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Abstract—The Cherenkov Telescope Array is the future of
ground-based gamma-ray astronomy. Its first prototype telescope
built on-site, the Large Size Telescope 1, is currently under
commissioning and taking its first scientific data. In this paper,
we present for the first time the development of a full-event
reconstruction based on deep convolutional neural networks and
its application to real data. We show that it outperforms the
standard analysis, both on simulated and on real data, thus
validating the deep approach for the CTA data analysis. This
work also illustrates the difficulty of moving from simulated data
to actual data.

Index Terms—deep learning, gamma astronomy, multitasking,
learning bias, model generalization to real data

I. INTRODUCTION

Astronomy, as many other domains requiring performant
data analysis methods, is giving more and more attention to
deep neural networks. Gamma-ray astronomy is the observa-
tion of the most energetic photons produced by violent as-
trophysics phenomena, such as supernova explosions, neutron
star mergers or the environment of black holes. The analysis
of such phenomena will be enhanced by the Cherenkov
Telescope Array (CTA), an Imaging Atmospheric Cherenkov
Telescope (IACT) representing the next generation of ground-
based gamma-ray telescopes, currently under construction. It
will be composed of two arrays, one in each hemisphere to
allow for maximal sky coverage, and will consist of tens of
telescopes. The telescope prototype being built on-site on the
Canary island of La Palma, the first Large Size Telescope
(LST1) has started taking commissioning data recently. As
shown in Fig. 1, its method of observation, as is standard for
such telescopes, relies on the observation of the Cherenkov
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light stimulated by the development of the atmospheric shower
of particles occurring when a gamma-ray photon enters the
atmosphere. This emitted light is collected by a mirror, and
captured by a specific ultra-fast and very sensitive optical cam-
era [1]. Gamma-ray-initiated showers then appear as roughly
elliptical images on the camera plane.

The goal of an IACT data analysis is to reconstruct the
interesting physical parameters - the particle type (gamma-ray
photon vs. cosmic-ray background), its energy and incoming
direction (altitude, azimuth). Several methods have been devel-
oped to achieve this event reconstruction in current generation
IACTs. The most common one relies on the characterization
of the moments of the image [2]. The extracted parameters
are then combined with multivariate analysis methods, such as
boosted decision trees or random forests [3]. This approach,
referred to as Hillas+RF in the rest of this paper, is robust,
but has limited sensitivity, especially at low energies. On the
other hand, state-of-the-art methods rely on template matching
between the captured images and a huge dictionary, with the
help of a likelihood function [4]. However, these methods are
slow [5], and consequently might not be practical for CTA data
analysis in their current implementation. Indeed, to achieve
its best sensitivity, CTA requires the most physically accurate
analysis methods, but also methods that are computationally
efficient to be able to deal with the large volume of data that
will be produced (several PB per year to be analyzed again
every year to benefit from calibration and analysis improve-
ments). Deep neural networks may thus offer a solution to this
challenge.

In this paper, we present the recent developments made to
address the event reconstruction problem using deep learning,
and the new results obtained both on simulated and real data
from LST1. We first compare the performance of a deep
multitask architecture and a widespread analysis method on
the most recent production of simulated data, which takes into
account the updated knowledge of the LST1. We also use an
adaptation method for the simulation to better correspond to
the real data. Then, we realize the first ever full-event recon-
struction from IACT data with deep learning, highlighting the



Fig. 1. Large-Sized Telescope 1 (LST1) principle.

complexity of transferring the good performance obtained on
simulations to real data.

II. RELATED WORK

Applying deep learning techniques to the analysis of real
IACT data is recent. In the High Energy Stereoscopic System
(H.E.S.S.)1 experiment, two studies have been carried out
using stereoscopic data (i.e., composed of the data from the
four telescopes of H.E.S.S. I), addressing only a part of the
gamma-ray event reconstruction. Shilon et al. [6] address the
gamma/proton classification and direction regression tasks.
They propose a combination of a convolutional neural network
(CNN) and a Recurrent Neural Network, denoted CRNN, to
handle the gamma/proton classification task. The role of the re-
current part of the model is to combine the information coming
from the different telescopes. For the direction regression, they
adopt a different strategy. They incorporate the data coming
from the different telescopes as the different channels of a
unique image, and use a shallow CNN to complete the task.
Analyzing real data, they observe a decrease of the perfor-
mance compared to the one on simulated data for the direction
regression. Starting from the CRNN architecture, Parsons et
al. [7] propose to address the gamma/proton classification task
by combining IACT images and standard method parameters.
They observe that the obtained architecture is sensitive to the
level of Night Sky Background (NSB) present in the data.

In the context of CTA, deep learning approaches have been
explored, all analysis of simulated data. In [8], Nieto et al.
probe very deep networks for gamma/proton classification
from single telescope images. Reference [9] presents a shal-
lower CNN to address, from stereoscopic data, gamma/proton
classification, and energy and direction regression tasks. For
the LST event reconstruction, the TRN-single-tel model pro-
posed in [10] consists of a custom ResNet [11] augmented with
the Squeeze-and-Excitation attention mechanism [12]. Each
task (i.e., gamma/proton classification, energy and direction
regression) is addressed with a different model. This strategy
introduces several limits, increasing the computational cost

1http://www.mpi-hd.mpg.de/hfm/HESS/pages/about/telescopes

both at training and inference time while not taking into ac-
count the interdependence between the parameters to estimate.

III. PRESENT WORK

Different from these approaches, γ-PhysNet DA presented
in depth in [13] is a deep multi-task network that performs
the full-event reconstruction from LST1 data with a single
architecture. It is composed of a ResNet encoder and a phys-
ically inspired multi-task block. More precisely, the encoder
is the convolutional part of the ResNet-56 implemented with
indexed convolutions [14], and augmented with Dual Attention
mechanism [15]. As LST1 produces hexagonal pixel images,
indexed convolutions allow applying convolution directly to
the input data, avoiding additional preprocessing steps. In
[13], γ-PhysNet DA has proven to outperform the Hillas+RF
method on all the tasks of the event reconstruction on sim-
ulated data. Also, this work highlights the appeal of the
multi-task approach, thus taking into account the dependencies
between the target predictions. However, these preliminary
experiments were limited to simulated data.

In this paper, we extend the work of [13] to evaluate how
the performance obtained on simulations transfers to real data,
highlighting the learning bias due to the difference between
simulated and real data. In a first step, following the standard
analysis procedure, we train γ-PhysNet DA and the Hillas+RF
method on a simulated dataset (called Prod5, see Section
IV-A). Compared to the data used in [13] this data set is new,
and integrates the updated knowledge of the LST1 brought
by the ongoing commissioning phase. Both models are then
applied to the real data. However, differences remain between
these updated simulations and the real data analyzed in this
paper, such as the acquisition conditions or the NSB level.
As emphasized in Section II, and as we have observed in a
preliminary analysis, the NSB level has a strong impact on
the performance of the gamma/proton classification task with
deep learning approaches. Therefore, in a second step, we
measure the difference in NSB level between the simulations
and the real data. We then adapt the simulations as explained
in Section IV-C to reduce this difference in NSB level, retrain
both analysis models, and reapply them to the real data.

On both the simulations and the real data the Hillas+RF
method trained on standard Prod5 simulations, representing
the standard approach, serves as a baseline.

IV. DATA SETS

A. Simulated Data

Ground-truth labels are impossible to obtain from IACT
real data. To overcome this issue and train the reconstruction
models, accurate Monte Carlo simulations have been devel-
oped to simulate the atmospheric shower development [16]
and the LST1 response [17]. These simulations are used to
develop analysis pipelines, train machine learning algorithms,
and test the reconstruction predictions. In this work, we use
the Prod5 LST1 mono trigger simulation dataset produced by
the LST consortium which, for now, remains a private dataset.
Compared to the simulations used in [13], the Prod5 relies on



the latest knowledge of the LST1 acquired during the first
months of the telescope commissioning for the simulation of
its response at the pointing of 20 ° zenith.

B. Real Data Samples of the Crab Nebula

The real dataset is composed of two observation runs from
the Crab nebula, a standard candle for gamma-ray astronomy,
taken in February 2020. The observation #2013 ( 28.9 °
zenith), denoted ON run in the rest of the paper, was taken
with the telescope pointing to the gamma source direction,
and the observation #2012 ( 21.4 ° zenith), denoted OFF run,
was taken with the telescope pointing to a dark patch of the
sky. The runs contain respectively 10.9M and 10.4M events.
As detailed later in Section VI, the OFF run allows for the
estimation of the background noise that has to be subtracted
from the events recorded from the source direction to obtain
the gamma-ray excess.

C. Data Preparation

Simulated and real raw data are made of spatiotemporal
data cubes of 40 samples of 1 ns each, called waveforms.
The waveforms first undergo a calibration and integration
phase (the same in both cases) using lstchain v0.6.3 [18] in
its standard configuration. This results in integrated images
composed of two channels: the first, referred to as charge
channel, integrating the number of photoelectrons per pixel,
the second containing their mean arrival time (see Fig. 1), thus
compressing the temporal information. These images will be
used as input in the later stages.

Besides, although we benefit from high quality updated
simulations to prepare the model, there still exist discrepancies
between the training data and the real data produced by
the LST1 that make the real data analysis challenging. The
telescope pointing direction differs slightly between real data
and simulations, but more importantly, the NSB level is
different. Fig. 2 illustrates the difference of NSB level between
the simulations and the real data analyzed in this work. To
overcome this issue, we add a Poisson noise to the simulated
data. In the simulations, the NSB is indeed defined as a Poisson
distribution. Following Raikov’s theorem [19], we determine
the parameter λ of the Poisson distribution as the difference
between the average noise pixel charge of the simulation and
the one of the real data. The models trained on this adapted
dataset are denoted + Poisson noise in the rest of the paper.

D. Data Selection

Finally, these images are further selected following quality
cuts common in the field and required by the Hillas+RF
method: the integrated signal in the charge channel must be
superior to 50 photoelectrons, the ratio of the signal on the
camera edges to the total signal must be lower than 20%, and
the charge channel must pass a two-level filter, called cleaning
operation, requiring pixels to be above a threshold of 6
photoelectrons and to have a neighbor above 3 photoelectrons.
Image samples for which none pixel survives the cleaning are
discarded. To allow for a fair comparison, the exact same

Fig. 2. Distribution of NSB pixels in the simulated data (Prod5), compared to
the one of the Crab data (LST1). Prod5 + Pnoise corresponds to the addition
of a Poisson noise to the simulation data.

image samples are thus used with γPhysNet DA. However,
the images themselves are not cleaned from the noise in the
case of γPhysNet DA, in order to keep the information from
all pixels.

After this preparation and selection phase, the test set is
composed of:

• for simulated data: 993 k gamma-ray images from a
point-like source located at the center of the field of view,
510 k proton images and 773 k electron images

• the real data as described above, for a total of 12.36M
images

It is worth noticing that the models are trained on gamma
rays with direction isotropically distributed within 6 ° of the
telescope pointing, denoted diffuse gamma rays, so as to
reconstruct events coming from any direction within the field
of view. In addition, no selection is applied to the training set,
leaving 1.25M diffuse gamma-ray images and 836 k proton
images.

V. PERFORMANCE ON SIMULATED DATA

To evaluate how both γ-PhysNet DA and the Hillas+RF
method adapt to the simulated data, we compare their per-
formance on the simulation test set, with (denoted + Poisson
noise) and without the addition of Poisson noise for NSB level
discrepancy reduction.

A. Performance Metrics

The sensitivity is a measure of the overall performance of
the model. This metric is specific for gamma astronomy, and
is regarded as the most relevant one because of its global
aspect. It represents, per energy bin, the gamma-ray flux that
an observed point-like source should emit to allow a detection
with significance [20] of 5 standard deviations (denoted σ)
above the background fluctuations for a 50-hour observation,
with a gamma-ray excess of at least 10 events, and of at least
5% of the residual background, per energy bin. In this paper,
we present the sensitivity of the different methods relatively
to the performance of the standard Hillas+RF method trained
on standard Prod5 simulations.

The energy resolution represents the performance of the
model for the energy reconstruction task. It is computed as



the 68% containment of the relative error of the model for the
energy regression task, per energy bin.

The angular resolution is a measure of the performance of
the model for the direction regression task. It represents the
angular separation in which 68% of the reconstructed gamma
rays fall, per energy bin.

For the resolution curves, lower values indicate better per-
formance. All these metrics have been computed using the
pyirf v0.4.0 package [21] developed by the CTA community.

B. Results

The observation of the ratio of sensitivity over the
Hillas+RF method trained on standard Prod5 simulations pre-
sented in Fig. 3 demonstrates the overall superiority of the
deep multi-task approach on simulated data. The γ-PhysNet
DA architecture improves the sensitivity compared to the
Hillas+RF method by decreasing the minimal detectable flux
by a factor of 1.25 to 8 below 80GeV. However, we observe
that the addition of Poisson noise to the data slightly degrades
the performance of γ-PhysNet DA, while the Hillas+RF
is less affected. The energy resolution curves presented in
Fig. 4 show that γ-PhysNet DA, the Hillas+RF and Hillas+RF
+Poisson noise obtain similar results above 100GeV for the
energy regression task, while γ-PhysNet DA +Poisson noise
underperforms above 2 TeV. However, below 100GeV, both
γ-PhysNet DA (with and without noise) clearly outperform
the standard method. These results should be considered with
regards to the required energy range of the LST1 being
[20 GeV ; 3 TeV].

Analogously, the results for the direction regression task
shown in Fig. 5 are comparable for the four models above
200GeV, albeit the performance of γ-PhysNet DA slightly
degrades with the addition of noise. Again, γ-PhysNet DA
(with and without noise) obtains a better performance for
lower energies, highlighting its greater ability to handle diffi-
cult cases, and to extend the analysis sensitivity compared to
the Hillas+RF method.

From a general perspective, we observe that the perfor-
mance obtained by γ-PhysNet DA slightly degrade with the
addition of Poisson noise to the simulation, especially above
2 TeV. This emphasizes the learning bias introduced into the
models by the simulated data. On the contrary, the Hillas+RF
method achieves similar performance with and without noise,
highlighting the robustness of this method to the NSB level.
Besides, we also observe that the deep multi-task approach
constantly outperforms the Hillas+RF method for lower en-
ergies. However, it is important to stress that transferring the
good performance obtained on these simulated data to real data
is challenging. The improvement brought by the γ-PhysNet
architecture over the standard Hillas+RF method then has to
be confirmed on real data.

VI. REAL DATA ANALYSIS

We analyze in this section the two observations of the
2020 LST1 Crab campaign described in Section IV-B with the
four models: γ-PhysNet DA, γ-PhysNet DA + Poisson noise,

Fig. 3. Ratio of sensitivity between γ-PhysNet and the Hillas+RF method.

Fig. 4. Energy resolution of γ-PhysNet and the Hillas+RF method (lower is
better).

the Hillas+RF method and the Hillas+RF method + Poisson
noise. As it follows the standard approach, the analysis with
the Hillas+RF method serves as a baseline for performance
comparison.

Fig. 5. Angular resolution of γ-PhysNet and the Hillas+RF method (lower
is better).



A. Gamma-Ray Event Detection
To select in both ON and OFF runs the events detected

as gamma, we define gammaness cuts, the threshold of the
gamma class output of the model. We observe that gammaness
distributions are different depending on the analysis method
and on the run analyzed. Therefore, to allow for a fair
comparison of the detection performance between the four
models, we define the following procedure:

1) a unique gammaness cut for all energy bins is defined
for the Hillas+RF method for the ON run,

2) for each energy bin, the gammaness cut of the three
other models – γ-PhysNet DA, γ-PhysNet DA + Poisson
noise and Hillas+RF + Poisson noise – for the ON run
is tuned so that the level of background identified as
signal is equivalent for all the methods,

3) for the OFF run, the expected background (detected in
the ON run by the baseline Hillas+RF) in every energy
bin is first normalized to take into account the difference
in acquisition duration and rate between the ON and the
OFF runs. Then, the previous procedure is applied for
background matching.

4) Finally, because the acquisition conditions are different
between both runs, we need to globally normalize the
number of events detected in the OFF run, relying on
the background level. Thanks to the previous steps, the
ON-OFF normalization coefficient is similar for every
analysis model.

To ensure that the results obtained are reproducible, and
not dependent on a particular gammaness cut chosen for the
baseline, we repeat the analysis with 7 different cuts within the
range [0.5 ; 0.8], exhibiting a common trend for the relative
performance of the four models. For clarity, we only present
the results obtained with a gammaness cut of 0.65.

In both runs, the background is estimated by counting the
events classified as gamma rays in an area ranging from 0.32
to 0.55 ° from the telescope pointing direction. This area is
outside the source location, even in the ON run.

The theta squared curves shown in Fig. 6 represent the
distributions of squared angular separation between the source
location and the reconstructed direction. We observe that the
gamma-ray event detection procedure leads to a similar level
of background events (between 0.1 and 0.3 deg2) in the ON
and the OFF runs for all the models.

B. Gamma-Ray Source Detection
The last step of the analysis is the detection of the source

itself in the ON run, based on the gamma-ray events detected
in the previous step. As classically done in the field, we apply a
final cut on the angular separation to the detected gamma-ray
events in both runs. More precisely, events with an angular
separation greater than 0.22 ° are discarded. Indeed, in the
analysis carried out in this paper, the source location is known
and events with an angular separation greater than 0.22 ° are
more likely to be badly reconstructed.

From the surviving gamma-ray events, the following quan-
tities are computed:

Fig. 6. Gamma-ray event distribution in both observations as a function of the
squared angular separation between the reconstructed and the true directions.

• the number of background events classified as gamma
ray in the OFF run,

• the total gamma-ray excess in the ON run. Because
analysis models are not perfect, some particles classified
as gamma ray in the ON run may be background events
(protons and electrons). The excess is computed by sub-
tracting the number of background events to the number
of events detected in the ON run.

• The statistical significance of the source detection.

As shown in Table I, the Crab nebula detection by all models
is clear with a significance ranging from 11.9 to 14.3σ when
the required value for a source detection is 5σ. The γ-PhysNet
DA models achieve similar or better performance than the
Hillas+RF ones, highlighting the value of neural networks for
gamma-ray astronomy.

Besides, γ-PhysNet DA + Poisson noise model obtains the
best excess and significance, emphasizing the importance of
simulating as accurately as possible the observation conditions.
The addition of Poisson noise to the training data to reduce
the NSB level difference with the real data helps lower the
learning bias.

This is confirmed by the distribution of the excess of
gamma-ray events per energy bin presented for all methods in
Fig. 7. As for simulated data, the gain brought by γ-PhysNet
DA + Poisson noise architecture is more important at low
energies (thanks to a greater excess for similar backgrounds).
This is especially interesting for the study of extragalactic
sources and transient phenomena. Such results make it possible
to exploit the full potential of the built instrument. However,
these results also show a lower improvement brought by
the γ-PhysNet architecture over the Hillas+RF method on
real data than on simulations. This was expected as neural
networks, such as γ-PhysNet, process directly the pixels of
the images, while the Hillas+RF relies on extracted parameters



TABLE I
CRAB NEBULA SOURCE DETECTION BY BOTH MODELS

Excess Significance Background
Hillas+RF 379 12.0σ 308
Hillas+RF 376 11.9σ 305

+ Poisson noise
γ-PhysNet DA 395 12.5 σ 302
γ-PhysNet DA 476 14.3 σ 317
+ Poisson noise

Fig. 7. Excess of detected gamma rays per energy bin. The lower part of the
plot represents the ratio of gamma-ray excess per energy bin detected by the
models over the one detected by the baseline Hillas+RF method.

from denoised images, thus being more robust to differences
between simulations and real data. This robustness of the
Hillas+RF method is underlined by the similar results obtained
with or without the addition of noise to the training data.

VII. CONCLUSION

In this paper, we propose the first ever full-event reconstruc-
tion from IACT real data with deep learning. With a deep
multi-task architecture, γ-PhysNet DA, we achieve a clear
detection of the Crab nebula with a statistical significance
of 14.3σ, outperforming the standard Hillas+RF method. To
obtain this result it was necessary to adapt the simulated data
used to train the model by adding noise to the images, and thus
taking into account the NSB level difference with the real data.
A future work will focus on finding a more elegant solution
to adapt to the NSB level that varies over the observation and
over the field of view, and more generally to adapt to the data
variability problem (e.g., using domain adaptation techniques).

Besides, the high-level analysis part that was beyond the
focus on this study will be strengthened in a following study.
In particular, an energy-dependent study of the Crab Nebula
shall be made, introducing energy-dependent gammaness cuts
for the baseline and deriving the spectrum of the source and
comparing it to the spectrum measured by other instruments.
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