds
to θσ = 0 and the case σθ = σφ > σr corresponds to θσ = π/3. These stresses are located on
edges of the yield surface of three-parameter strength criterion except for b = 1. The plastic
flow at such stresses should therefore comply with the generalized flow rule:

d = γ̇+
∂F+

∂σ
+ γ̇−

∂F−

∂σ
(32)

where F+ and F− are the yield functions of the two intersecting faces, and γ+ and γ− are the
corresponding non-negative plastic multipliers.
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(1) Case σr > σθ = σφ.
Setting σ1 = σr and σ2 = σθ = σφ = σ3, straightforward evaluation of the flow rule on the

edge θσ = 0 gives

dr =

[
1

2
(1 + b)(1 +M) +

N

3

] (
γ̇+ + γ̇−

)
(33)

dθ =

[
−1

2
b(1−M) +

N

3

]
γ̇+ +

[
−1

2
(1−M) +

N

3

]
γ̇− (34)

dφ =

[
−1

2
(1−M) +

N

3

]
γ̇+ +

[
−1

2
b(1−M) +

N

3

]
γ̇− (35)

According to Eq. (31), the strain components in Eqs. (34) and (35) are equal, which results
in γ̇+ = γ̇− = γ̇. Thus, Eqs. (33)-(35) can be rewritten as

dr =

[
(1 + b)(1 +M) +

2

3
N

]
γ̇ (36)

dθ = dφ =

[
−1

2
(1 + b)(1−M) +

2

3
N

]
γ̇ (37)

Substituting Eqs. (36) and (37) into Eq. (31), we obtain the following ODE for the plastic
multiplier:

dγ̇

γ̇
=

3 +M

ι− 1

dr

r
(38)

Integrating along the radius then leads to

γ̇ = γ̇i

(
r

ri

)− 3+M
1−ι

(39)

where γ̇i is the a-priori unknown value of the plastic multiplier on the pore surface, and γ̇i =
γ̇(r = ri).

Inserting Eq. (39) into Eq. (37) and using the fact that vr = rdθ, the radial velocity is
obtained:

vr =
riγ̇i
2

(1 + b)(ι− 1)

(
r

ri

)−M−2−ι
1−ι

(40)

For prescribed velocity boundary condition on the external surface, vr(re) = ve, and the
unknown plastic multiplier on the pore surface γ̇i can be identified. One also readily verifies
from the latter equation that the surface velocity ve is negative (remember that ι < 1). In other
words, the case σr > σθ = σφ corresponds to isotropic compression, consistently with the static
analysis.

(2) Case σθ = σφ > σr.
Setting σ1 = σθ = σφ = σ2 and σ3 = σr, evaluation of the flow rule on the θσ = π/3 gives

dr =

[
−1

2
(1 + b)(1−M) +

N

3

] (
γ̇+ + γ̇−

)
(41)

dθ =

[
1

2
b(1 +M) +

N

3

]
γ̇+ +

[
1

2
(1 +M) +

N

3

]
γ̇− (42)

dφ =

[
1

2
(1 +M) +

N

3

]
γ̇+ +

[
1

2
b(1 +M) +

N

3

]
γ̇− (43)
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From the equality dθ = dφ, it also follows that γ̇+ = γ̇− = γ̇. The integration procedure
to obtain the plastic multiplier and the radial velocity is identical to the previous case, and
therefore we only provide the final result:

vr =
riγ̇i
2

(1 + b)(ι+ 1)

(
r

ri

)M−2+ι
1+ι

(44)

Evaluation of the above expression for r = re allows then to express γ̇i in terms of the surface
velocity. In this case, the velocity ve = v(re) is positive, and this case corresponds to isotropic
tension. Eqs. (40) and (44) can be rewritten in a unified way:

v(r) = ve

(
r

re

)M−2ϵ+ι
ϵ+ι

(45)

where ϵ = 1 if ve > 0 (isotropic tensile loading) and ϵ = −1 if ve < 0 (isotropic compressive
loading).

4.2. Formulation of the macroscopic strength criterion under purely hydrostatic loading
The macroscopic strength criterion for porous media under purely hydrostatic loading is

established in the following. In the spherical coordinate framework (r, θ, φ), the macroscopic
strain rate corresponding to purely hydrostatic loading can be expressed as

D = Dm (er ⊗ er + eθ ⊗ eθ + eφ ⊗ eφ) (46)

For purely hydrostatic loading, the plastically admissible velocity in the matrix is exactly
the limit velocity under isotropic loading (i.e. Eq. (45)). With reference to Eq. (4), the trial
velocity can be expressed in terms of the mean macroscopic strain rate as

v̂ = wrer, w = Dm

(re
r

)3ζ
(47)

where ζ = (3− ϵM)/[3(1 + ϵι)].
According to Eq. (31), the non-zero strain rate components corresponding to the velocity in

Eq. (47) can be computed as

dr = (1− 3ζ)w, dθ = dφ = w (48)

The trace of such strain rate is expressed as

tr(d) = dr + dθ + dφ = 3 (1− ζ)w (49)

Inserting Eq. (49) into Eq. (22) yields

π(d) =
3Q(1− ζ)

(1 + b)M +N
w (50)

The macroscopic dissipation function under purely hydrostatic loading can be calculated as

Π(D) = ⟨π(d)⟩ =
3Q
(
1− f1−ζ

)
(1 + b)M +N

Dm (51)

According to Eq. (12), the macroscopic strength under purely hydrostatic loading is

Σm =
Q
(
1− f1−ζ

)
(1 + b)M +N

(52)
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5. Macroscopic strength criterion under axisymmetric loading

Since the present work concentrates on the macroscopic strength criterion for porous ma-
terials which are subjected to axisymmetric loading, we focus on the case where b = 0, which
corresponds to the innermost yield locus among all possible values for b (Fig. 1). In principle,
the case 0 < b ≤ 1 could be addressed following a similar procedure, at the expense of heavier
calculations. As mentioned in Section 4, the hollow sphere model is adopted.

The macroscopic strain rate is chosen in the following form:

D = Dρ (eρ ⊗ eρ + eφ ⊗ eφ) +Dzez ⊗ ez (53)

where eρ, eφ and ez are the unit vectors of the local basis. The corresponding mean and
equivalent macroscopic strain rates are

Dm =
1

3
tr(D) =

2Dρ +Dz

3
, Deq =

√
2

3
D′ : D′ =

2

3
|Dρ −Dz| (54)

In the following, we propose a set of trial velocity fields defined by one adjustable parameter
and derive the corresponding conditions of plastic admissibility. Next, we calculate the optimal
value of the adjustable parameter by addressing the minimum problem (Eq. (16)) and obtain
the corresponding limit stress by differentiation. To this end, note the following equalities:

Σ̂m =
1

3

∂Π̂(D)

∂Dm
, Σ̂eq =

∣∣∣∣∣∂Π̂(D)

∂Deq

∣∣∣∣∣ (55)

5.1. Trial velocity field under axisymmetric loading
Since the hollow sphere model is subjected to axisymmetric loading, the velocity field in the

matrix should be in the following form:

v = vρ(ρ, z)eρ + vz(ρ, z)ez (56)

Following Guo et al. (2008), Anoukou et al. (2016) and Brach et al. (2018), we consider trial
velocity fields as

v̂ = vhom + vhet (57)

The first term vhom is defined as

vhom = C1ρeρ + C2zez (58)

where C1 and C2 are two constants. The superscript "hom" refers to the fact that the strain
rate resulting from this velocity field is homogeneous. The second term on the right-hand side
of Eq. (57) is chosen of the same form as the exact velocity in the hollow sphere under isotropic
loading derived in the previous section, here expressed in the cylindrical coordinate system:

vhet = wρeρ + wzez (59)

where w = C0(re/r)
3ζ , ζ = (3− ϵM)/[3(1 + ϵι)], in which ϵ = 1 if C0 > 0 and ϵ = −1 if C0 < 0.

Also note that ζ < 1 if ϵ = 1 and ζ > 1 if ϵ = −1. The superscript "het" is introduced to
denote that the strain rate resulting from this velocity field is heterogeneous. We note the radial
coordinate is related to the polar coordinates by r =

√
ρ2 + z2 and sin θ = ρ/r, cos θ = z/r.

Note that the adjustable parameter C0 does not coincide with the surface velocity of the sphere
under axisymmetric loading.

Kinematically admissible conditions require the trial velocity field (Eq. (57)) to be compat-
ible with the affine boundary condition (Eq. (4)), which leads to

C1 = Dρ − C0, C2 = Dz − C0 (60)

Thus, among the three adjustable parameters C0, C1 and C2, only one of them is independent.
We consider C0 as the only independent parameter.
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5.2. Plastically admissible conditions
In the kinematic limit analysis, the local strain rate derived from the trial velocity field

should be plastically admissible, i.e. it should be compatible with the flow rule. Since the
yield surface is not smooth, plastically admissible conditions must be derived for three possible
regimes, depending on whether the stress lies on a face, edge or apex of the yield surface. In
the case where b = 0, the plastically admissible condition can be summarized as |d1| + |d2| +
|d3| ≤ (3 +N)dm/(M +N). In principle, the relation between the independent variable C0 and
the macroscopic strain rate parameters (Dm and Deq) should exactly comply with such local
plastically admissible condition to make the support function finite in the matrix. Due to the
complex relation between the principal strain rates and C0, Dm and Deq, it is not possible to
obtain a deterministic relation accounting for all the local conditions. Following the approach
adopted in Guo et al. (2008), Anoukou et al. (2016) and Brach et al. (2018), instead of satisfying
the plastically admissible conditions locally, the parameters are required to obey the plastically
admissible conditions in an average sense:

⟨dm⟩1 ≥ H, dm = Dm − C0 + w(1− ζ), H =
Deq

4ζ
ω

1
ζJ (ω) (61)

where ⟨dm⟩1 represents the volume average of the mean trial strain rate in the matrix domain
ω1 and can be calculated as ⟨dm⟩1 = Dm + (f − f1−ζ)C0/(1 − f), ω = 2ζ|C0|/Deq, J (ω) is
provided in Appendix A, and H is a function of Deq and C0.

5.3. Formulation of the parametric strength criterion under axisymmetric loading
Inserting Eq. (22) into Eq. (16), we can reformulate the minimum problem as follows:

Π̂(D) = inf
C0

{
3Q

M +N

[
(f − f1−ζ)C0 + (1− f)Dm

]}
(62)

which is subjected to the average plastically admissible constraint (Eq. (61)).
The constrained minimum problem is to be solved using the Lagrangian method combined

with the Karush-Kuhn-Tucker (KKT) condition, with the Lagrangian given by

L =
3Q

M +N

[
(f − f1−ζ)C0 + (1− f)Dm

]
+ λ (H− ⟨dm⟩1) (63)

where λ is the Lagrange multiplier.
The solution to the problem is given by λ > 0 and C0 which satisfy the following conditions:

∂L
∂λ

= H− ⟨dm⟩1 = 0 (64)

∂L
∂C0

=
3Q

M +N
(f − f1−ζ) + λ

(
∂H
C0

+ f1−ζ − f

)
= 0 (65)

Eq. (64) shows that plastic admissibility requires that the strict equality holds in Eq. (61).
Eq. (65) can be solved for λ, giving λ as a function of C0 and the macroscopic strain rate:

λ =
3Q(f1−ζ − f)

(N +M)
(
∂H
∂C0

+ f1−ζ − f
) , ∂H

∂C0
=
ϵ

2
ω1/ζ−1

[
1

ζ
(J + I0) + ωJ ′

]
(66)

where I0 is introduced to ensure the continuity of the derived macroscopic strength function
and given in Appendix A.

However, in general, it is not possible to solve Eq. (64) analytically and obtain C0 as an
explicit function of D. Therefore, analytical expression of the macroscopic dissipation function
in terms of the optimal value of the adjustable parameter C0 cannot be found, making calculation
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of the macroscopic stress by analytical differentiation impossible. Therefore, in the following,
an alternative (but equivalent) approach is pursued.

First, the variation of Eq. (62) is calculated as

δΠ̂(D) =
3Q

M +N

[
(f − f1−ζ)δC0 + (1− f)δDm

]
(67)

Besides, the variation of the plastic admissibility condition (Eq. (64)) yields

δC0 =
(1− f)δDm − ∂H

∂Deq
δDeq

∂H
∂C0

+ f1−ζ − f
(68)

where

∂H
∂Deq

=
1

4ζ
ω1/ζ

[
ζ − 1

ζ
(J + Ieq)− ωJ ′

]
in which Ieq = I0/(1− ζ) is introduced to ensure the continuity of the macroscopic strength.

Inserting Eq. (68) into Eq. (67), we obtain

δΠ̂(D) =
3Q

(M +N)
(
∂H
∂C0

+ f1−ζ − f
) [(1− f)

∂H
∂C0

δDm + (f1−ζ − f)
∂H
∂Deq

δDeq

]
(69)

From Eq. (69), the macroscopic mean and equivalent limit stresses can be identified:

Σ̂m =
1

3

∂Π̂(D)

∂Dm
=

Q(1− f) ∂H∂C0

(M +N)
(
∂H
∂C0

+ f1−ζ − f
) (70)

Σ̂eq =
∂Π̂(D)

∂Deq
=

3Q(f1−ζ − f) ∂H
∂Deq

(M +N)
(
∂H
∂C0

+ f1−ζ − f
) (71)

In these expressions, the value of the parameter C0 needs to be calculated numerically by
solving Eq. (64).

5.4. Improvement of the parametric strength criterion (Eqs. (70) and (71))
Due to the fact that the purely hydrostatic loading can be considered as a limiting case of

axisymmetric loading, the macroscopic strength of porous media subjected to purely hydrostatic
loading can be estimated by the parametric strength criterion (Eqs. (70) and (71)). Note that
we have given the exact solution of macroscropic hydrostatic strength (Eq. (52)) in Section 4.
The estimated strength predicted by the parametric strength criterion will be compared with
the exact solution in the following.

As the general state of axisymmetric loading goes to the limit state of macroscopic purely
hydrostatic loading, the trial velocity components vhet in Eq. (57) dominates the velocity field
in the matrix. Remember that ω = 2ζ|C0|/Deq and Deq = 2 |C1 − C2| /3. Thus, ω → +∞ for
purely hydrostatic loading, which is followed by

lim
ω→+∞

∂H
∂C0

=
4εζη

1− ζ
(1− f1−ζ), lim

ω→+∞

∂H
∂Deq

= 0, η =

{
η1 (ε = 1)

η2 (ε = −1)
(72)

where η1 = (M +N)/(3−M) and η2 = (M +N)/(3 + 2N +M).
Inserting Eq. (72) into the parametric strength criterion (Eqs. (70) and (71)) results in

Σ̂m =
4εζη(1− f)

(
1− f1−ζ

)
Q

[4εζη (1− f1−ζ) + (1− ζ)(f1−ζ − f)] (M +N)
, Σ̂eq = 0 (73)

13



which is the estimated macroscopic strength under purely hydrostatic loading obtained by the
parametric strength criterion. We note that the estimated macroscopic hydrostatic tensile
strength (MHTS) corresponds to ε = 1 and the estimated macroscopic hydrostatic compres-
sive strength (MHCS) corresponds to ε = −1.

The exact macroscopic hydrostatic strength (Eq. (52)) in the case where b = 0 can be
calculated as

Σm =
Q
(
1− f1−ζ

)
M +N

(74)
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Fig. 3. Comparison of the macroscopic strength estimated by the original parametric strength criterion (Eq.
(73)) with the exact upper bound (Eq. (74)) under purely hydrostatic loading at different values of α: (a) β = 1,
f = 0.2; and (b) β = 1.15, f = 0.2. Σc

m: MHCS; Σt
m: MHTS.

Further analysis shows that the hydrostatic strength predicted by Eq. (73) is not always
equal to the exact value calculated by Eq. (74). To illustrate it, we compare the estimated
hydrostatic strength with the exact solution in Fig. 3. As β = 1, the estimated hydrostatic
strength coincides with the exact value. However, as β = 1.15, the MHCS is underestimated by
Eq. (73), especially when the ratio α of matrix’s UTS to UCS is lower. Thus, the parametric
strength criterion cannot always recover the exact solution for purely hydrostatic compression,
which is due to the relaxed plastic admissibility condition (Eq. (61)) used for the derivation
of the parametric strength criterion. The averaged constraint is prone to broaden the space of
admissible trial velocity, and thus the minimum problem (Eq. (62)) might be solved with a
broadened constraint space, which results in an underestimation of the macroscopic strength.

To solve this issue, it is assumed that η satisfies the following equation:

4εζη(1− f)
(
1− f1−ζ

)
4εζη (1− f1−ζ) + (1− ζ)(f1−ζ − f)

= 1− f1−ζ (75)

Solving Eq. (75), we can obtain

η =
1− ζ

4εζ
=
M +N

3− εM
(76)

which means that only if η in Eq. (72) satisfies the above equation, the parametric strength
criterion could exactly recover the macroscopic strength under purely hydrostatic loading.

In fact, as ε = 1, η in Eq. (72) automatically complies with the condition (Eq. (76)), and
thus the estimated MHTS coincides well with the exact solution (see Fig. 3). However, as
ε = −1, η in Eq. (72) does not necessarily satisfies such condition unless in the case where
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N = 0 (β = 1), and the estimated MHCS is lower than the exact solution as β > 1. As a result,
an improved parametric strength criterion is proposed by revising η2 as

η2 =
M +N

3 +M
(77)

6. Assessment of the macroscopic strength criteria with finite element solutions

In this section, the macroscopic strength criterion for porous media under purely hydrostatic
loading and the parametric strength criteria for porous media subjected to axisymmetric loading
are assessed with finite element (FE) based numerical solutions. The thick-walled spherical shell
(see Fig. 2) is numerically investigated with the FE software ABAQUS. Due to the symmetry,
a quarter of the shell is investigated by an axisymmetric model with a discretization of 1050
biquadratic axisymmetric quadrilateral elements CAX8, as illustrated in Fig. 4 for the case
at f = 0.1. For comparison, the solid matrix is assumed elastic-perfectly plastic, obeying the
three-parameter strength functions (Eqs. (17) and (18)), and the plastic deformation obeys
the associated flow rule. Since the routine for solving elasto-plastic behavior governed by the
three-parameter strength criterion is not included in the software ABAQUS, a User Material
Subroutine was developed. In this routine, the normality rule was used wherever the normal
to the yield surface of the three-parameter strength criterion is unambiguously defined. At
the singular point of the yield surface, the approach developed by Koiter (1953) was applied
to define the flow direction. For state update, the implicit elastic predictor/return mapping
scheme introduced in de Souza Neto et al. (2009) was applied. Following the numerical procedure
developed by Faleskog et al. (1998) and Cheng and Guo (2007), which enables the loading to be
applied with a constant macroscopic stress triaxiality (Σm/Σeq), a user subroutine Multi-Points
Constraints was used to apply the uniform strain rate boundary condition on the outer surface.

X

Y

Z

Fig. 4. Meshes used in the FE solution for f = 0.1.

Table 1: Macroscopic strength of porous media under purely hydrostatic loading at α = 0.33.

f = 0.1 f = 0.15 f = 0.2

β Σc
m/σt Σt

m/σt Σc
m/σt Σt

m/σt Σc
m/σt Σt

m/σt

1 −32.3702
(−32.1943)

0.9589
(0.9589)

−17.9745
(−17.9662)

0.8529
(0.8529)

−11.6950
(−11.6902)

0.7652
(0.7652)

1.15 −62.6042
(−62.1965)

0.9113
(0.9114)

−31.0824
(−31.0871)

0.8119
(0.8117)

−18.7706
(−18.7707)

0.7290
(0.7289)

1.25 −97.6510
(−96.7501)

0.8878
(0.8879)

−44.8373
(−44.8185)

0.7913
(0.7913)

−25.7069
(−25.6945)

0.7110
(0.7110)

Number in the brackets represents the exact value obtained by Eq. (74)
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Fig. 5. Comparison of yield profiles predicted by the original parametric strength criterion (dash line), the
improved parametric strength criterion (solid line) with FE solution (points) in the (Σm/σt, (Σ11 − Σ33)/σt)
space (α = 0.59, β = 1.15, f = 0.1).

First, the macroscopic strength of porous media under purely hydrostatic loading is studied.
The comparison of the hydrostatic strength computed by Eq. (74) with the numerical results is
given in Table 1. The FE solutions agree well with the exact values. The maximum deviation
reaches 0.93% for MHCS and 0.02% for MHTS, which can serve as a cross-validation of these
approaches.

Next, the yield profile of the porous material with α = 0.59, β = 1.15 and f = 0.1, loaded by
axisymmetric loading is investigated respectively by the original parametric strength criterion,
the improved parametric strength criterion and the FE analysis. The strength profiles are
depicted in the (normalized) stress space (Σm/σt, (Σ11 − Σ33)/σt) (see Fig. 5). Indeed, for
axisymmetric loading, the Cauchy stress is expressed as Σ = Σ11(e1⊗e1+e2⊗e2)+Σ33(e3⊗e3),
and the third invariant of such deviatoric stress is JΣ3 = −2(Σ11 −Σ33)

3/27. For axisymmetric
stress such that Σ11 < Σ33, JΣ3 > 0, and otherwise, JΣ3 < 0. For the parametric criteria,
the solutions to case A (ε = 1, sgn (Dρ −Dz) = 1) and case B (ε = 1, sgn (Dρ −Dz) = −1)
respectively correspond to the strength loci in the first quadrant (Σm > 0, JΣ3 < 0) and the
fourth quadrant (Σm > 0, JΣ3 > 0). The solutions to case C (ε = −1, sgn (Dρ −Dz) = −1)
and case D (ε = −1, sgn (Dρ −Dz) = 1) respectively correspond to the strength loci in the
third quadrant (Σm < 0, JΣ3 > 0) and the second quadrant (Σm < 0, JΣ3 < 0). Irrespective
of the parametric criteria and the FE approach, the presence of voids in the matrix leads to
the closing of the yield profile, i.e. the macroscopic strength of porous materials is no longer
infinite when they are subjected to loading with large pressure. The yield locus obtained by the
improved parametric strength criterion is in a good agreement with the FE solution, whereas the
strength predicted by the original parametric criterion is obviously lower than the FE solution as
Σm/σt < −2, which shows the superiority of the improved parametric criterion over the original
parametric criterion.
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Fig. 6. Comparison of yield profiles predicted by the improved parametric strength criterion (solid line) with FE
solution (points) at different values of ϕ in the (Σm/c, (Σ11 −Σ33)/c) space (β = 1, f = 0.1).

In the following, we apply the improved parametric criterion to study the yield loci of
porous materials. As β = 1, i.e. the UCS equals the eBCS, the solid matrix obeys the MC
criterion. For illustration, we take for example porous MC materials with frictional angles of
ϕ = 30◦, 25◦ and 20◦, which have been investigated in Anoukou et al. (2016) and Pastor et al.
(2016). Correspondingly, the ratios of UTS to UCS are α = 0.33, 0.41 and 0.49. As seen in Fig.
6, ϕ has a strengthening effect on MHCS and weakening effect on MHTS. As ϕ goes from 20◦ to
30◦, the MHCS increases from 10.8c to 37.2c, whereas the MHTS decreases from 1.5c to 1.1c.
Irrespective of the improved parametric criterion and the FE analysis, ϕ has a strengthening ef-
fect on the macroscopic strength as Σm/c < −5. For stress states corresponding to Σm/c > −5,
the strengthening effect decreases with increasing ϕ. As Σm approaches the MHTS, ϕ will have
a weakening influence on the macroscopic strength. The predicted macroscopic strength by the
improved parametric criteiron is in a good agreement with the numerical solution except for
that in the third quadrant, where the predicted strength locates inside the FE solution and the
difference between the strength predicted by the improved parametric criterion and FE analysis
tends to become larger as ϕ increases.

7. Heuristic strength criterion under axisymmetric loading

The improved parametric strength criterion for porous media is not convenient for practi-
cal use due to the involving cumbersome functions (see Appendix A). Besides, the estimated
macroscopic strength by the improved parametric strength criterion may exhibit a large dif-
ference from the FE solution in the quadrant (Σm < 0, JΣ3 > 0) (see Fig. 6). Following the
strategy adopted by Jeong and Pan (1995), we will derive an explicit equation of the macro-
scopic criterion for porous media under axisymmetric loading based on the specific macroscopic
strength in the following limiting cases: (1) purely hydrostatic loading, Σeq = 0; (2) deviatoric
loading, Σm = 0; and (3) porosity, f → 0.

In the first case under purely hydrostatic loading, the macroscopic strength (Eq. (74)) can
be written in an equivalent way as

2f cosh

(
1

1− ζ
ln

(
1− (M +N)

Σm

Q

))
− (1 + f2) = 0 (78)

In the second case, as the hollow sphere is subjected to deviatoric loading, the trial velocity
components vhom dominates the velocity field and C0 → 0. Thus, the macroscopic strength
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under deviatoric loading can be obtained with the improved parametric criterion by letting
ω → 0:[
1

2
+

sgn
(
JΣ3
)

6
M

]2(
Σeq

Q

)2

+ 2f − (1 + f2) = 0 (79)

and it is noted that under axisymmetric loading Σeq = −sgn
(
JΣ3
)
(Σ11 −Σ33).

In the third case, as the porosity goes to zero, the material behaves like the matrix and the
macroscopic strength can be approximated by the matrix’s yield function (Eqs. (17) and (18)).
Therefore, under axisymmetric loading, the macroscopic strength of materials with vanishing
pores can be computed as

(M +N)
Σm

Q
+

[
1

2
+

sgn
(
JΣ3
)

6
M

]
Σeq

Q
− 1 = 0 (80)

which can be rewritten in the quadratic form as[
1

2
+

sgn
(
JΣ3
)

6
M

]2 [
Σeq

Q− (M +N)Σm

]2
− 1 = 0 (81)

Based on such specific macroscopic strength (Eqs. (78)-(81)), a general equation of the
heuristic strength criterion is assumed to take the following form:[
1

2
+

sgn
(
JΣ3
)

6
M

]2 [
Σeq

Q− (M +N)(Σm/G)

]2
+ 2f cosh

(
1

1− ζ
ln

(
1− M +N

Q
Σm

))
− (1 + f2) = 0

(82)

where G is a dimensionless parameter that satisfies

lim
f→0

G
(
M,N, sgn (Σm) , sgn

(
JΣ3
)
, f
)
= 1 (83)

Obviously, the developed heuristic strength criterion (Eq. (82)) recovers the specific strength
in the limiting cases. It should be noted that Σm and sgn

(
JΣ3
)

respectively represent the
dependence of macroscopic strength on pressure and Lode angle. In contrast with the parametric
form of the macroscopic strength criterion, the heuristic strength criterion gives an explicit and
simple relation between Σm and Σeq. Hereafter, we also call the heuristic strength criterion as
the explicit form of the macroscopic strength criterion or the explicit strength criterion.

Using Eq. (21), the explicit strength criterion can be expressed as(
Σeq/σt
Θ

)2

+ 2f cosh

(
1

ζ − 1
ln

(
1− β − α

β

Σm

σt

))
− (1 + f)2 = 0 (84)

where

Θ = A

(
1− β − α

βg

Σm

σt

)
A =

6β

3β(1 + α) + sgn
(
JΣ3
)
(β + 2α− 3αβ)

ζ = 1− 4(β − α)

3β(1 + α) [sgn (Σm) + 1]− 6α

lim
f→0

g
(
α, β, sgn (Σm) , sgn

(
JΣ3
)
, f
)
= 1
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As the eBCS of the matrix equals UCS, i.e. β = 1, the yield criterion of the matrix reduces
to the Mohr-Coulomb criterion. The tensile strength σt and the ratio α of the matrix’s UTS to
UCS can be expressed in terms of the frictional angle ϕ and cohesion c as

σt =
2c cosϕ

1 + sinϕ
α =

1− sinϕ

1 + sinϕ
(85)

Inserting Eq. (85) and β = 1 into Eq. (84), we can obtain an explicit strength criterion for
porous materials with Mohr-Coulomb matrix under axisymmetric loading:(
Σeq/c

Θ

)2

+ 2f cosh

(
1

ζ − 1
ln

(
1− tanϕ

Σm

c

))
− (1 + f)2 = 0 (86)

where

Θ = A

(
cosϕ− sinϕ

g

Σm

c

)
A =

6

3 + sgn
(
JΣ3
)
sinϕ

ζ = 1− 4 sinϕ

3 [sgn (Σm) + sinϕ]

lim
f→0

g
(
ϕ, sgn (Σm) , sgn

(
JΣ3
)
, f
)
= 1

As ϕ→ 0, the MC criterion retrieve the Tresca criterion. Due to Eq. (86), there exist

lim
ϕ→0

Θ = 2, lim
ϕ→0

σt = 2c (87)

According to the L’ Hospital’ s rule, we can obtain

lim
ϕ→0

1

ζ − 1
ln

(
1− tanϕ

Σm

c

)
=

3

4
sgn (Σm)

Σm

c
(88)

Inserting Eqs. (87) and (88) into Eq. (86) leads to the formulation of explicit strength
criterion for porous materials having Tresca matrix under axisymmetric loading:(
Σeq

σt

)2

+ 2f cosh

(
3

2

Σm

σt

)
− (1 + f)2 = 0 (89)

which is consistent with the Gurson model.
Assessment of the heuristic strength criterion in explicit form (Eq. (84)) is conducted with

FE analysis in the remaining part. The function g in Eq. (84) is assumed to take the following
form:

g = 1 +

{
ζ − 5

16

[
5 + 3sgn

(
JΣ3
)]

[1− sgn (Σm)]

}
ln

(
1 +

16f

16ζ − 1 + sgn (Σm)

)
(90)

The macroscopic strength profiles of porous MC materials with a fixed porosity (f = 0.1)
and different values of friction angle are investigated again in Fig. 7. Satisfyingly, the poor
predictions of the parametric strength criterion in the quadrant (Σm < 0, JΣ3 > 0) (see Fig.
(6)) can be well corrected by the heuristic strength criterion. The effect of β on the macroscopic
strength of porous media is illustrated in Figs. 8-10. It appears that the strength profile of
porous material is strongly shrank in the compressive domain when β decreases. For matrix
with distinct values of eBCS and UCS, neglecting the difference between eBCS and UCS would
underestimate the macroscopic strength, especially when the applied pressure is large.
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Fig. 7. Comparison of yield profiles predicted by the heuristic strength criterion (dash line) with FE solution
(points) at different values of ϕ in the (Σm/c, (Σ11 −Σ33)/c) space (β = 1, f = 0.1).
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8. Conclusions

In this work, we proposed macroscopic yield criteria for porous media with matrix described
by the three-parameter strength criterion. The hollow sphere model subjected to axisymmetric
loading is considered. The maximum plastic dissipation function and plastic admissibility condi-
tions for the three-parameter strength criterion are derived. To construct the trial velocity field,
the exact limit stresses and velocity fields in the hollow sphere are analyzed under isotropic load-
ing. Based on these work, an exact upper bound of the macroscopic strength of porous medua
under purely hydrostatic loading is obtained. Besides, an estimate of macroscopic strength of
porous media subjected to axisymmetric loading is proposed in parametric form through kine-
matic limit analysis with a relaxed plastic admissibility condition. The relaxed constraint is
prone to broaden the admissible trial velocity space and thus results in an underestimation of
the macroscopic strength. To be able to fully recover the exact upper bound for purely hydro-
static loading, the established parametric criterion is further modified. Moreover, for practical
applications, a heuristic strength criterion is also developed in explicit form by examining the
limit cases of the improved parametric strength criterion. The dependence of the macroscopic
strength of porous media on the Lode angle is reflected through the sign of the third invariant.
Numerical assessment of the proposed strength criteria is performed. The macroscopic strength
given by the improved parametric strength criterion is shown to be in a good agreement with
the numerical solution as the porous material is subjected to triaxial compression or the mean
part of the applied axisymmetric stress is positive, whereas the heuristic strength criterion could
provide satisfactory predictions of the macroscopic strength except for the macroscopic stress
states of triaxial compression with large pressure. The present work also highlights the ratio
of eBCS to UCS significantly impacts the macroscopic yield profile. Neglecting the difference
between eBCS and UCS would underestimate the macroscopic strength especially when the
pressure is large, such as the hydrostatic compressive strength.
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Appendix A. Model functions of the parametric criterion

The functions J (ω) for case A (ϵ = 1 and sgn(Dρ − Dz) = 1) and case C (ϵ = −1 and
sgn(Dρ−Dz) = −1) coincide with the corresponding analytical expressions provided in Anoukou
et al. (2016) except for the coefficients, η1 and η2. For case B (ϵ = 1 and sgn(Dρ −Dz) = −1)
in which f ζ < ζ and case D (ϵ = −1 and sgn(Dρ − Dz) = 1) where ζf ζ < 1, the functions
coincide with that given in Anoukou et al. (2016). The functions J and their derivatives for
case B where f ζ > ζ and case D in which ζf ζ > 1 are firstly derived in the present work and
provided below.

• Case A: ϵ = 1 and sgn(Dρ −Dz) = 1
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J (ω) =
2ζη1

ω1/ζ

[
(17ζ − 10)(f − 1)

(ζ − 2)(3ζ − 2)
+

(9ζ − 5)(f1−ζ − 1)ω

(ζ − 1)(3ζ − 2)

− 3

2
√
ω

(
ω2

3ζ − 2
− 2ω

ζ − 2
− 1

ζ + 2

)
arctanh

(
2
√
ω

1 + ω

)
+

3f1−ζ

2
√
ωf ζ

(
ω2

3ζ − 2
− 2ωf ζ

ζ − 2
− f2ζ

ζ + 2

)
arctanh

(
2
√
ωf ζ

ω + f ζ

)

+
12ζ3

(ζ − 2)(ζ + 2)(3ζ − 2)
A(ω)

]
(A.1)

in which η1 =
M+N
3−M and

A(ω) =


2F1

(
1,−1

ζ ;
ζ−1
ζ ;ω

)
− f 2F1

(
1,−1

ζ ;
ζ−1
ζ ; ω

fζ

)
(ω < f ζ)

2F1

(
1,−1

ζ ;
ζ−1
ζ ;ω

)
+ f1+ζ

ω(1+ζ) 2F1

(
1, ζ+1

ζ ; 2ζ+1
ζ ; f

ζ

ω

)
− ω1/ζπ

ζ (−1)
1
ζ csc

(
π
ζ

)
(f ζ < ω < 1)

1
ω(1+ζ)

[
f1+ζ 2F1

(
1, ζ+1

ζ ; 2ζ+1
ζ ; f

ζ

ω

)
− 2F1

(
1, ζ+1

ζ ; 2ζ+1
ζ ; 1

ω

)]
(ω > 1)

(A.2)

The derivative of J (ω) is

J ′(ω) = η1

[
1

f ζ
Q
(
ω

f ζ

)
−Q(ω)

]
(A.3)

Since J ′(ω) is continuous, and thus I0 = 0.

• Case B: ϵ = 1 and sgn(Dρ −Dz) = −1

If f ζ ≤ ζ, analogous with the analysis in case A, we can obtain

J (ω) =



η2

[
Q̃1

(
ω
fζ

)
− Q̃1(ω)

]
(0 < ω ≤ ζf ζ)

η2

[
Q̃1(ζ)− Q̃1(ω)

]
+ η1

[
Q̃2

(
ω
fζ

)
− Q̃2(ζ)

]
(ζf ζ ≤ ω < f ζ)

η2

[
Q̃1(ζ)− Q̃1(ω)

]
+ η1

[
2B + Q̃3

(
ω
fζ

)
− Q̃2(ζ)

]
(f ζ < ω ≤ ζ)

η1

[
2B + Q̃3

(
ω
fζ

)
− Q̃2(ω)

]
(ζ ≤ ω < 1)

η1

[
Q̃3

(
ω
fζ

)
− Q̃3(ω)

]
(ω > 1)

(A.4)

where η2 = M+N
3+2N+M , ω = 2ζC0

Deq
,

Q̃1(x) =
2ζ

x1/ζ

 17ζ − 10

(ζ − 2)(3ζ − 2)
− (9ζ − 5)x

(ζ − 1)(3ζ − 2)
−

12ζ3 2F1

(
1,−1

ζ ;
ζ−1
ζ ;−x

)
(ζ − 2)(ζ + 2)(3ζ − 2)

+
3

2
√
x

(
x2

3ζ − 2
+

2x

ζ − 2
− 1

ζ − 2

)
arctan

(
2
√
x

1− x

)

Q̃2(x) =
2ζ

x1/ζ

(2ζ − 1)(3ζ + 2)

(ζ − 2)(3ζ − 2)
− (3ζ − 1)x

(ζ − 1)(3ζ − 2)
−

12ζ3 2F1

(
1,−1

ζ ;
ζ−1
ζ ;−x

)
(ζ − 2)(ζ + 2)(3ζ − 2)

+
3

2
√
x

(
x2

3ζ − 2
+

2x

ζ − 2
− 1

ζ − 2

)
arctan

(
2
√
x

1− x

)
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Q̃3(x) =
2ζ

x1/ζ

 10− 17ζ

(ζ − 2)(3ζ − 2)
+

(9ζ − 5)x

(ζ − 1)(3ζ − 2)
+

12ζ3 2F1

(
1,−1

ζ ;
ζ−1
ζ ;−x

)
(ζ − 2)(ζ + 2)(3ζ − 2)

+
3

2
√
x

(
x2

3ζ − 2
+

2x

ζ − 2
− 1

ζ − 2

)
arcsin

(
2
√
x

1 + x

)
and

B = 1
2

[
Q̃2(1

−)− Q̃3(1
+)
]
= 6ζ4

(ζ−2)(3ζ−2)

[
1
ζ−1 −

4 2F1

(
1,− 1

ζ
; ζ−1

ζ
;−1

)
ζ+2

]
(A.5)

In Eq. (A.5), 2F1

(
1,−1

ζ ;
ζ−1
ζ ;−1

)
=

ψ0
(
− 1

2ζ

)
−ψ0

(
ζ−1
2ζ

)
2ζ and ψ0 is the polygamma function

of order zero, defined as ψ0 = Γ ′(x)/Γ (x).
The derivative of J (ω) can be expressed as

J ′(ω) =



η2

[
1
fζ
Q1

(
ω
fζ

)
−Q1(ω)

]
(0 < ω ≤ ζf ζ)

η1
fζ
Q2

(
ω
fζ

)
− η2Q1(ω) (ζf ζ ≤ ω < f ζ)

η1
fζ
Q3

(
ω
fζ

)
− η2Q1(ω) (f ζ < ω ≤ ζ)

η1

[
1
fζ
Q3

(
ω
fζ

)
−Q2(ω)

]
(ζ ≤ ω < 1)

η1

[
1
fζ
Q3

(
ω
fζ

)
−Q3(ω)

]
(ω > 1)

(A.6)

where

Q1(x) =
1

x1+1/ζ

[
5(1− x) +

3(1 + x)2

2
√
x

arctan
(

2
√
x

1− x

)]
Q2(x) =

1

x1+1/ζ

[
1− x +

3(1 + x)2

2
√
x

arctan
(

2
√
x

1− x

)]
Q3(x) =

1

x1+1/ζ

[
5(x− 1) +

3(1 + x)2

2
√
x

arcsin

(
2
√
x

1 + x

)]
If f ζ > ζ,

J (ω) =



η2

[
Q̃1

(
ω
fζ

)
− Q̃1(ω)

]
(0 < ω ≤ ζf ζ)

η2

[
Q̃1(ζ)− Q̃1(ω)

]
+ η1

[
Q̃2

(
ω
fζ

)
− Q̃2(ζ)

]
(ζf ζ ≤ ω ≤ ζ)

η1

[
Q̃2

(
ω
fζ

)
− Q̃2(ω)

]
(ζ ≤ ω < f ζ)

η1

[
2B + Q̃3

(
ω
fζ

)
− Q̃2(ω)

]
(f ζ < ω < 1)

η1

[
Q̃3

(
ω
fζ

)
− Q̃3(ω)

]
(ω > 1)

(A.7)

and its derivative is

J ′(ω) =



η2

[
1
fζ
Q1

(
ω
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η1
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(
ω
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(
ω
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[
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(
ω
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η1

[
1
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(
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)
−Q3(ω)

]
(ω > 1)

(A.8)
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where Q̃1, Q̃2 and Q̃3 are the antiderivatives of Q1, Q2 and Q3, which are the same
functions as those for case f ζ < ζ.
Since J ′(ω) is not continuous at ω = ζf ζ and ω = ζ, and to ensure the macroscopic
strength function to be continuous, I0 is expressed as

I0 =

{
1−ζ

ζ−1+1/ζ (5η2 − η1) +
3(1+ζ)2

2ζ−1/2+1/ζ (η2 − η1)arctan
(
2
√
ζ

1−ζ

)
(ζf ζ ≤ ω ≤ ζ)

0 (else)
(A.9)

• Case C: ϵ = −1 and sgn(Dρ −Dz) = −1

J (ω) =
2ζη2

ω1/ζ

[
(17ζ − 10)(f − 1)

(ζ − 2)(3ζ − 2)
+
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ζ − 2
− 1

ζ + 2

)
arctanh

(
2
√
ω

1 + ω

)
+

3f1−ζ

2
√
ωf ζ

(
ω2

3ζ − 2
− 2ωf ζ

ζ − 2
− f2ζ

ζ + 2

)
arctanh

(
2
√
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+
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]
(A.10)

where ω = −2ζC0

Deq
.

The derivative of J (ω) is calculated as

J ′(ω) = η2

[
1

f ζ
Q
(
ω

f ζ

)
−Q(ω)

]
(A.11)

Since J ′(ω) is continuous, and thus I0 = 0.

• Case D: ϵ = −1 and sgn(Dρ −Dz) = 1

If ζf ζ ≤ 1,

J (ω) =


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(A.12)

where ω = −2ζC0

Deq
,

Q̃2(x) =
2ζ

x1/ζ

−(2ζ − 1)(3ζ + 2)

(ζ − 2)(3ζ − 2)
+

(3ζ − 1)x

(ζ − 1)(3ζ − 2)
+

12ζ3 2F1

(
1,−1

ζ ;
ζ−1
ζ ;−x

)
(−2 + ζ)(2 + ζ)(−2 + 3ζ)

+
3

2
√
x

(
2x

−2 + ζ
− 1

2 + ζ
+

x2

−2 + 3ζ

)
arcsin

(
2
√
x

1 + x

)
(A.13)

and Q̃1, Q̃3 are the same functions as that in Eq. (A.4).
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The derivative of J (ω) can be computed as

J ′(ω) =
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where
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(A.15)

and Q1, Q3 are the same functions as that in Eq. (A.6).
If ζf ζ > 1,

J (ω) =
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and its derivative is

J ′(ω) =
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(A.17)

where Q̃1, Q̃2 and Q̃3 are the antiderivatives of Q1, Q2 and Q3, which are the same
functions as those for case ζf ζ < 1.
Since J ′(ω) is not continuous at ω = ζf ζ and ω = ζ, and to ensure the macroscopic
strength function to be continuous, I0 is expressed as

I0 =

{
ζ−1
ζ1/ζ−1 (η1 − 5η2) +

3(ζ+1)2

ζ1/ζ−1/2 (η1 − η2)arccot(
√
ζ) (ζf ζ ≤ ω ≤ ζ)

0 (else)
(A.18)
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