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Introduction

In the field of linear elasticity, the mechanical properties of an elastic material are represented by an elasticity tensor E, element of the vector space Ela. This association is nevertheless not unique since two elasticity tensors, that differ only up to a rotation, describe the same elastic material [START_REF] Forte | Symmetry classes for elasticity tensors[END_REF]. It is important, for applications, to be able to distinguish within Ela which tensors represent the same materials from those who do not. The answer to this question is provided by the construction of a finite set Fpreferably minimal -of SO(3)-invariant functions (simply called invariant functions in the following), which

(1) enable one to check if two elasticity tensors describe the same elastic material, i.e., that they are related by a rotation;

(2) allow one to rewrite any invariant function 𝑓 of an elasticity tensor E as a function of the elements of F (i.e., rewrite 𝑓 (E) = 𝐹 (F ) for some function 𝐹 ). This second point constitutes the core of the application of Invariant Theory to Continuum Mechanics [START_REF] Smith | On isotropic functions of symmetric tensors, skew-symmetric tensors and vectors[END_REF][START_REF] Verchery | Les invariants des tenseurs d'ordre 4 du type de l'élasticité[END_REF][START_REF] Boehler | Introduction to the invariant formulation of anisotropic constitutive equations[END_REF][START_REF] Vianello | An integrity basis for plane elasticity tensors[END_REF][START_REF] Vannucci | Stiffness design of laminates using the polar method[END_REF].

The knowledge of an integrity basis provides an answer to this twofold question, but, generally, the cardinality of a minimal integrity basis can be very high. For instance, in the case of three-dimensional elasticity, a minimal integrity basis consists of 294 elements [START_REF] Olive | A minimal integrity basis for the elasticity tensor[END_REF][START_REF] Olive | Characterization of the symmetry class of an elasticity tensor using polynomial covariants[END_REF]. This is mainly due to the fact that an integrity basis is a response to a different mathematical question, namely, the determination of a set of generators for the algebra of SO(3)-invariant polynomial functions over Ela 1 .

An invariant set which satisfies (1) is called a separating set, while one which satisfies (2) is called a functional basis [START_REF] Weyl | The classical groups[END_REF]. Although they seem different at first glance, these two notions are in fact equivalent, as shown by Wineman and Pipkin [43]. This is interesting since the cardinality of a functional basis can be lower than the one of an integrity basis. But, in contrast to integrity bases and despite some attempts [START_REF] Draisma | Polarization of separating invariants[END_REF][START_REF] Olive | About Gordan's algorithm for binary forms[END_REF], there is no general algorithm to obtain functional bases.

For isotropic elasticity, it is well-known that Lamé parameters 𝜆, 𝜇 are two invariants that allow to separate isotropic elasticity tensors and to write invariant functions of an isotropic elasticity tensor E (any invariant function 𝑓 (E) can be written as 𝑓 (E) = 𝐹 (𝜆, 𝜇) for some function 𝐹 ). The extension of this simple observation to the whole vector space Ela is a difficult problem, as emphasized by Ming et al [START_REF] Ming | A polynomially irreducible functional basis of elasticity tensors[END_REF]. Indeed, these authors have obtained a polynomial functional basis of 251 elements, still a rather large number! There are in the literature different strategies to reduce the number of elements of a functional basis. For instance,

• change the class of its elements: usually polynomial invariants are considered [START_REF] Smith | On isotropic functions of symmetric tensors, skew-symmetric tensors and vectors[END_REF][START_REF] Zheng | Theory of representations for tensor functions -A unified invariant approach to constitutive equations[END_REF][START_REF] Olive | Isotropic invariants of a completely symmetric third-order tensor[END_REF][START_REF] Olive | Characterization of the symmetry class of an elasticity tensor using polynomial covariants[END_REF][START_REF] Chen | An irreducible function basis of isotropic invariants of a third order three-dimensional symmetric tensor[END_REF][START_REF] Liu | Isotropic polynomial invariants of the hall tensor[END_REF][START_REF] Ming | An irreducible polynomial functional basis of two-dimensional eshelby tensors[END_REF], but this is not mandatory; • look for local separating sets instead of global ones: the separating property is then defined, not on the whole vector space, but only on a neighbourhood of a given tensor. In this direction, Bona et al. [START_REF] Bóna | Space of 𝑆𝑂(3)-orbits of elasticity tensors[END_REF] proposed a local parametrization of orbits of generic triclinic elasticity tensors by 18 local algebraic invariants. A separating set of 18 local polynomial invariants was provided in [START_REF] Desmorat | Generic separating sets for three-dimensional elasticity tensors[END_REF]Theorem A.3]; • restrict the separating property to a subset of generic tensors (generally triclinic). The corresponding functional bases are then called weak functional bases [START_REF] Boehler | On the polynomial invariants of the elasticity tensor[END_REF].

When combined, these strategies lead to a drastic reduction in the cardinality of a functional basis. For three-dimensional elasticity tensors, a weak separating set of 39 global polynomial invariants has been provided in [START_REF] Boehler | On the polynomial invariants of the elasticity tensor[END_REF], and a weak separating set of 18 global rational invariants has been obtained in [START_REF] Desmorat | Generic separating sets for three-dimensional elasticity tensors[END_REF]Corollary 4.5]. Nevertheless, to reduce this set from 294 elements to only 18, a price has to be paid, some (in general non triclinic) elasticity tensors are a priori excluded from the possibility to check them. The approach followed here is complementary. Instead of considering the whole vector space Ela, we are looking for sets of invariants which separate tensors of a given symmetry class, with no genericity restrictions. Our aim is then to produce optimal functional bases, on these lower-dimensional elasticity symmetry classes of Ela. In this paper, we will achieve this task for trigonal, tetragonal, transverse isotropic, and cubic elasticity tensors. Our work strongly relies on the geometry of fourth-order harmonic tensors [START_REF] Auffray | On Anisotropic Polynomial Relations for the Elasticity Tensor[END_REF] and elasticity tensors [START_REF] Olive | Characterization of the symmetry class of an elasticity tensor using polynomial covariants[END_REF].

Outline. The eight symmetry classes of linear elasticity and the associated breaking symmetry diagram (due to [START_REF] Forte | Symmetry classes for elasticity tensors[END_REF]) are recalled in section 2, where we summarize necessary and sufficient polynomial conditions (obtained in [START_REF] Olive | Characterization of the symmetry class of an elasticity tensor using polynomial covariants[END_REF]) for an elasticity tensor to belong to a given symmetry stratum (i.e., a set of elasticity tensors of the same symmetry class). In section 3, we introduce the mathematical material necessary to define rigorously the notion of minimal functional bases, not only on the whole elasticity tensor space Ela but also -and this is the originality of the present work -on each symmetry stratum. We illustrate this method, first in section 4, by the construction of minimal functional bases for the orthotropic and the transversely isotropic strata of the space of second-order symmetric tensors, and, then, in section 5, by one for the orthotropic, the tetragonal, the trigonal and the transversely isotropic strata of the space of fourthorder harmonic tensors (which appear in the harmonic decomposition of elasticity tensors). Thanks to the key-definition of a non vanishing second-order covariant, we obtain, in an intrinsic manner, our main result in section 6 and section 7, which is the explicit formulation of low-cardinality functional bases for elasticity tensors at least tetragonal or trigonal.

Tensorial operations.

Using the Euclidean structure of R 3 , no distinction will be made between covariant, contravariant or mixed tensors. All tensor components will be expressed with respect to an orthonormal basis (𝑒 𝑖 ). The space of 𝑛th-order tensors will be denoted by ⊗ 𝑛 (R 3 ), and the subspace of totally symmetric tensors of order 𝑛 by S 𝑛 (R 3 ). A traceless tensor H ∈ S 𝑛 (R 3 ) is called an harmonic tensor and the space of 𝑛th-order harmonic tensors is denoted by H 𝑛 (R 3 ).

The contraction over two or three indices between second/fourth-order tensors will be denoted by

a : b = 𝑎 𝑖𝑗 𝑏 𝑖𝑗 , (A : a) 𝑖𝑗 = 𝐴 𝑖𝑗𝑘𝑙 𝑎 𝑘𝑙 , (A : B) 𝑖𝑗𝑘𝑙 = 𝐴 𝑖𝑗𝑝𝑞 𝐵 𝑝𝑞𝑘𝑙 , (A . . . B) 𝑖𝑗 = 𝐴 𝑖𝑝𝑞𝑟 𝐵 𝑝𝑞𝑟𝑗 .
The total symmetrization of an 𝑛th-order tensor T is the tensor T 𝑠 , defined by

(T 𝑠 ) 𝑖1...𝑖𝑛 = 1 𝑛! ∑︁ 𝜎∈S𝑛 𝑇 𝑖 𝜎(1) ...𝑖 𝜎(𝑛) ∈ S 𝑛 (R 3 ),
where S 𝑛 is the permutation group over 𝑛 elements. The symmetric tensor product, noted ⊙, and the generalized cross product (introduced in [START_REF] Olive | Harmonic factorization and reconstruction of the elasticity tensor[END_REF]), noted ×, between two totally symmetric tensors S 1 ∈ S 𝑛1 (R 3 ) and S 2 ∈ S 𝑛2 (R 3 ), are defined respectively by

S 1 ⊙ S 2 := (S 1 ⊗ S 2 ) 𝑠 ∈ S 𝑛1+𝑛2 (R 3 ), (1.1) S 1 × S 2 := (S 2 • 𝜀 • S 1 ) 𝑠 ∈ S 𝑛1+𝑛2-1 (R 3 ), (1.2)
where 𝜀 is the third-order Levi-Civita tensor (with components 𝜀 𝑖𝑗𝑘 = det(𝑒 𝑖 , 𝑒 𝑗 , 𝑒 𝑘 )). Explicit component formulas for the generalized cross product involving second and fourth-order tensors can be found in [START_REF] Abramian | Recovering the normal form and symmetry class of an elasticity tensor[END_REF]. We have moreover [START_REF] Olive | Harmonic factorization and reconstruction of the elasticity tensor[END_REF] (1.3) S × q = 0, ∀S ∈ S 𝑛 (R 3 ), where q = (𝛿 𝑖𝑗 ) is the Euclidean metric.

Figure 1. Symmetry classes of elasticity tensors and of fourth-order harmonic tensors [START_REF] Ihrig | Pattern selection with O(3) symmetry[END_REF][START_REF] Forte | Symmetry classes for elasticity tensors[END_REF] (figure from [START_REF] Auffray | On Anisotropic Polynomial Relations for the Elasticity Tensor[END_REF]).

Covariant characterization of elasticity symmetry classes

Let is the set of all the elasticity tensors which have exactly the symmetry class [𝐻]. Observe, for instance, that a transversely isotropic elasticity tensor E has also tetragonal symmetry. In such a case, we will say that E is at least tetragonal, but it does not belong to the tetragonal stratum Σ [D4] . This "at least" order relation is depicted by the arrows of Figure 1.

Ela := {︀ E ∈ ⊗ 4 (R

2.2.

Harmonic decomposition -Covariants. The first step, when studying the geometry of elasticity tensors, consists in splitting Ela into stable, irreducible vector spaces (under the action of SO( 3)). This is the so-called harmonic decomposition [START_REF] Backus | A geometrical picture of anisotropic elastic tensors[END_REF]. 

d ′ = d - 1 3 (tr d) q, v ′ = v - 1 3 (tr v) q,
and the harmonic (i.e., totally symmetric and traceless) fourth-order tensor (2.5)

H = E 𝑠 -q ⊙ a ′ - 7 30 (tr a) q ⊙ q, a := 2 7 (d + 2v),
where E 𝑠 is the totally symmetric part of E, and ⊙ is the symmetrized tensor product defined in (1.1). The harmonic decomposition (2.2) is equivariant, meaning that it satisfies:

𝑔 ⋆ E = (𝑔 ⋆ tr d, 𝑔 ⋆ tr v, 𝑔 ⋆ d ′ , 𝑔 ⋆ v ′ , 𝑔 ⋆ H) = (tr d, tr v, 𝑔 ⋆ d ′ , 𝑔 ⋆ v ′ , 𝑔 ⋆ H),
for any rotation 𝑔 ∈ SO(3). Note here that 𝑔 ⋆ 𝜆 = 𝜆 for scalar invariants 𝜆. The action of a rotation on a second-order tensor a is 𝑔 ⋆ a = 𝑔a𝑔 𝑡 , while the action of a rotation on a fourth-order tensor is given by (2.1). The harmonic components

tr d = tr(d(E)), tr v = tr(v(E)), d ′ = d ′ (E), v ′ = v ′ (E), H = H(E),
are covariants C(E) of E [START_REF] Kraft | Classical Invariant Theory, a Primer[END_REF][START_REF] Olive | Characterization of the symmetry class of an elasticity tensor using polynomial covariants[END_REF] (of respective order 0, 0, 2, 2 and 4, tr d and tr v being scalar invariants of E, and d ′ (E), v ′ (E) and H = H(E) being linear covariants of E). They satisfy the rule

C(𝑔 ⋆ E) = 𝑔 ⋆ C(E), ∀𝑔 ∈ SO(3).
However, there also exists polynomial covariants of higher degree. For instance, the quadratic covariant 

(
) 𝑖𝑗 = 𝐻 𝑖𝑝𝑞𝑟 𝐻 𝑝𝑞𝑟𝑗 ),
introduced by Boehler, Kirillov and Onat in 1994 [START_REF] Boehler | On the polynomial invariants of the elasticity tensor[END_REF], and which plays a fundamental role in the classification (by symmetry classes) of the fourth-order harmonic tensor and of the elasticity tensor. Indeed, necessary and sufficient conditions for an elasticity tensor to be of a given symmetry class have been formulated in [START_REF] Olive | Characterization of the symmetry class of an elasticity tensor using polynomial covariants[END_REF], involving d, v, d 2 and other higher degree polynomial covariants.

Covariant characterization of elasticity symmetry classes.

The following theorem was proved in [START_REF] Olive | Characterization of the symmetry class of an elasticity tensor using polynomial covariants[END_REF]Theorem 10.2]. It provides a characterization of the isotropic, cubic, transversely isotropic, tetragonal and trigonal symmetry classes of elasticity (that is for elasticity tensors which are at least trigonal or tetragonal). We denote by a ′ = a -1 3 (tr a) q, the deviatoric part of a symmetric second-order tensor a and recall that H × q = 0, so that H × a = H × a ′ . Theorem 2.1. Let E = (tr d, tr v, d ′ , v ′ , H) ∈ Ela be an elasticity tensor. Then

(1) E is isotropic if and only if

d ′ = v ′ = d 2 = 0. (2) E is cubic if and only if d ′ = v ′ = d ′ 2 = 0 and d 2 ̸ = 0. (3) E is transversely isotropic if and only if (d 2 , d, v) is transversely isotropic and H × d 2 = H × d = H × v = 0. (4) E is tetragonal if and only if (d 2 , d, v) is transversely isotropic, tr(H × d 2 ) = tr(H × d) = tr(H × v) = 0, and H × d 2 ̸ = 0, or H × d ̸ = 0, or H × v ̸ = 0. (5) E is trigonal if and only if (d 2 , d, v) is transversely isotropic, d 2 × (H : d 2 ) = d × (H : d) = v × (H : v) = 0, and tr(H × d 2 ) ̸ = 0, or tr(H × d) ̸ = 0, or tr(H × v) ̸ = 0.
As a corollary of this theorem, we have the following result.

Corollary 2.2. Let E be an elasticity tensor which is either transversely isotropic, tetragonal or trigonal. Then, (d, v, d 2 ) is transversely isotropic (or equivalently

(d ′ , v ′ , d ′ 2
) is transversely isotropic). In particular, there exists a unit vector 𝑛, defining the axis ⟨𝑛⟩ of transverse isotropy, and such that ′ , where (𝛼, 𝛽, 𝛾) ̸ = (0, 0, 0).

d ′ = 𝛼(𝑛 ⊗ 𝑛) ′ , v ′ = 𝛽(𝑛 ⊗ 𝑛) ′ , d ′ 2 = 𝛾(𝑛 ⊗ 𝑛)

Functional bases and separating sets

In this section, we recall basic notions in Invariant Theory, in particular: functional basis, separating set and integrity basis, and the associated notion of minimality. The concepts of functional basis and separating set are meaningful in a very general setting, namely for the action of a group 𝐺 on a set X [START_REF] Weyl | The classical groups[END_REF], and are moreover equivalent, as noted by Wineman and Pipkin [START_REF] Wineman | Material symmetry restrictions on constitutive equations[END_REF]. Defining a finite integrity basis requires some additional structure, for instance that 𝐺 is a compact Lie group [START_REF] Bredon | Topology and geometry[END_REF] (with the remark that in solid mechanics, many relevant groups are compact), X = V is a vector space, and the action of 𝐺 on V is linear.

3.1. Action of a group on a set. An action ⋆ of a group 𝐺 on a set X is a mapping

𝐺 × X → X, (𝑔, 𝑥) ↦ → 𝑔 ⋆ 𝑥, such that (𝑔 1 𝑔 2 ) ⋆ 𝑥 = 𝑔 1 ⋆ (𝑔 2 ⋆ 𝑥), 𝑒 ⋆ 𝑥 = 𝑥,
where 𝑔 1 , 𝑔 2 ∈ 𝐺 and 𝑒 is the unit element of 𝐺. When X = V is a vector space and the action is linear in 𝑥, such an action is called a linear representation of 𝐺 on X. The symmetry group of 𝑥 (also known as the isotropy group of 𝑥) is defined as

𝐺 𝑥 := {𝑔 ∈ 𝐺, 𝑔 ⋆ 𝑥 = 𝑥} and the symmetry class of 𝑥, noted [𝐺 𝑥 ],
is defined as the conjugacy class of 𝐺 𝑥 in 𝐺, i.e.

[𝐺 𝑥 ] := {︀ 𝑔𝐺 𝑥 𝑔 -1 , 𝑔 ∈ 𝐺 }︀ .
A symmetry stratum Σ [𝐻] is the set of all elements 𝑥 with symmetry group 𝐺 𝑥 conjugate to 𝐻:

Σ [𝐻] := {𝑥 ∈ 𝑋, 𝐺 𝑥 ∈ [𝐻]} .
The orbit of the point 𝑥 ∈ X is defined as the set

Orb(𝑥) := {𝑔 ⋆ 𝑥, 𝑔 ∈ 𝐺} .
Observe that all points in Orb(𝑥) belong to the same symmetry stratum, since 𝐺 𝑔⋆𝑥 = 𝑔𝐺 𝑥 𝑔 -1 . Finally, the orbit space X/𝐺 is the set of orbits and the canonical projection is the mapping

(3.1) 𝜋 : X -→ X/𝐺, 𝑥 ↦ → Orb(𝑥).
3.2. Functional bases and separating sets. The action of 𝐺 on X induces a linear action of 𝐺 on the vector space ℱ(X) of real-valued functions on X, which is written

(𝑔 ⋆ 𝑓 )(𝑥) := 𝑓 (𝑔 -1 ⋆ 𝑥),
where 𝑓 ∈ ℱ(X) and 𝑔 ∈ 𝐺. The algebra ℱ(X) 𝐺 of 𝐺-invariant functions on X is defined by

(3.2) ℱ(X) 𝐺 := {𝑓 ∈ ℱ(X), 𝑔 ⋆ 𝑓 = 𝑓, ∀𝑔 ∈ 𝐺} ,
and this definition leads to the notion of functional basis for 𝐺-invariant functions on X. This notion, introduced in Weyl's classical book [START_REF] Weyl | The classical groups[END_REF], has become a key notion in the mechanical science literature related to Invariant Theory [START_REF] Wineman | Material symmetry restrictions on constitutive equations[END_REF][START_REF] Smith | On isotropic functions of symmetric tensors, skew-symmetric tensors and vectors[END_REF][START_REF] Boehler | Introduction to the invariant formulation of anisotropic constitutive equations[END_REF][START_REF] Zheng | Theory of representations for tensor functions -A unified invariant approach to constitutive equations[END_REF].

Definition 3.1 (Functional basis). A finite set

F := {𝜙 1 , . . . , 𝜙 𝑠 } of 𝐺-invariant functions is a functional basis of ℱ(X) 𝐺 if for any 𝐺-invariant function 𝑓 ∈ ℱ(X) 𝐺 there exists a function 𝐹 : R 𝑠 → R such that 𝑓 (𝑥) = 𝐹 (𝜙 1 (𝑥), . . . , 𝜙 𝑠 (𝑥)), ∀𝑥 ∈ X.
A functional basis F is said to be minimal if no proper subset F ′ of F is a functional basis.

As pointed out by Weyl [START_REF] Weyl | The classical groups[END_REF]Page 30], the word function has to be understood in its widest scope. Such a function 𝐹 may not even be continuous [START_REF] Smith | On isotropic functions of symmetric tensors, skew-symmetric tensors and vectors[END_REF]Section 5].

Definition 3.2 (Separating set). A finite set

S := {𝜅 1 , . . . , 𝜅 𝑟 } of 𝐺-invariant functions is a separating set of X/𝐺 if for any 𝑥, 𝑥 in X Orb(𝑥) = Orb(𝑥) ⇐⇒ 𝜅 𝑖 (𝑥) = 𝜅 𝑖 (𝑥), 𝑖 = 1, . . . , 𝑟.
A separating set S is said to be minimal if no proper subset S ′ of S is a separating set.

Given a separating set {𝜅 1 , . . . , 𝜅 𝑟 } of invariant functions, the mapping

(3.3) 𝐾 : X -→ R 𝑟 , 𝑥 ↦ → (𝜅 1 (𝑥), . . . , 𝜅 𝑟 (𝑥)).
induces an injective mapping from the orbit space X/𝐺 into R 𝑟 and one has the following result [START_REF] Wineman | Material symmetry restrictions on constitutive equations[END_REF] (see also [START_REF] Pipkin | The formulation of constitutive equations in continuum physics I[END_REF][START_REF] Pipkin | Material symmetry restrictions on non-polynomial constitutive equations[END_REF]).

Theorem 3.3 (Wineman and Pipkin). Consider a group 𝐺 acting on a set X. Then, each separating set {𝜅 1 , . . . , 𝜅 𝑟 } of X/𝐺 is a functional basis of ℱ(X) 𝐺 : for each 𝐺-invariant function 𝑓 , there exists a function

𝐹 : Im(𝐾) -→ R, Im(𝐾) := {𝐾(𝑥); 𝑥 ∈ X} , such that 𝑓 (𝑥) = 𝐹 (𝜅 1 (𝑥), • • • , 𝜅 𝑟 (𝑥)), ∀𝑥 ∈ X.
Conversely, each functional basis F = {𝜙 1 , . . . , 𝜙 𝑠 } of ℱ(X) 𝐺 is also a separating set of X/𝐺.

Note that the cardinality of a minimal separating set/functional basis is not well-defined. It may vary from one minimal set to another. Besides, a lower bound on the cardinality of such a set depends drastically on the class of functions (continuous, differentiable, . . . ) for which it is defined. For instance, Wang [START_REF] Wang | Corrigendum to my recent papers on Representations for isotropic functions[END_REF] (see also [6, p.39]) has noticed that, by omitting continuity, it is always possible to construct a separating set of only one element. On the other side, if X/𝐺 is (at least) a topological manifold and the class of invariant functions considered are at least continuous, then the cardinality of a functional basis is at least the dimension of the quotient space X/𝐺, as detailed in the following remark.

Remark 3.4. When the orbit space X/𝐺 is a topological manifold of dimension 𝑑, the cardinality of any separating set {𝜅 1 , . . . , 𝜅 𝑟 } of continuous functions is bigger than the dimension of X/𝐺 (𝑟 ≥ 𝑑). This is a consequence of the invariance of domain theorem [START_REF] Brouwer | Beweis der invarianz des n-dimensionalen gebiets[END_REF][START_REF] Hocking | Topology[END_REF], which states that if there is a continuous injective mapping 𝑓 from an open subset 𝑈 of R 𝑑 into R 𝑟 , then, necessarily 𝑟 ≥ 𝑑.

Linear representation of a compact Lie group.

From now on, we focus on a linear action of a compact Lie group 𝐺 on a vector space V (usually called a linear representation of 𝐺 on V). In that case, there exists only a finite number of symmetry classes

[𝐻 1 ], . . . , [𝐻 𝑙 ] and V splits into a disjoint union of strata [2, 9] V = Σ [𝐻1] ∪ . . . ∪ Σ [𝐻 𝑙 ] ,
where each stratum Σ

[𝐻] is a 𝐺-stable smooth submanifold of V [10, 2 , 30, 3]. 
We shall denote by R[V], the algebra of polynomial functions on V, and by

R[V] 𝐺 := {p ∈ R[V]; p(𝑔 ⋆ 𝑣) = p(𝑣), ∀𝑔 ∈ 𝐺, ∀𝑣 ∈ V} ,
the subalgebra of R[V] consisting of polynomial invariants. As a consequence of Hilbert's finiteness theorem [START_REF] Hilbert | Theory of algebraic invariants[END_REF][START_REF] Sturmfels | Algorithms in Invariant Theory[END_REF], the algebra R[V] 𝐺 is finitely generated and any finite set {𝐼 1 , . . . , 𝐼 𝑁 } of generators is called an integrity basis. We recall that the generating property means that each 𝐺-invariant polynomial 𝐽 ∈ R[V] 𝐺 is a polynomial function in 𝐼 1 , . . . , 𝐼 𝑁 :

𝐽(𝑣) = p(𝐼 1 (𝑣), . . . , 𝐼 𝑁 (𝑣)), 𝑣 ∈ V,
where p is a polynomial in 𝑁 variables. An integrity basis is minimal if no proper subset of it is an integrity basis.

As we are dealing with linear representations of a compact Lie group on a real vector space, any integrity basis is also a separating set of the orbit space V/𝐺 (see [2, Appendix C]), and is thus a functional basis of ℱ(V) 𝐺 .

We will end this section by formulating a theorem which will be helpful to achieve our goal which is to produce minimal functional bases for the stable subsets Σ [𝐻] of V, rather than for V itself. Hence, Orb(𝑣) = Orb(𝑣), and we deduce that the set {𝜅 1 , . . . , 𝜅 𝑑 } is a separating set of Σ [𝐻] /𝐺, as well as a functional basis of ℱ(Σ [𝐻] ) 𝐺 by theorem 3.3. Finally, the minimality is a direct consequence of remark 3.4.

Functional bases on symmetry strata of second-order tensors

Let us first illustrate the notions introduced in section 3 for the standard action of the rotation group 𝐺 = SO(3) on the vector space V = S 2 (R 3 ) of symmetric second-order tensors on R 3 . The action is written 𝑔 ⋆ a := 𝑔a𝑔 𝑡 and there are three different symmetry classes (orthotropic [D 2 ], transversely isotropic [O(2)] and isotropic [SO(3)], see Appendix A for group definitions). The three corresponding symmetry strata Σ [D2] , Σ [O(2)] and Σ [SO(3)] , are characterized by polynomial equations. These conditions can be formulated, as algebraic equations involving either polynomial invariants, or polynomial covariants [START_REF] Kraft | Classical Invariant Theory, a Primer[END_REF].

Each second-order tensor a ∈ S 2 (R 3 ) splits as a = a ′ + 1 3 (tr a)q, where the deviatoric part a ′ is a polynomial (linear) covariant of a, meaning that a ′ is expressed polynomially (linearly) in the 𝑎 𝑖𝑗 , and that for any 𝑔 ∈ SO(3), (𝑔 ⋆ a) ′ = 𝑔 ⋆ a ′ . A less common but very important polynomial covariant of a was obtained in [START_REF] Olive | Characterization of the symmetry class of an elasticity tensor using polynomial covariants[END_REF] using the generalized cross product (1.1),

S(a) := a × a 2 ∈ S 3 (R 3 ), with 𝑔 ⋆ (︀ a × a 2 )︀ = (𝑔 ⋆ a) × (𝑔 ⋆ a) 2 ,
for any rotation 𝑔.

The algebraic equations characterizing each symmetry stratum of S 2 (R 3 ) are stated in table 1, where we consider the three following polynomial invariants (4.1)

𝐼 1 := tr a, 𝐽 2 := tr(a ′ 2 ), 𝐽 3 := tr(a ′ 3 ), which constitute a minimal integrity basis of R[S 2 (R 3 )] SO (3) .

Remark 4.1. The characterization conditions using covariants are of degree (in a) half the degree of those using invariants. Indeed

𝐽 2 = ‖a ′ ‖ 2 , 𝐽 3 2 -6𝐽 2 3 = 12 ⃦ ⃦ a × a 2 ⃦ ⃦ 2 .
Stratum Conditions in terms of invariants Conditions in terms of covariants

Σ [D2] 𝐽 3 2 -6𝐽 2 3 ̸ = 0 a × a 2 ̸ = 0 Σ [O(2)] 𝐽 3 2 -6𝐽 2 3 = 0 and 𝐽 2 ̸ = 0 a × a 2 = 0 and a ′ ̸ = 0 Σ [SO(3)] 𝐽 2 = 0 a ′ = 0 Table 1.
Algebraic equations defining the symmetry strata of S 2 (R 3 ) [START_REF] Olive | Characterization of the symmetry class of an elasticity tensor using polynomial covariants[END_REF].

In contrast to the entire orbit space V/𝐺, each orbit space Σ [𝐻] /𝐺 is a smooth manifold [2, 10, 30] and when V = S 2 (R 3 ) we have:

dim(Σ [D2] /SO(3)) = 3, dim(Σ [O(2)] /SO(3)) = 2, dim(Σ [SO(3)] /SO(3)) = 1.
Next, we will show how theorem 3.5 helps us to obtain minimal functional bases for the orthotropic (Σ [D2] ) and the transversely isotropic (Σ [O(2)] ) strata. 3) is three dimensional. An integrity basis is also a separating set [2, Appendix C], and by the Wineman-Pipkin theorem 3.3, it is also a functional basis. Thus, the set (4.1), satisfying the hypotheses of theorem 3.5, is an example of application of this theorem, which is formulated below.

Lemma 4.2. A minimal functional basis for Σ [D2]

, i.e., for orthotropic second-order tensors, consists of the three polynomial invariants

𝜅 1 := 𝐼 1 = tr a, 𝜅 2 := 𝐽 2 = tr(a ′ 2 ), 𝜅 3 := 𝐽 3 = tr(a ′ 3 ).

Transversely isotropic stratum.

In this case, we first note that a second-order tensor a is in the symmetry stratum Σ [O(2)] if and only if there exists a rotation 𝑔 ∈ SO(3) such that a = 𝑔 ⋆ a 0 , where a 0 is

(4.2) a 0 = ⎛ ⎝ 𝛿 1 -𝛿 2 0 0 0 𝛿 1 -𝛿 2 0 0 0 𝛿 1 + 2𝛿 2 ⎞ ⎠ , 𝛿 2 ̸ = 0,
in the orthonormal basis (𝑒 𝑖 ). The condition 𝛿 2 ̸ = 0 means that a 0 is genuinely transversely isotropic (and not isotropic). Moreover its symmetry group is the subgroup O(2) of SO(3) defined in Appendix A.

Lemma 4.3. A minimal functional basis for Σ [O(

2)] , i.e., for transversely isotropic symmetric secondorder tensors, consists of the two rational invariants

𝜅 1 := 𝐼 1 , 𝜅 2 := 𝐽 3 𝐽 2 .
Proof. Evaluating the invariants 𝐽 2 and 𝐽 3 on (4.2), we get 

𝐽 2 (a) = 6𝛿 2 2 , 𝐽 3 (a) = 6𝛿 3 
(4.3) a = 1 3 𝜅 1 q + 3𝜅 2 t, 𝜅 1 := 𝐼 1 , 𝜅 2 := 𝐽 3 𝐽 2 = sgn(𝐽 3 ) √ 6 ‖a ′ ‖ ,
with t := (𝑛 ⊗ 𝑛) ′ , ‖𝑛‖ = 1, where the vector 𝑛 defines the axis of transverse isotropy and sgn(𝑥) = 𝑥/ |𝑥| is the sign function.

Functional bases on symmetry strata of harmonic fourth-order tensors

Let us now consider the vector space of fourth-order harmonic tensors in R 3

H 4 (R 3 ) := {︀ H ∈ S 4 (R 3 ), tr H = 0 }︀ ,
i.e., of traceless totally symmetric fourth-order tensors. It is of dimension nine and appears as an irreducible subspace in the harmonic decomposition of Ela. Its structure is more tricky than the one of H 2 (R 3 ) and has been investigated in [START_REF] Forte | Symmetry classes for elasticity tensors[END_REF] and [START_REF] Auffray | On Anisotropic Polynomial Relations for the Elasticity Tensor[END_REF][START_REF] Olive | Characterization of the symmetry class of an elasticity tensor using polynomial covariants[END_REF][START_REF] Olive | Harmonic factorization and reconstruction of the elasticity tensor[END_REF]. The eight symmetry classes [𝐻] for H 4 (R 3 ) are the same as for Ela (see Figure 1, Appendix B). Each orbit space Σ [𝐻] /SO(3) is a smooth manifold, and (see [START_REF] Auffray | On Anisotropic Polynomial Relations for the Elasticity Tensor[END_REF], for instance)

dim(Σ [1] /SO(3)) = 6, dim(Σ [Z2] /SO(3)) = 5, dim(Σ [D2] /SO(3)) = 3, dim(Σ [D4] /SO(3)) = 2, dim(Σ [D3] /SO(3)) = 2, dim(Σ [O(2)] /SO(3)) = 1, dim(Σ [O] /SO(3)) = 1, dim(Σ [SO(3)] /SO(3)) = 0.
A minimal integrity basis of nine polynomial invariants for the invariant algebra of H 4 (R 3 ), has been derived by Boehler, Kirillov and Onat [START_REF] Boehler | On the polynomial invariants of the elasticity tensor[END_REF], using previous works on binary forms by Shioda [START_REF] Shioda | On the graded ring of invariants of binary octavics[END_REF]. An alternative minimal integrity basis has been proposed in [ 

2 ).

In the following, we consider Kelvin's representation of a fourth-order harmonic tensor H = (𝐻 𝑖𝑗𝑘𝑙 ), i.e., in an orthonormal basis, the symmetric matrix [START_REF] Thomson | Elasticity, Encyclopaedia Britannica. Adam and Charles Black[END_REF][START_REF] Rychlewski | On hooke's law[END_REF] [H] := 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝
] = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 8𝛿 -4𝛿 -4𝛿 0 0 0 -4𝛿 8𝛿 -4𝛿 0 0 0 -4𝛿 -4𝛿 8𝛿 0 0 0 0 0 0 -8𝛿 0 0 0 0 0 0 -8𝛿 0 0 0 0 0 0 -8𝛿 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠
, 

and
] = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 3 𝛿 𝛿 -4 𝛿 0 0 0 𝛿 3 𝛿 -4 𝛿 0 0 0 -4 𝛿 -4 𝛿 8 𝛿 0 0 0 0 0 0 -8 𝛿 0 0 0 0 0 0 -8 𝛿 0 0 0 0 0 0 2 𝛿 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠
, and H O(2) is transversely isotropic if and only if 𝛿 ̸ = 0. The evaluation of the invariants (5.1) on (5.4) is (5.5) 

𝐼 2 = 280𝛿 2 , 𝐼 3 = 720𝛿
] = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 3 𝛿 -𝜎 𝜎 + 𝛿 -4 𝛿 0 0 0 𝜎 + 𝛿 3 𝛿 -𝜎 -4 𝛿 0 0 0 -4 𝛿 -4 𝛿 8 𝛿 0 0 0 0 0 0 -8 𝛿 0 0 0 0 0 0 -8 𝛿 0 0 0 0 0 0 2 𝜎 + 2 𝛿 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠
, and H D4 is tetragonal if and only if 𝜎 ̸ = 0 and 𝜎 2 -25𝛿 2 ̸ = 0. Recall here the following bifurcation conditions [START_REF] Auffray | On Anisotropic Polynomial Relations for the Elasticity Tensor[END_REF]: (𝑖) 𝜎 = 0 implies transverse isotropy, (𝑖𝑖) 𝜎 2 -25𝛿 2 = 0 implies cubic symmetry, and (𝑖𝑖𝑖) 𝜎 = 0 and 𝛿 = 0 imply isotropy. The evaluation of the invariants (5.1) on (5.6) is

(5.7)

𝐼 2 = 8(35𝛿 2 + 𝜎 2 ), 𝐼 3 = 48𝛿(15𝛿 2 + 𝜎 2 ), 𝐼 4 = 32 3 (25𝛿 2 -𝜎 2 ) 2 , 𝐼 5 = 64𝛿(25𝛿 2 -𝜎 2 ) 2 , 𝐼 6 = 128 9 (25𝛿 2 -𝜎 2 ) 3 , 𝐼 7 = 256 3 𝛿(25𝛿 2 -𝜎 2 ) 3 , 𝐼 8 = 512𝛿 2 (25𝛿 2 -𝜎 2 ) 3 , 𝐼 9 = 3072𝛿 3 (25𝛿 2 -𝜎 2 ) 3 , 𝐼 10 = 2048𝛿 2 (25𝛿 2 -𝜎 2 ) 4 .
In accordance with remark B. 

] = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 3 𝛿 𝛿 -4 𝛿 - √ 2𝜎 0 0 𝛿 3 𝛿 -4 𝛿 √ 2𝜎 0 0 -4 𝛿 -4 𝛿 8 𝛿 0 0 0 - √ 2𝜎 √ 2𝜎 0 -8 𝛿 0 0 0 0 0 0 -8 𝛿 -2 𝜎 0 0 0 0 -2 𝜎 2 𝛿 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠
, and H D3 is trigonal if and only if 𝜎 ̸ = 0 and 𝜎 2 -50𝛿 2 ̸ = 0. Recall also the bifurcation conditions [START_REF] Auffray | On Anisotropic Polynomial Relations for the Elasticity Tensor[END_REF]: (𝑖) 𝜎 = 0 implies transverse isotropy, (𝑖𝑖) 𝜎 2 -50𝛿 2 = 0 implies cubic symmetry, and (𝑖𝑖𝑖) 𝜎 = 0 and 𝛿 = 0 imply isotropy. The evaluation of the invariants (5.1) on (5.9) is (5.10)

𝐼 2 = 8(35𝛿 2 + 2𝜎 2 ), 𝐼 3 = 144𝛿(5𝛿 2 -𝜎 2 ), 𝐼 4 = 8 3 (50𝛿 2 -𝜎 2 ) 2 , 𝐼 5 = 16𝛿(50𝛿 2 -𝜎 2 ) 2 , 𝐼 6 = 16 9 (50𝛿 2 -𝜎 2 ) 3 , 𝐼 7 = 32 3 𝛿(50𝛿 2 -𝜎 2 ) 3 , 𝐼 8 = 64𝛿 2 (50𝛿 2 -𝜎 2 ) 3 , 𝐼 9 = 384𝛿 3 (50𝛿 2 -𝜎 2 ) 3 𝐼 10 = 128𝛿 2 (50𝛿 2 -𝜎 2 ) 4 .
As for the tetragonal case, we have

𝐼 4 ̸ = 0 for all H ∈ Σ [D3]
. Now, following the same proof as the one of proposition 5. We point out here that each proposed minimal functional basis concerns an exact symmetry stratum. The proposed functional basis {𝜅 1 = 𝐼 5 /𝐼 4 , 𝜅 2 = 𝐼 2 } happens to be identical for the tetragonal and trigonal strata. A natural question then arises: does this set remain a functional basis for the union of strata

Σ [D3] ∪ Σ [D4] ?
The answer is no as detailed in the following remark.

Remark 5.7. By proposition 5.3, two tetragonal harmonic fourth-order tensors having the same values for 𝜅 1 and 𝜅 2 are indeed in the same orbit (as a functional basis is a separating set). The same holds, by proposition 5.5, if one considers two trigonal harmonic fourth-order tensors having the same values for 𝜅 1 and 𝜅 2 . There exists, however, trigonal tensors that have the same value for 𝜅 1 and 𝜅 2 as some tetragonal tensors. Since, they are not on the same orbit as they do not belong to the same symmetry class, and the set {𝜅 1 , 𝜅 2 } is not a functional basis for Σ

[D3] ∪ Σ [D4] .
5.5. Orthotropic stratum. A fourth-order tensor H ∈ H 4 (R 3 ) is at least orthotropic if and only if there exists a rotation 𝑔 ∈ SO(3) such that H = 𝑔 ⋆H D2 where H D2 has the following Kelvin representation [START_REF] Olive | Harmonic factorization and reconstruction of the elasticity tensor[END_REF], (5.12) [

H D2 ] = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 𝜆 2 + 𝜆 3 -𝜆 3 -𝜆 2 0 0 0 -𝜆 3 𝜆 3 + 𝜆 1 -𝜆 1 0 0 0 -𝜆 2 -𝜆 1 𝜆 1 + 𝜆 2 0 0 0 0 0 0 -2𝜆 1 0 0 0 0 0 0 -2𝜆 2 0 0 0 0 0 0 -2𝜆 3 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠
, and H D2 is orthotropic if and only if 𝜆 1 , 𝜆 2 , 𝜆 3 are all distinct. In fact, setting

Δ := (𝜆 1 -𝜆 2 )(𝜆 2 -𝜆 3 )(𝜆 1 -𝜆 3 ),
we have by direct evaluation of the invariant ‖tr(H × d 2 )‖ 2 on (5.12):

(5.13)

‖tr(H × d 2 )‖ 2 = 6 25 Δ 2 .
The evaluation of the integrity basis {𝐼 2 , . . . , 𝐼 10 } of H on (5.12) can be expressed polynomially using the elementary symmetric functions [3, section 5.5]

𝜎 1 := 𝜆 1 + 𝜆 2 + 𝜆 3 , 𝜎 2 := 𝜆 1 𝜆 2 + 𝜆 2 𝜆 3 + 𝜆 2 𝜆 3 , 𝜎 3 := 𝜆 1 𝜆 2 𝜆 3 .
Conversely, the 𝜎 𝑖 can be expressed rationally in the 𝐼 𝑘 .

Proposition 5.8. A minimal functional basis for Σ [D2] , i.e., for orthotropic harmonic fourth-order tensors H ∈ H 4 (R 3 ), consists of the three rational invariants

𝜎 1 := 1 96 6𝐼 7 + 3𝐼 3 𝐼 4 -2𝐼 2 𝐼 5 Δ 2 , 𝜎 2 := 4 7 𝜎 2 1 - 1 14 𝐼 2 , 𝜎 3 := 1 7 𝜎 3 1 - 1 56 𝜎 1 𝐼 2 - 1 24 𝐼 3 , (5.14)
where

Δ 2 = 1 1296 (︀ 2𝐼 2 3 -60𝐼 3 2 -9𝐼 2 𝐼 4 + 18𝐼 6 )︀ ̸ = 0, Proof. For each H ∈ Σ [D2]
, we can write H = 𝑔 ⋆ H D2 where H D2 is given by (5.12). Now, a direct evaluation on the normal form (5.12) leads to

6𝐼 7 + 3𝐼 3 𝐼 4 -2𝐼 2 𝐼 5 = 96𝜎 1 Δ 2 , 2𝐼 3 2 -60𝐼 2 3 -9𝐼 2 𝐼 4 + 18𝐼 6 = 1296Δ 2 .
Hence, we obtain the first equation of (5.14), while the others are obtained in the same way. Finally, each invariant 𝐼 2 , . . . , 𝐼 10 is a polynomial function of 𝜎 1 , 𝜎 2 , 𝜎 3 [START_REF] Auffray | On Anisotropic Polynomial Relations for the Elasticity Tensor[END_REF], and, since dim Σ [D2] /SO(3) = 3, the conclusion follows by theorem 3.5.

Functional bases on symmetry strata of elasticity tensors

We finally address the problem of the determination of minimal functional bases for the symmetry strata of the elasticity tensor (except for the orthotropic Σ [D2] , the monoclinic Σ [Z2] and the triclinic Σ [START_REF] Abramian | Recovering the normal form and symmetry class of an elasticity tensor[END_REF] strata, which will be investigated in a future work). The isotropic case is trivial, a minimal functional basis for the isotropic stratum Σ [SO(3)] consists of the two Lamé coefficients. The cubic case is straightforward and treated in section 6.1. In order to derive our results for the trigonal Σ [D3] , tetragonal Σ [D4] and transversely isotropic Σ [O(2)] strata, we shall define in section 6.2 a non vanishing second-order covariant t = t(E) of E.

We recall the dimensions of the eight orbit spaces Σ [𝐻] /SO(3) (see [START_REF] Auffray | On Anisotropic Polynomial Relations for the Elasticity Tensor[END_REF]), (

dim(Σ [1] /SO(3)) = 18, dim(Σ [Z2] /SO(3)) = 12, dim(Σ [D2] /SO(3)) = 9, dim(Σ [D4] /SO(3)) = 6, dim(Σ [D3] /SO(3)) = 6, dim(Σ [O(2)] /SO(3)) = 5, dim(Σ [O] /SO(3)) = 3, dim(Σ [SO(3)] /SO(3)) = 2. 6.1) 
6.1. Elasticity cubic stratum. By theorem 2.1, an elasticity tensor 6.2. A transversely isotropic second-order covariant. The goal, here, is to build a symmetric second-order covariant of E ∈ Ela which is strictly transversely isotropic for all trigonal, tetragonal and transversely isotropic tensors. Observe that each symmetric second-order covariant, t(E), is necessarily at least transversely isotropic since it inherits the symmetries of E and since a second-order symmetric tensor can only be either orthotropic (three distinct eigenvalues), transversely isotropic (two distinct eigenvalues) or isotropic (only one eigenvalue). It is however not obvious to find such a covariant which remains strictly transversely isotropic for all

E = (tr d, tr v, d ′ , v ′ , H) ∈ Ela is cubic if and only if d ′ = v ′ = d ′ 2 = 0 and 𝐼 2 (H) = tr d 2 ̸ = 0 (meaning that H ∈ H 4 (R 3 ) is cubic). Now,
E ∈ Σ [D3] ∪ Σ [D4] ∪ Σ [O(2)] .
To build such a covariant, we use corollary 2.2, which forbids (d ′ , v ′ , d ′ 2 ) to be isotropic, and denote by ⟨𝑛⟩ the direction of transverse isotropy of the triplet (d

′ , v ′ , d ′ 2 ). By proposition 4.4, with ‖𝑛‖ = 1, ‖(𝑛 ⊗ 𝑛) ′ ‖ = √︁ 2 3
, we get thus

d ′ = ± √︂ 3 2 ‖d ′ ‖ (𝑛 ⊗ 𝑛) ′ , v ′ = ± √︂ 3 2 ‖v ′ ‖ (𝑛 ⊗ 𝑛) ′ , d ′ 2 = ± √︂ 3 2 ‖d ′ 2 ‖ (𝑛 ⊗ 𝑛) ′ ,
and

‖d ′ ‖ 2 d ′ 2 + ‖v ′ ‖ 2 v ′ 2 + d ′ 2 2 = 3 2 (︁ ‖d ′ ‖ 4 + ‖v ′ ‖ 4 + ‖d ′ 2 ‖ 2 )︁ (𝑛 ⊗ 𝑛) ′ 2 .
The property ((𝑛 ⊗ 𝑛) ′ 2 ) ′ = 1 3 (𝑛 ⊗ 𝑛) ′ leads to

(‖d ′ ‖ 2 d ′ 2 + ‖v ′ ‖ 2 v ′ 2 + d ′ 2 
2 ) ′ = 1 2

(︁ ‖d ′ ‖ 4 + ‖v ′ ‖ 4 + ‖d ′ 2 ‖ 2 )︁ (𝑛 ⊗ 𝑛) ′ ̸ = 0, as ‖d ′ ‖ 4 + ‖v ′ ‖ 4 + ‖d ′ 2 ‖ 2 ̸ = 0 over the entire union of strata Σ [O(2)] ∪ Σ [D3] ∪ Σ [D4]
. Therefore, this allows us to define the deviatoric second-order rational covariant

(6.3) t := 2 (‖d ′ ‖ 2 d ′ 2 + ‖v ′ ‖ 2 v ′ 2 + d ′ 2 2 ) ′ ‖d ′ ‖ 4 + ‖v ′ ‖ 4 + ‖d ′ 2 ‖ 2 ̸ = 0
for every elasticity tensor which is either trigonal, tetragonal or transversely isotropic. It is normalized in such a way that

t = (𝑛 ⊗ 𝑛) ′ , ‖𝑛‖ = 1, ‖t‖ = √︂ 2 3 ,
and thus (since t = t ′ ) (6.4)

d ′ = 3 2 (d : t) t, v ′ = 3 2 (v : t) t, d ′ 2 = 3 2 (d 2 : t) t.
6.3. Elasticity transversely isotropic stratum. By corollary 2.2, if E is transversely isotropic, then, the triplet (d ′ , v ′ , d ′ 2 ) is transversely isotropic, and thus

‖d ′ ‖ 4 + ‖v ′ ‖ 4 + ‖d ′ 2 ‖ 2 ̸ = 0. Theorem 6.2. Let E = (tr d, tr v, d ′ , v ′ , H) ∈ Σ [O(2)
] be a transversely isotropic elasticity tensor and

(6.5) t = 2 (‖d ′ ‖ 2 d ′ 2 + ‖v ′ ‖ 2 v ′ 2 + d ′ 2 2 ) ′ ‖d ′ ‖ 4 + ‖v ′ ‖ 4 + ‖d ′ 2 ‖ 2 ∈ H 2 (R 3 ).
A minimal functional basis for Σ [O(2)] consists of the five rational invariants Proof. Let E and E be two transversely isotropic elasticity tensors with the same invariants 𝜅 1 , . . . , 𝜅 5 .

We have to show that there exists 𝑔 ∈ SO(3), such that

𝑔 ⋆ d ′ = d ′ , 𝑔 ⋆ v ′ = v ′ , 𝑔 ⋆ H = H.

Now, t(E)

being the covariant defined by (6.5), we can write (see section 6.2)

t = (𝑛 ⊗ 𝑛) ′ , t = (𝑛 ⊗ 𝑛) ′ ,
where 𝑛 and 𝑛 are two unit vectors. Choose a rotation 𝑔 ∈ SO(3) such that 𝑔𝑛 = 𝑛. Then, we get 𝑔 ⋆ t = t, and by (6.4) and proposition 4.4

d = 𝜅 1 3 q + 3 2 (d : t)t = 𝜅 1 3 q + 3 2 𝜅 2 t =⇒ 𝑔 ⋆ d = 𝜅 1 3 q + 3 2 𝜅 2 𝑔 ⋆ t = d.
The argumentation is the same for v and v. Finally, using the reconstruction formula (C. 

E = (tr d, tr v, d ′ , v ′ , H) ∈ Σ [D4] , the triplet (d ′ , v ′ , d ′ 2
) is transversely isotropic (by corollary 2.2) and H ∈ H 4 (R 3 ) is either cubic or tetragonal (it is neither isotropic, nor transversely isotropic [START_REF] Forte | Symmetry classes for elasticity tensors[END_REF][START_REF] Olive | Characterization of the symmetry class of an elasticity tensor using polynomial covariants[END_REF]). Theorem 6.3. Let E = (tr d, tr v, d ′ , v ′ , H) be a tetragonal elasticity tensor and In both cases, we conclude as in the proof of theorem 6.2, and the minimality follows since dim(Σ [D4] /SO(3)) = 6.

t = 2 (‖d ′ ‖ 2 d ′ 2 + ‖v ′ ‖ 2 v ′ 2 + d ′ 2 
6.5. Elasticity trigonal stratum. Given a trigonal elasticity tensor

E = (tr d, tr v, d ′ , v ′ , H) ∈ Σ [D3] , the triplet (d ′ , v ′ , d ′ 2
) is transversely isotropic (by corollary 2.2) and H ∈ H 4 (R 3 ) is either cubic or trigonal (it is neither isotropic, nor transversely isotropic [START_REF] Forte | Symmetry classes for elasticity tensors[END_REF][START_REF] Olive | Characterization of the symmetry class of an elasticity tensor using polynomial covariants[END_REF]). The proof of the following result is obtained in the same way as in the tetragonal case. Theorem 6.5. Let E = (tr d, tr v, d ′ , v ′ , H) be a trigonal elasticity tensor and

t = 2 (‖d ′ ‖ 2 d ′ 2 + ‖v ′ ‖ 2 v ′ 2 + d ′ 2 2 ) ′ ‖d ′ ‖ 4 + ‖v ′ ‖ 4 + ‖d ′ 2 ‖ 2 .
A minimal functional basis for Σ [D3] consists of the six rational invariants 6.6. The special case of fourth-order harmonic tensors. The theorems provided in section 6 apply, of course, to fourth-order harmonic tensors H ∈ H 4 (R 3 ) ⊂ Ela (as the special case d = v = 0). In the cubic case, the functional basis defined by the single invariant 𝐼 3 /𝐼 2 in proposition 5.1 is trivially recovered. In the transversely isotropic, tetragonal and trigonal cases, the functional bases provided in propositions 5.2, 5.3 and 5.5 are recovered as special cases of theorems 6.2, 6.3 and 6.5, thanks to the equalities H :

d 2 = 2d ′ 2 [28, Remark 5.2], d ′ 2 = ± √︁ 3 2 ‖d ′ 2 ‖ t ̸ = 0 (see section 6.
2) and the definitions (5.1), so that (6.7)

t :

H : t = 2 3 d ′ 2 : H : d ′ 2 ‖d ′ 2 ‖ 2 = 4 3 d ′ 2 : d ′ 3 𝐼 4 = 4𝐼 5 3𝐼 4 .
The equality t : H : t = 4𝐼 5 /3𝐼 4 is valid for any transversely isotropic, tetragonal or trigonal pair (H, t) with ‖t ′ ‖ = √︀ 2/3 .

A polynomial functional basis for elasticity tensors at least tetragonal or trigonal

By remark 5.7, each functional basis obtained in the previous section is a priori valid for one and only one elasticity symmetry stratum, among the cubic, the transversely isotropic, the tetragonal and the trigonal ones 2 . Consider now the union of strata

X := Σ [SO(3)] ∪ Σ [O] ∪ Σ [O(2)] ∪ Σ [D3] ∪ Σ [D4] ⊂ Ela.
Of course, for each of these strata, the set of numerators and denominators of the rational invariants involved in their respective rational separating set obtained, constitutes a separating set of polynomial invariants for each of them. But the union of these sets is not separating for X (see remark 5.7). The question is thus whether one can merge and complete these separating sets in order to build a polynomial separating set, and hence a polynomial functional basis, valid for any elasticity tensors E at least tetragonal or trigonal, i.e., for X. A positive response is provided by the following result (see Appendix E for a proof). 

:= ‖d ′ ‖ 4 + ‖v ′ ‖ 4 + ‖d ′ 2 ‖ 2 , 𝐾 5 := d : k 4 , 𝐿 5 := v : k 4 , 𝐾 9 := k 4 : H : k 4 , 𝐾 10 := ‖tr(H × k 4 )‖ 2 .
where

k 4 := (‖d ′ ‖ 2 d ′ 2 + ‖v ′ ‖ 2 v ′ 2 + d ′ 2 
2 ) ′ .

(1) A minimal functional basis for Σ 

[SO(3)] ∪ Σ [O] ∪ Σ [O(2)] ∪ Σ [D4] ( i.

Conclusion

We have summarized the mathematical material that allows to define the notion of minimal functional basis, not only on a whole vector space (such as Ela) but also on its symmetry strata Σ [𝐻] . Restricting the concept of functional basis to the class of continuous functions, we have been able to define a lower bound for the cardinality of such a basis for a stratum Σ [𝐻] (namely, dim Σ [𝐻] /𝐺, where Σ [𝐻] /𝐺 is the orbit space of the symmetry strata Σ [𝐻] ), and formulate a method to produce such a minimal functional basis of Σ [𝐻] (theorem 3.5). Using this tool, we have been able to produce low-cardinality minimal functional bases for the tetragonal, trigonal, transversely isotropic, and cubic strata of Ela, of cardinal at most 6 (whereas a known integrity basis of the full space Ela contains 297 invariants [START_REF] Olive | A minimal integrity basis for the elasticity tensor[END_REF]). Finally, theorem 7.1 provides a minimal polynomial functional basis for the elasticity tensors which are at least tetragonal or trigonal, and consists of eight invariants.

Remark B.2. Polynomial equations involving invariants instead of covariants have been formulated in [START_REF] Auffray | On Anisotropic Polynomial Relations for the Elasticity Tensor[END_REF], for some symmetry strata of H 4 (R 3 ) (those of dimension at most 3). They consist in a finite set of polynomial relations and inequalities on the 𝐼 𝑘 . For instance, we have

H = 0 ⇐⇒ d 2 = 0 ⇐⇒ 𝐼 2 = ‖H‖ 2 = 0, d ′ 2 = 0 ⇐⇒ 𝐼 4 = ‖d ′ 2 ‖ 2 =
0 and, by (5.13), we get that tr(H × d 2 ) = 0 ⇐⇒ 2𝐼 3 2 -60𝐼 2 3 -9𝐼 4 𝐼 2 + 18𝐼 6 = 0. The condition 𝐼 4 = 0 characterizes the symmetry classes which are at least cubic, and we have 𝐼 4 ̸ = 0 for each fourth-order harmonic tensor which is either transversely isotropic, tetragonal or trigonal.

Appendix C. A reconstruction formula

We propose a reconstruction formula for each transversely isotropic tensor H ∈ Σ [O [START_REF] Abud | The geometry of spontaneous symmetry breaking[END_REF]] by means of a transversely isotropic second-order tensor t. Denoting by ⟨𝑛⟩ (where ‖𝑛‖ = 1), the axis of transverse isotropy, we introduce t := (𝑛 ⊗ 𝑛) ′ , which belongs to H 2 (R 3 ). Using the concept of harmonic square introduced in [START_REF] Olive | Harmonic factorization and reconstruction of the elasticity tensor[END_REF], which builds a fourth-order harmonic tensor t * t from a second-order harmonic tensor t, we get

t * t := H(t ⊙ t) = t ⊙ t - 4 7 q ⊙ t 2 + 2 35 ‖t‖ 2 q ⊙ q ∈ H 4 (R 3 ),
where ⊙ is the symmetric tensor product and H(S), defined by (2.5), is the projection of a totally symmetric fourth-order tensor S onto its fourth-order harmonic component H. We provide here separating sets for a pair (H, t), on the union of strata

Σ [O(2)] ∪ Σ [D3] ∪ Σ [D4] ,
where H is a fourth-order harmonic tensor and t is a transversely isotropic deviator.

Lemma D.1. Let H ∈ H 4 (R 3 ) be a fourth-order harmonic tensor and t = (𝑛 ⊗ 𝑛) ′ with ‖𝑛‖ = 1, a deviatoric transversely isotropic tensor. If the pair (H, t) is at least tetragonal, then all the 𝐼 𝑘 (H) defined by (5.1) orbit, and belong thus to the same symmetry class. So far, we have proved that the family F = {𝐾 1 , 𝐿 1 , . . . , 𝐾 10 } is separating for the three cases (1), ( 2) and (3) of theorem 7.1. Note moreover, that 𝐾 10 can be removed from F when the goal is to separate "at least tetragonal" (case (1)) or "at least trigonal" (case (2)) elasticity tensors. Indeed, in the proof of theorem D.3, 𝐾 10 is used only to distinguish whether a pair (H, t) is tetragonal or trigonal.

Finally, it remains to prove the minimality of the separating set F for X, and of F ∖ {𝐾 10 } for cases (1) and [START_REF] Abud | The geometry of spontaneous symmetry breaking[END_REF]. Let F ′ be a proper subset of F or of F ∖ {𝐾 10 }. 4 + ‖v ′ ‖ 4 + 𝐼 4 , then it fails to separate an harmonic tetragonal tensor H D4 with 𝛿 = 0 (see (5.6)) from E = 0, since all the invariants in F ′ vanish on these tensors. (e) If F ′ does not contain 𝐾 9 = k 4 : H : k 4 , it fails to separate tetragonal harmonic tensors (by remark 5.4) and to separate trigonal harmonic tensors (by remark 5.6). (f) Finally, if F ′ does not contain 𝐾 10 = ‖tr(H × k 4 )‖ 2 , then it fails to be a separating set for X since all the invariants in F ′ take the same values on the harmonic trigonal tensor H D3 with 𝛿 = 0 and 𝜎 = 𝜎 1 ̸ = 0 (see (5.9)) and the harmonic tetragonal tensor H D4 with 𝛿 = 0 and 𝜎 = 𝜎 2 (see (5.6)), when 𝜎 2 2 = 2𝜎 2 1 . These arguments show that F is a minimal separating set for X, which proves point (3) of theorem 7.1. Items (a) to (e) show that F ∖ {𝐾 10 } is a minimal separating set for either at least tetragonal tensors (point (1)) or at least trigonal tensors (point (2)), which achieves the proof.

Funding. The authors were partially supported by CNRS Projet 80-Prime GAMM (Géométrie algébrique complexe/réelle et mécanique des matériaux).
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 35 Let ℬ := {𝐼 1 , . . . , 𝐼 𝑁 } be an integrity basis of R[V] 𝐺 , and Σ [𝐻] , a symmetry stratum with 𝑑 = dim(Σ [𝐻] /𝐺). Suppose that there exist 𝐺-invariant continuous functions 𝜅 1 , . . . , 𝜅 𝑑 in ℱ(Σ [𝐻] ) 𝐺 and functions 𝐹 1 , . . . , 𝐹 𝑁 such that 𝐼 𝑘 (𝑣) = 𝐹 𝑘 (𝜅 1 (𝑣), . . . , 𝜅 𝑑 (𝑣)), ∀𝑣 ∈ Σ [𝐻] , ∀𝑘 = 1, . . . , 𝑁. Then {𝜅 1 , . . . , 𝜅 𝑑 } is a minimal separating set of Σ [𝐻] /𝐺 and a minimal functional basis of ℱ(Σ [𝐻] ) 𝐺 . Proof. As already noticed, for a real representation of a compact Lie group, an integrity basis ℬ is also a separating set of V/𝐺 [2, Appendix C]. By hypothesis, for any 𝑣, 𝑣 ∈ Σ [𝐻] ∀𝑖, 𝜅 𝑖 (𝑣) = 𝜅 𝑖 (𝑣) =⇒ ∀𝑘, 𝐼 𝑘 (𝑣) = 𝐼 𝑘 (𝑣).

4. 1 .

 1 Orthotropic stratum. The orbit space Σ [D2] /SO(

2 , 𝛿 2 ̸= 2 .Proposition 4 . 4 .

 22244 = 0, and hence 𝜅 2 (a) = 𝛿 2 . We have therefore𝐼 1 (a) = 𝜅 1 (a), 𝐽 2 (a) = 6𝜅 2 2 (a), 𝐽 3 (a) = 6𝜅 3 2 (a), and the result follows by theorem 3.5 applied to V = S 2 (R 3 ) and the symmetry stratumΣ [O(2)] , with dim (︀ Σ [O(2)] /SO(3) )︀The rational invariants 𝜅 1 , 𝜅 2 in lemma 4.3 can be considered as global parameters of X = Σ [O(2)] /SO[START_REF] Auffray | On Anisotropic Polynomial Relations for the Elasticity Tensor[END_REF]. Any transversely isotropic second-order symmetric tensor a ∈ Σ [O(2)] can be written

( 5 . 1 )𝐼 2 := tr d 2 , 𝐼 3 := tr d 3 , 𝐼 4 := tr d ′ 2 2 ,𝐼 5 : 2 3 , 𝐼 7 :

 51223342527 15, Theorem 2.7]. It involves only the two second-order covariants d 2 and d 3 [7] d 2 := tr 13 H 2 , d 3 := tr 13 H 3 , which, in components write (d 2 ) 𝑖𝑗 = 𝐻 𝑖𝑝𝑞𝑟 𝐻 𝑝𝑞𝑟𝑗 , and (d 3) 𝑖𝑗 = 𝐻 𝑖𝑘𝑝𝑞 𝐻 𝑝𝑞𝑟𝑠 𝐻 𝑟𝑠𝑘𝑗 .Here, we shall work with a slightly modified integrity basis, = tr(d ′ 2 d ′ 3 ), 𝐼 6 := tr d ′

Theorem 6 . 1 .

 61 by proposition 5.1 and since dim(Σ [O] /SO(3)) = 3, we have the following result. Let E = (tr d, tr v, 0, 0, H) be a cubic elasticity tensor. A minimal functional basis for Σ [O] consists of the three rational invariants (6.2) 𝜅 1 := tr d, 𝜅 2 := tr v, 𝜅 3 := 𝐼 3 𝐼 2 .

(6. 6 )

 6 𝜅 1 := tr d, 𝜅 2 := tr v, 𝜅 3 := d : t, 𝜅 4 := v : t, 𝜅 5 := t : H : t.

𝜅 1 : 6 = 𝐼 2 . 6 . 6 .

 16266 = tr d, 𝜅 2 := tr v, 𝜅 3 := d : t, 𝜅 4 := v : t, 𝜅 5 := t : H : t, 𝜅 Remark In this set, the invariant 𝜅 6 = 𝐼 2 = tr d 2 can be changed into 𝐼 3 = tr d 3 (by lemma D.1).
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 71 Let E = (tr d, tr v, d ′ , v ′ , H) be an elasticity tensor and 𝐾 1 := tr d, 𝐿 1 := tr v, 𝐼 3 := tr d 3 , 𝐾 4

  (a) If F ′ does not contain 𝐾 1 = tr d or 𝐿 1 = tr v, then it fails to be a separating set for isotropic elasticity tensors. (b) If F ′ does not contain 𝐼 3 tr d 3 , then it fails to be a separating set for cubic elasticity tensors. (c) If F ′ does not contain 𝐾 5 = d : k 4 , then the two transversely isotropic elasticity tensors E 1 = (0, 0, d ′ , 0, 0) and E 2 = (0, 0, -d ′ , 0, 0) have the same values for F ′ but are not on the same orbit. The same conclusion holds for 𝐿 5 = v : k 4 . (d) If F ′ does not contain 𝐾 4 = ‖d ′ ‖

, tr v, d ′ , v ′ , H).

  Introducing the second-order dilatation tensor

	the two deviatoric tensors		
	(2.4)		
		d := tr 12 E,	𝑑 𝑖𝑗 = 𝐸 𝑘𝑘𝑖𝑗 ,
	and the second-order Voigt tensor		
		v := tr 13 E,	𝑣 𝑖𝑗 = 𝐸 𝑘𝑖𝑘𝑗
	one obtains an explicit harmonic decomposition of E (see [14, 14, 5, 17, 1]),
	(2.2) E = (tr dIn this decomposition, the harmonic components are the two scalar invariants
	(2.3)	tr d,	tr v,

  = dim H 4 (R 3 )) independent components since 𝐻 1111 = -𝐻 1122 -𝐻 1133 , 𝐻 2222 = -𝐻 1122 -𝐻 2233 , 𝐻 3333 = -𝐻 1133 -𝐻 2233 , 𝐻 2333 = -𝐻 1123 -𝐻 2223 , 𝐻 1113 = -𝐻 1223 -𝐻 1333 , 𝐻 1222 = -𝐻 1112 -𝐻 1233 . 5.1. Cubic stratum. A fourth-order tensor H ∈ H 4 (R 3 ) is at least cubic if and only if there exists a rotation 𝑔 ∈ SO(3) such that H = 𝑔 ⋆ H O , where H O has the following Kelvin representation [3],

	with 9 ((5.2)	[H O				
		𝐻 1111 𝐻 1122 𝐻 1133 √ 2𝐻 1123 √ 2𝐻 1113 √ 2𝐻 1112	𝐻 1122 𝐻 2222 𝐻 2233 √ 2𝐻 2223 √ 2𝐻 1223 √ 2𝐸 1222	𝐻 1133 𝐻 2233 𝐻 3333 √ 2𝐻 2333 2𝐻 2233 √ 2𝐻 1123 √ 2𝐻 2223 √ 2𝐻 2333 √ 2𝐻 1333 2𝐻 1233 2𝐻 1233 2𝐻 1223 √	√ √ √ 2𝐻 1233 2𝐻 1113 2𝐻 1223 2𝐻 1333 2𝐻 1133 2𝐻 1123	√ √ √ 2𝐻 1223 2𝐻 1112 2𝐻 1222 2𝐻 1233 2𝐻 1123 2𝐻 1122	⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠

  H O is cubic if and only if 𝛿 ̸ = 0. The evaluation of the invariants (5.1) on (5.2) is

	(5.3)	𝐼 2 (H) = 480𝛿 2 ,	𝐼 3 (H) = 1920𝛿 3 ,	𝐼 𝑘 (H) = 0 for 𝑘 = 4 to 10.

Proposition 5.1. A minimal functional basis for Σ [O]

, i.e., for cubic fourth-order harmonic tensors

H ∈ H 4 (R 3 ), is reduced to the single rational invariant 𝜅 := 𝐼 3 /𝐼 2 .

Proof. This is a direct consequence of theorem 3.5 applied to V = H 4 (R 3 ) and the cubic stratum Σ [O] (of dimension 1). Indeed, we have 𝜅(H) = 4𝛿 ̸ = 0 for all H ∈ Σ [O] , and thus 𝐼 2 (H) = 30𝜅 2 (H) and 𝐼 3 (H) = 30𝜅 3 (H).

5.2. Transversely isotropic stratum.

A fourth-order tensor H ∈ H 4 (R 3 ) is at least transversely isotropic if and only if there exists a rotation 𝑔 ∈ SO(3) such that H = 𝑔 ⋆ H O

[START_REF] Abud | The geometry of spontaneous symmetry breaking[END_REF] 

, where H O(2) has the following Kelvin representation

[START_REF] Auffray | On Anisotropic Polynomial Relations for the Elasticity Tensor[END_REF]

,

(5.4) 

[H O

[START_REF] Abud | The geometry of spontaneous symmetry breaking[END_REF] 

  , 𝐼 9 = 48000000𝛿 9 , 𝐼 10 = 800000000𝛿 10 .

														3 ,					𝐼 4 =	20000 3	𝛿 4 ,
			𝐼 5 = 40000𝛿 5 ,		𝐼 6 =	2000000 9	𝛿 6 , 𝐼 7 =	4000000 3	𝛿 7 ,
	𝐼 8 = 8000000𝛿 8 Observe that																	
		𝛿 =	7 18	𝐼 3 𝐼 2	=	27 250	𝐼 4 𝐼 3	=	1 6	𝐼 5 𝐼 4	=	9 50	𝐼 6 𝐼 5	=	1 6	𝐼 7 𝐼 6	=	1 6	𝐼 8 𝐼 7	=	1 6	𝐼 9 𝐼 8	=	3 50	𝐼 10 𝐼 9	,
	is a rational invariant. Following the same proof as for proposition 5.1, we obtain the following result.
	5.3. Tetragonal stratum. A fourth-order tensor H ∈ H 4 (R 3 ) is at least tetragonal if and only if there
	exists a rotation 𝑔 ∈ SO(3) such that H = 𝑔 ⋆ H D4 where H D4 has the following Kelvin representation,
	(5.6)	[H D4																						

Proposition 5.2. A minimal functional basis for Σ [O(2)]

, i.e., for transversely isotropic fourth-order harmonic tensors H ∈ H 4 (R 3 ), is reduced to the single rational invariant 𝜅 := 𝛿.

  2, 𝐼 4 ̸ = 0 for all H ∈ Σ [D4] . Since each 𝐼 𝑘 (2 ≤ 𝑘 ≤ 10) depends only on 𝛿 and 𝜎 2 , we deduce that they are functions of 𝜅 1 , 𝜅 2 , and the proposition follows by theorem 3.5, since dim Σ [D4] /SO(3) = 2 (6.1). Remark 5.4. Neither {𝐼 2 , 𝐼 3 }, nor {𝐼 3 , 𝐼 4 } are separating sets. Indeed, , we have 𝐼 3 = 3744 and 𝐼 4 = 46208/3, but they have different values for 𝐼 2 . 5.4. Trigonal stratum. A fourth-order tensor H ∈ H 4 (R 3 ) is at least trigonal if and only if there exists a rotation 𝑔 ∈ SO(3) such that H = 𝑔 ⋆ H D3 where H D3 has the following Kelvin representation,

	Proposition 5.3. A minimal functional basis for Σ [D4] , i.e., for tetragonal fourth-order harmonic tensors
	H ∈ H 4 (R 3 ), consists of the two rational invariants				
	(5.8)					𝜅 1 :=	𝐼 5 𝐼 4	,			𝜅 2 := 𝐼 2 .		
	Proof. For each H ∈ Σ [D4] , we deduce by (5.7) that				
	𝛿 =	1 6	𝐼 5 𝐼 4	=	1 6	𝜅 1 ,	𝜎 2 =	1 8	𝐼 2 -35𝛿 2 =	1 8	𝜅 2 -	35 36	𝜅 1	2 .
	• for both tetragonal tensors (𝛿 = 1, 𝜎 =	√	60) and (𝛿 = 3/2, 𝜎 =	√︀	65/4), we have 𝐼 2 = 760 and
	𝐼 3 = 3600, but they have different values for 𝐼 4 . • for both tetragonal tensors (𝛿 = 1, 𝜎 = √ 63) and (𝛿 = 3/2, 𝜎 = 73/4)(5.9) √︀ [H D3

  Remark 5.6. Neither {𝐼 2 , 𝐼 3 } nor {𝐼 3 , 𝐼 4 } are separating sets. Indeed, 𝐼 3 = -12636 and 𝐼 4 = 9747/2, but they have different values for 𝐼 2 .

	(5.11)	𝜅 1 :=	𝐼 5 𝐼 4	,	𝜅 2 := 𝐼 2 .
	• for both trigonal tensors (𝛿 = 1, 𝜎 =	√︀ 715/8) and (𝛿 = 3/2, 𝜎 =	√︀	135/2), we have 𝐼 2 = 1710
		and 𝐼 3 = -12150, but they have different values for 𝐼 4 .
	• for both trigonal tensors (𝛿 = 1, 𝜎 =	√︀	371/4) and (𝛿 = 3/2, 𝜎 =	√︀	279/4), we have

3, we get: Proposition 5.5. A minimal functional basis for Σ [D3] , i.e., for trigonal harmonic fourth-order tensors H ∈ H 4 (R 3 ), consists of the two rational invariants

  This achieves the proof that {𝜅 1 , . . . , 𝜅 5 } is a functional basis for Σ [O(2)] and the minimality follows by remark 3.4, since dim(Σ [O(2)] /SO(3)) = 5.

								2), we have
	H =	35 8	(t : H : t) t * t =	35 8	𝜅 5 t * t =⇒ 𝑔 ⋆ H =	35 8	𝜅 5 (𝑔 ⋆ t) * (𝑔 ⋆ t) = H,
	where the harmonic square t * t is the fourth order harmonic part of t ⊙ t = (t ⊗ t) 𝑠 ,
			t * t := t ⊙ t -	4 7	q ⊙ t 2 +	2 35	‖t‖ 2 q ⊙ q,

such as 𝑔 ⋆ (t * t) = (𝑔 ⋆ t) * (𝑔 ⋆ t).

6.4. Elasticity tetragonal stratum. Given a tetragonal elasticity tensor

  Remark 6.4. In this set, 𝜅 6 = 𝐼 2 = tr d 2 can be replaced by 𝐼 3 = tr d 3 (by lemma D.1). . Let E and E be two tetragonal elasticity tensors. Then, the pairs (H, t) and (H, t) are necessarily both tetragonal, since they have the same respective symmetry as (d ′ , v ′ , H) and (d ′ , v ′ , H). If they have the same invariants 𝜅 1 , . . . , 𝜅 6 , then,𝜅 5 = t : H : t = t : H : t, and 𝜅 6 = 𝐼 2 (H) = 𝐼 2 (H),and thus, by lemma D.1, 𝐼 𝑘 (H) = 𝐼 𝑘 (H) for 2 ≤ 𝑘 ≤ 10. Hence, there exists 𝑔 ∈ SO(3) such that 𝑔 ⋆ H = H. Now, two cases can happen. In that case, let ⟨𝑛⟩ be the principal axis of symmetry group of H, and ⟨𝑛⟩, the one for H. Then, 𝑔𝑛 = ±𝑛 and thus 𝑔 ⋆ t = t. (2) H is cubic. Then, the principal axis ⟨𝑛⟩ of the tetragonal pair (H, t) is necessarily one of the three principal axes of the cubic tensor H (and similarly for the pair (H, t)). Since 𝑔 sends each principal axis of H onto a principal axis of H, it is possible to change 𝑔 such that 𝑔𝑛 = 𝑛, and thus that 𝑔 ⋆ t = t (keeping 𝑔 ⋆ H = H), by replacing 𝑔 by 𝑔ℎ, where ℎ belongs to the symmetry group of H (see[START_REF] Olive | Harmonic factorization and reconstruction of the elasticity tensor[END_REF] Lemma 8.9] for details).

		‖d ′ ‖ 4 + ‖v ′ ‖ 4 + ‖d ′ 2 ‖ 2	2 ) ′	.
	A minimal functional basis for Σ [D4] consists of the six rational invariants
	𝜅 1 := tr d,	𝜅 2 := tr v,		𝜅 3 := d : t,
	𝜅 4 := v : t,	𝜅 5 := t : H : t,		𝜅 6 := 𝐼 2 .
	Proof(1) H is tetragonal and has thus the same symmetry group as the pair (H, t) (the same holds for H
	and (H, t)).		

  e., at least tetragonal elasticity tensors) consists of the seven polynomial invariants 𝐾 1 , 𝐿 1 , 𝐼 3 , 𝐾 4 , 𝐾 5 , 𝐿 5 and 𝐾 9 .(2) A minimal functional basis forΣ [SO(3)] ∪ Σ [O] ∪ Σ [O(2)] ∪ Σ [D3] ( i.e.,at least trigonal elasticity tensors) consists of the seven polynomial invariants 𝐾 1 , 𝐿 1 , 𝐼 3 , 𝐾 4 , 𝐾 5 , 𝐿 5 and 𝐾 9 . (3) A minimal functional basis for X ( i.e., at least tetragonal or trigonal elasticity tensors) consists of the eight polynomial invariants 𝐾 1 , 𝐿 1 , 𝐼 3 , 𝐾 4 , 𝐾 5 , 𝐿 5 , 𝐾 9 and 𝐾 10 .

2 

The two invariants tr d, tr v constitute a minimal functional basis for the isotropic stratum Σ [SO

[START_REF] Auffray | On Anisotropic Polynomial Relations for the Elasticity Tensor[END_REF]

] .

  It has been shown in[START_REF] Olive | Harmonic factorization and reconstruction of the elasticity tensor[END_REF] Theorem 5.2] that every transversely isotropic fourth-order harmonic tensor H ∈ H 4 (R 3 ) can be reconstructed asThe evaluations (5.5) of the invariants 𝐼 𝑘 for all H ∈ Σ [O(2)] give 63/25𝐼 3 = 35𝐼 5 /9𝐼2 4 and 28𝐼 3 /9𝐼 2 = 4𝐼 5 /3𝐼 4 . We have thus

												It is such that
	(C.1)	‖t * t‖ 2 = t : (t * t) : t =	8 35	,		(t * t)	. . . (t * t) =	8 105	q +	12 147	t.
	(C.2)	H =	35 8	(t : H : t) t * t,		t : H : t =	28 9	𝐼 3 𝐼 2	=	4 3	𝐼 5 𝐼 4	,
	with t = (𝑛 ⊗ 𝑛) ′ , and									
	(C.3) (t : (C.4) d 2 (H) = 5 48 H = 63 25 𝐼 3 d ′ 2 * d ′ 2 ,	𝐼 3 = tr d 3 .
		H =	63 25 𝐼 3	d ′ 2 * d ′ 2 =	35𝐼 5 9𝐼 2 4	(d ′ 2 * d ′ 2 ) =	35 8	(t :

We have then a reconstruction formula for H, using the scalar t : H : t and the deviatoric transversely isotropic second-order tensor t:

Theorem C.1. Each fourth-order harmonic tensor H ∈ Σ [O(2)]

, transversely isotropic of axis ⟨𝑛⟩, with ‖𝑛‖ = 1, can be written H : t) 2 (14 q + 15 t) .

Proof. H : t) t * t,

where the last equality results from t : H : t = 4𝐼 5 /3𝐼 4 (see (6.7)). We get thus (C.2). Finally, since d 2 (H) = H . . . H, we deduce (C.3) from (C.2) and (C.1).

Appendix D. Separating sets for a pair (H, t)

  are polynomial functions of 𝐼 2 (H) and t : H : t. In particular E has the same symmetry class as the pair (H, t). Now, from (E.1) and since ‖t‖ 𝐾 5 = 𝐾 5 , 𝐿 5 = 𝐿 5 , 𝐼 4 . Therefore, by theorem D.3, (H, t) and (H, t) are in the same

															2 =	⃦ ⃦ t ⃦ ⃦ 2 = 2/3,
			𝐾 4 =	36 𝐾 4 4	(︀	𝐾 4 5 + 𝐿 4 5	)︀	+ ‖d ′ 2 ‖ 2 = 𝐾 4 =	36 4 𝐾 4	(︁ 𝐾	4 5 + 𝐿 4 5	)︁	+	⃦ ⃦ ⃦d ′ 2	2 ⃦ ⃦ ⃦	,
	we get 𝐼 4 =	⃦ ⃦ ⃦d ′ 2	⃦ ⃦ ⃦ 2	= ‖d ′ 2 ‖ 2 =				
	(D.1)		𝐼 3 =	3 4	(t : H : t)𝐼 2 -	15 8	(t : H : t) 3 , 𝐼 4 =	1 6	(︂	𝐼 2 -	15 2	(t : H : t) 2	)︂ 2	.
	(D.2)	𝐼 3 = -		9 8	(t : H : t)𝐼 2 +	405 64	(t : H : t) 3 , 𝐼 4 =	1 96	(︂	𝐼 2 -	135 8	(t : H : t) 2	)︂ 2	.

The same result holds if the pair (H, t) is at least trigonal, but with and

Appendix A. Elasticity symmetry groups

For each of the eight symmetry classes of the elasticity tensor, as detailed in [START_REF] Forte | Symmetry classes for elasticity tensors[END_REF], we provide an explicit representative subgroup 𝐻 ⊂ SO [START_REF] Auffray | On Anisotropic Polynomial Relations for the Elasticity Tensor[END_REF] in this class, which serves as a prototype for visualising each of these symmetries.

• 1 is the subgroup of SO(3) reduced to the identity element; • Z 2 is generated by the second-order rotation r(𝑒 3 , 𝜋). It has order 2; • D 2 is generated by the second-order rotations r(𝑒 3 , 𝜋) and r(𝑒 1 , 𝜋). It has order 4; • D 3 is generated by the third order rotation r(𝑒 3 , 2𝜋

3 ) and the second-order rotation r(𝑒 All these subgroups are compact. The notation r(𝑛, 𝜃) denotes a rotation of angle 𝜃 around axis ⟨𝑛⟩.

Appendix B. Stratification of fourth-order harmonic tensors

The vector space H 4 (R 3 ), of fourth-order harmonic tensors, splits into the following eight symmetry classes (the same as for the elasticity tensor), resulting into the following isotropy stratification of

namely into triclinic, monoclinic, orthotropic, trigonal, tetragonal, transversely isotropic, cubic and isotropic strata.

Necessary and sufficient covariant conditions characterizing each symmetry stratum of H 4 (R 3 ) have been derived in [29, Theorems 9.3, 9.11, 9.15, and Corollary 9.7]. Some of these conditions which are necessary for our purpose are stated below, as theorem B.1

The conditions for the orthotropic and monoclinic cases require the introduction of additional covariants,

of order 2 (the c 𝑘 ) and order 1 (the 𝑣 𝑘 ).

Proof. Suppose first that (H, t) is at least tetragonal. Without loss of generality, we can assume that its symmetry group contains D 4 (defined in Appendix A), and thus that t = (𝑒 3 ⊗ 𝑒 3 ) ′ . Using the Kelvin representation (5.6) of H, we get t : H : t = 𝐻 3333 = 8𝛿 and (5.7), from which we deduce (D.1). Besides, each invariant 𝐼 𝑘 (H) can be expressed as a polynomial function of 𝛿 and 𝜎 2 by (5.7), and thus of t : H : t and 𝐼 2 , which concludes the proof for the tetragonal case. The proof for the trigonal case is similar, except that the Kelvin representation (5.9) leads to t : H : t = 𝐻 3333 = 8𝛿 and (5.10), and thus to (D.2).

The following theorem is a corollary of lemma D.1 and of result [START_REF] Olive | Characterization of the symmetry class of an elasticity tensor using polynomial covariants[END_REF]Lemma 8.8], which we recall now. Lemma D.2. Let t be a transversely isotropic second-order tensor and H ∈ H 4 (R 3 ). Then, (H, t) is at least tetragonal if and only if tr(H × t) = 0. Theorem D.3. Let H ∈ H 4 (R 3 ) be a fourth-order harmonic tensor and t = (𝑛 ⊗ 𝑛)

′ with ‖𝑛‖ = 1, a deviatoric transversely isotropic tensor. Then, the set of invariants 

) is the rotation of angle 𝜋/4 about 𝑒 3 . If tr(H × t) = tr(H × t) ̸ = 0, then, (H, t) and (H, t) are both at least trigonal, and the arguments are similar.

Appendix E. Proof of theorem 7.1

Observe first that an elasticity tensor E ∈ X is at least cubic if and only if

, the transversely isotropic rational covariant t := 2k 4 /𝐾 4 is well defined and by (6.4), and we have

Moreover, E has the same symmetry class as the pair (H, t) which is either trigonal, tetragonal or transversely isotropic. By theorems 6.1 to 6.5, the set F := {𝐾 1 , 𝐿 1 , . . . , 𝐾 10 } is separating for each individual stratum Σ [𝐻] contained in X. Therefore, given two elasticity tensors E, E ∈ X with the same eight invariants 𝐾 1 = 𝐾 1 , 𝐿 1 = 𝐿 1 , . . . , 𝐾 10 = 𝐾 10 , to prove that they are in the same orbit it is enough to show that they belong to the same symmetry class. Therefore, let E = (tr d, tr v, d ′ , v ′ , H), and we will argue according to the symmetry class of E.

Therefore, by theorem B.1, H is at least cubic, and since 𝐼 3 = 𝐼 3 = 0, we conclude by (5.3), that H = 0, and thus that E is isotropic. (B) If E is cubic, then, all invariants in F ∖ {𝐾 1 , 𝐿 1 , 𝐼 3 } vanish but 𝐼 3 = 𝐼 3 ̸ = 0. We conclude, as in case (A), that E is at least cubic, and indeed cubic, since 𝐼 3 ̸ = 0 and thus 𝐼 2 = ⃦ ⃦ H ⃦ ⃦ 2 ̸ = 0. (C) If E is either transversely isotropic, trigonal or tetragonal, then, 𝐾 4 = 𝐾 4 ̸ = 0 and thus E is either transversely isotropic, trigonal or tetragonal. Hence, t is well-defined and is written

2 ) ′ ,