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Abstract. Quantitative multi-scale modeling of mechanical properties of disordered materials is still an open
challenge. Bridging scales requires an intense dialogue between physics and mechanics to keep track of the
complexity of the mechanisms at play, especially when passing from a discrete atomistic description to a
continuous one. Here, we compare the macroscopic and the local plastic behavior of a model amorphous
solid based on two radically different numerical descriptions. On the one hand, we simulate glass samples
by atomistic simulations. On the other, we implement a mesoscale elasto-plastic model based on a solid-
mechanics description. The latter is extended to consider the anisotropy of the yield surface via statistically
distributed local and discrete weak planes on which shear transformations can be activated. To make
the comparison as quantitative as possible, we consider the simple case of a quasistatically driven two-
dimensional system in the stationary flow state and compare mechanical observables measured on both
models over the same length scales. To this end, we first calibrate the macroscale behavior of the elasto-plastic
model based on molecular static simulations. We show that the macroscale mechanical response, including
its fluctuations, can be quantitatively recovered for a range of elasto-plastic mesoscale parameters. Using a
newly developed method that makes it possible to probe the local yield stresses in atomistic simulations, we
calibrate the local mechanical response of the elasto-plastic model at different coarse-graining scales. In this
case, the calibration shows a qualitative agreement only for an optimized subset of mesoscale parameters
and for sufficiently coarse probing length scales. This calibration allows us to establish a length scale for the
mesoscopic elements that corresponds to an upper bound of the shear transformation size, a key physical
parameter in elasto-plastic models. We find that certain properties naturally emerge from the elasto-plastic
model, such as accurate correlations between external stress fluctuations or between local yield stresses
and local stress drops. In particular, we show that the elasto-plastic model reproduces the Bauschinger
effect, namely the plasticity-induced anisotropy in the macroscale stress–strain response. We discuss the
successes and failures of our approach, the impact of different model ingredients and propose future research
directions for quantitative multi-scale models of amorphous plasticity.
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1. Introduction

Multi-scale models of plastic deformation aim to gain a qualitative and quantitative understand-
ing of the relation between microstructural properties and the dynamics of plastic activity. Ulti-
mately, such models can help design new microstructures tailored to meet the demands of spe-
cific engineering applications and industries [1,2]. An essential ingredient for a successful multi-
scale approach is establishing links between atomistic and macroscale continuum descriptions
in a physically grounded manner. In this perspective, an intermediate mesoscale description is a
desirable conceptual step, as illustrated, for instance, in crack propagation [3] and crystal plastic-
ity [4]. Mesoscale approaches rely on a statistical description of the relevant phenomena, enhanc-
ing our understanding of the collective processes at play. By doing so, it overcomes the limitations
of atomistic and continuum approaches. Namely, atomistic models are limited in terms of sys-
tem sizes and time scales. On the other hand, continuum approaches have difficulties in captur-
ing complex heterogeneous flow patterns or spatio-temporal correlations in plastic activity [5].
Specifically, mesoscale models circumvent these limitations by replacing the quasi-infinite mi-
croscopic degrees of freedom at the atomistic scale with more manageable, discrete, and coarser
ones, based on a continuum description [6].

In amorphous materials, plastic deformation occurs at the lowest scales via atomic rearrange-
ments leading to localized shear transformations (STs) [7–9] and, in some cases, to a permanent
dilation or contraction associated with local changes of free volume [10]. The properties of STs
have been studied in detail and present large distributions of activation energy barriers [11], di-
rections [12], sizes [13] and shapes [8] and lead to a redistribution of elastic stresses within the
system [14]. Thus, in these materials, plastic deformation is made up of "quanta" corresponding
to local topological changes, which, unlike dislocations [15], are localized in space and time [16].

This view of plasticity has been successfully implemented in discrete elasto-plastic models
based on a solid-mechanics description [17]. The elasto-plastic approach considers a discrete-
continuum medium endowed with stochastic local evolution rules for plastic activity and struc-
tural properties [12,18–22]. One advantage of elasto-plastic models is that they rely on physically
meaningful quantities that are easy to interpret. At the same time, they can qualitatively repro-
duce the phenomenology associated with amorphous plasticity in many conditions such as, e.g.,
under athermal quasistatic shear [20–24], at a finite strain-rate [25, 26], under creep loading [27]
or near mechanical failure [28,29]. This simplicity and versatility can help establish links between
statistical physics and engineering formulations of plasticity.

Nonetheless, the lack of well-defined plastic deformation units in amorphous solids has
hindered the development of multi-scale strategies. Elasto-plastic models have thus remained
widely phenomenological or, at best, based on educated guesses. In the shear transformation
zone theory framework [30], Hinkle and Falk have for instance employed the potential energies
of the atomistic model coarse-grained at different length scales as a surrogate of the effective
temperature of the continuum-level field description [31]. However, elasto-plastic mesoscale
parameters need to be material specific and realistic to make quantitatively accurate predictions.
For this reason, there have been many attempts in recent years to measure mesoscale parameters
from atomistic simulations [11–13, 32–35].

A fundamental ingredient of elasto-plastic models corresponds to a local measure of shear
susceptibility, able to predict in principle the plastic activity [36–45]. Among the proposed alter-
natives, the local yield stress exhibits an excellent correlation with plastic event locations in com-
parison with other indicators [46]. Direct measurements of local yield stress in atomistic samples
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Figure 1. Multi-scale approach: the macroscopic (top) and local (bottom) quasi-static
mechanical responses are investigated in both elasto-plastic and atomistic bi-dimensional
models. To measure the local yield stress, patches of equal area are isolated from the rest of
the system.

have become recently possible using a method [41] based on straining subsets of atoms, as illus-
trated in Figure 1. The method can characterize the local resistance to irreversible deformation,
which can be interpreted as a mesoscale generalization of the macroscale yield stress signaling
the onset of plastic deformation. Therefore, the local yield stress is well suited for elasto-plastic
models, rooted in the framework of solid mechanics. Moreover, the method makes it straight-
forward to gather statistics of diverse local properties that traditionally have been challenging to
measure, such as rearrangement amplitudes and directions [47], structural evolution [48] or lo-
cal yield surface anisotropy [49]. However, until recently [50], these promising properties have not
yet been explored to tentatively fill the gaps necessary for quantitatively accurate elasto-plastic
models.

Filling such gap is the aim of the present work in which we compare, as quantitatively as pos-
sible, atomistic and elasto-plastic models both at the macro and local scales by leveraging the
advantages of local yield stress measurements. We prepare atomistic glass samples driven in the
athermal quasistatic limit until the stationary flow state. The local mechanical properties of the
as-quenched glasses and the stationary states are measured with the local yield stress method
described in [41, 47] at different length scales and for different shear orientations. On the other
hand, we set up a mesoscale elasto-plastic model with statistically distributed structural proper-
ties and anisotropic local yield functions and mimic the atomistic glass preparation and loading
protocol. Contrary to [50], we focus on the athermal quasistatic regime and consider a general-
ization of the local yield stress method of [41, 47] for different length scales. Motivated by local
atomistic observations showing anisotropic yield surfaces and non-normal plastic flow [47], we
make a step forward by modeling the possibility of plastic rearrangements according to a set of
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various local discrete weak planes for each element of the mesoscale elasto-plastic model. We
investigate the consequences of this feature in terms of model calibration and emergent plas-
tic anisotropy upon plastic deformation. The comparison of behaviors at local scales is carried
out by measuring the response of different subsets of the elasto-plastic matrix by mimicking the
atomistic procedure (see Figure 1). As a result, we do not establish a hierarchical dependence be-
tween models, in the sense that atomistic data does not feed the elasto-plastic model. Instead, we
consider atomistic and elasto-plastic descriptions on an equal footing and calibrate the elasto-
plastic model by requiring the same mechanical properties on both models when measured on
the same length scale. In this way, it becomes possible to not only calibrate the model but to as-
sess its predictions at different scales simultaneously, which allows us to carefully analyze agree-
ments and discrepancies with the reference atomistic glass.

The article is organized as follows: in the second and third sections, we introduce the atomistic
and elasto-plastic models and methods employed to characterize both the global and local me-
chanical response of glasses. Section 4 deals with the calibration of the elasto-plastic model and
the comparison of atomistic and mesoscale approaches at both macroscopic and local scales.
The various emergent phenomenologies obtained from the elasto-plastic model are presented in
Section 5. In Section 6, we discuss the successes and failures of our approach, different key ingre-
dients, and suggest future research directions for quantitative multi-scale models of amorphous
plasticity.

2. Atomistic model and methods

2.1. Preparation and loading protocols

We use the two-dimensional binary atomic system studied extensively in [41, 47]. This system
has been widely used as a model glass for its good glass-formability and to study the plasticity
of glasses from the atomic scale [16]. It makes it possible to reproduce the main features of the
phenomenology observed in the mechanical response of amorphous solids while remaining as
simple as possible. The composition is chosen so that the ratio between the number of large (L)
and small (S) particles is equal to NL/N = (1+p

5)/4. The atoms, all with a mass m = 1, interact
via a Lennard-Jones (LJ) interatomic potential of parameters σAB and εAB, where AB corresponds
to the interacting species. The inter-species parameter of the potential defines the units of length
σSL, energy εSL, time t0 = σSL

p
m/εSL and stress Σ = εSL/σ2

SL, used in the rest of the article. For
distances between Rin = 2 and the cutoff radius Rout = 2.5, the LJ potential is replaced by a
polynomial function to be twice differentiable.

The systems are simulated at a constant density ρ = 1.02 using periodic boundary conditions.
Except for the simulations exploring finite-size effects, where larger systems are employed (see
Figure 5b), the systems contain 104 atoms with a linar size equal to L = 98.8045. The glasses are
obtained by instantaneously quenching at constant volume a supercooled liquid at thermody-
namic equilibrium from a temperature T = 1.132 T sim

g , where T sim
g = 0.31 εSL/kB. The quench

is followed by a static relaxation to cancel forces via a conjugate gradient method down to ma-
chine precision. This preparation protocol, named equilibrated supercooled liquid (ESL) in [47],
has the advantage of producing glass samples which exhibit no stress overshoot when strain is
applied and thus without sample-scale shear banding. This is specially convenient for studying
the stationary flow regime.

We consider 100 independent glass samples deformed by the athermal quasi-static shear
(AQS) deformation method [51] in simple shear along the xy direction until a deformation
γext = 5. This iterative method consists of deforming the system by small increments of affine
strain ∆γext = 10−4, followed by a static relaxation. The trajectories obtained consist of a series of
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Figure 2. Comparison of the macroscale behavior of the atomistic (blue) and elasto-plastic
(red) models in the stationary regime (γext > 0.5). (a) Single simulation stress–strain curve.
Probability densities of: (b) external stress values Σext

x y , (c) drops δΣext
x y and (d) increments

∆Σext
x y induced by discrete steps of ∆γext = 10−4. The results shown correspond to the

optimal parameters with l = 6.6.

states at mechanical equilibrium corresponding to the limit of zero temperature and strain rate.
In the large strain regime, the typical mechanical response reported in Figure 2a is characterized
by the fluctuation of the measured stress Σext

x y around a plateau value. As shown schematically
in Figure 1, it consists of a succession of quasi-linear elastic branches, where the external
stress increases by increments ∆Σext

x y , intercepted by stress drops δΣext
x y that corresponds to

the occurrence of irreversible deformation events dissipating elastic energy. The steady-state,
signaled by the convergence of stresses and potential energy, is reached for a strain γext > 0.5.

2.2. Atomistic implementation of the local shear test

To measure the local mechanical response, we use the recently developed local yield stress
method [33, 41, 47], as illustrated in Figure 1. This method consists of deforming in pure shear
along direction α a zone of radius R, known as a patch, by applying a purely affine deformation
to the surrounding medium. The central area is deformed using the same AQS method as
for deforming the overall system. Therefore, plastic events are necessarily triggered within the
relaxed zone, which makes it possible to measure the local coarse-grained yield stress τ̃c in
several directions independently of other plastic rearrangements. Since glasses are frustrated
systems, they are locally decorated with a spatially heterogeneous local stress τ̃i. The residual
plastic strength, or distance to threshold ∆τ̃c, corresponds to the amount of stress added at the
coarse-graining scale R to trigger the instability locally, thus∆τ̃c = τ̃c−τ̃i. This method also makes
it possible to estimate the relaxation amplitude δτ̃c by measuring the stress drop associated with
the plastic instability.
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The sampling of τ̃i, τ̃c, ∆τ̃c, and δτ̃c is performed in the as-quenched state and the stationary
state on a regular square grid with lattice parameter 2.5. These local quantities are computed for
different patch sizes R and orientations α. We note that the local yield stresses and distances to
threshold (stress drops) are expected to be overestimated (underestimated) for too small patch
radii R as a consequence of the hard boundary conditions imposed by the frozen matrix of the
local yield stress method. A more accurate measure is thus anticipated as R grows. This aspect is
discussed further when we compare the results obtained with the elasto-plastic model.

3. Elasto-plastic model

Elasto-plastic models define the state of a material subvolume in terms of continuum mechanics
fields. Here, we discretize the material domain into a 2D regular lattice of mesoscale elasto-plastic
quadrilateral elements. Each element corresponds to a material sub-volume where localized
atomistic rearrangements can occur. Such rearrangements are represented, at the mesoscale, as
localized slip events. This coarse-grained description aims at capturing the essential effects of
the rearrangements while neglecting unnecessary details. As illustrated in Figure 1, the elements
have a length l that is above the typical length scale of the atomistic rearrangements. Below this
scale, the elasto-plastic model cannot resolve microscopic details. Consequently, we consider
strain fields which are element-wise constant, and associate each mesoscale element with a
single elastic and plastic strain tensor, εel and εpl respectively.

The elastic strain field εel is the consequence of externally imposed boundary conditions and
the presence of the plastic strain field εpl. We solve the stress equilibrium equation assuming
linear elasticity applying the Finite Element Method (FEM) [21, 26, 27, 29, 52, 53]. To this end, we
consider a 2D regular grid of quadrilateral finite elements (FEs) with linear shape functions. Each
FE exactly matches the shape of a single mesoscale element. By applying the FEM, we obtain the
displacement field from where we compute the strain field ε as the symmetric gradient. The strain
associated with a mesoscale element is defined as the strain averaged within the corresponding
FE. The elastic strain is obtained as εel = ε−εpl and the stress is computed from linear elasticity
as Σ=C : εel +Σ0, where C denotes the rank-4 stiffness tensor and Σ0 is the pre-stress present in
the system prior to the initiation of the driving protocol. To establish as much contact as possible
with the atomistic model, we compute the solution to the stress equilibrium equation under bi-
periodic boundary conditions with an externally applied shear strain γext along the xy direction.
The external shear stress Σext

x y is computed as the average shear stress over all the elasto-plastic
elements composing the system.

In the next subsections, we detail the structural properties of the mesoscale elements and their
stochastic evolution rules. Plastic activity occurs as a sequence of slip events coupled by stress
redistribution competing against structural disorder. The specific choices we make regarding
these rules are motivated by measurements on the atomistic systems, against which the elasto-
plastic model results will be bench-marked later.

3.1. Local slip systems

Plastic activity in glasses proceeds by atomistic rearrangements, which lead, in general, to a per-
manent localized deformation with a shear component and a hydro-static one, the latter asso-
ciated with the creation or annihilation of free volume. Nonetheless, following the strong corre-
lation between local shear thresholds and plastic activity [46, 47] as well as the weak correlation
between local free volume and softness [48] in the atomistic system considered here, we simplify
the description and consider only the shear component.

C. R. Physique — Online first, 21st May 2021
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Even when the tensorial formulation of plasticity is accounted for, the vast majority of the
elasto-plastic models assume an isotropic yield criterion to simulate the activation of plastic
deformation [6,21,29]. However, atomistic measurements of the local response to shear of glasses
reveal anisotropic yield surfaces and the presence of weak planes [47] with spatially-fluctuating
properties. To recreate such a complex response to locally applied shear, we consider that each
mesoscale element contains several slip systems. We define each slip system by a plane of normal
unit vector n and a direction s, contained within the plane. A slip of amplitude ∆γpl is thus
represented by the plastic strain increment

∆εpl =∆γplM, (1)

with

M = 1
2 (s⊗n+n⊗ s) . (2)

Since we consider a 2D scenario, each slip system contains two possible slip senses +s and −s.
However, we associate each slip system with a single sense. The reason for this choice is that, in
the presence of strong structural disorder, planes that qualify as weak under the action of local
shear stress may not qualify as such when the shear direction is reversed [47]. We can write the
tensor M in terms of the angle θ between the slip plane and the horizontal axis as

M(θ) = 1

2

(−sin2θ cos2θ
cos2θ sin2θ

)
(3)

with θ ∈ (−π/2,π/2] due to symmetry. The resolved shear stress τ on a slip plane is given by

τ= M(θ) :Σ. (4)

Each slip system has a critical resolved shear stress τc > 0, in the following referred to as slip
threshold. The distance to threshold is defined as ∆τc = τc − τ. Whenever a slip system fulfills
∆τc < 0, it is denoted as active, and a slip event is performed as described later.

3.2. Structural properties

To set the density of slip systems, we consider that a zone of l ≈ 2 would contain an average of 4
atoms and a strict maximum number of slip systems equal to N = 4. Consequently, a reasonable
upper bound for the slip system density is 1. In our simulations, we set the density of slip systems
to ρs = 0.8, below the estimated upper bound (we assess the robustness of our results upon
variations of this parameter in Appendix A.1). We relate the number N of slip systems to the
discretization length scale l as N = ρsl 2.

Both the slip angles and thresholds are statistically distributed to represent structural hetero-
geneity. The orientation of the local slip systems defined within an element, although statistically
distributed, must fulfill a certain constraint. Namely, the element must have a finite critical re-
solved shear stress τc(α), i.e. defined for any shear orientation α. The simplest way to achieve
this is to consider at least four slip systems with θ, θ+π/2, θ+π/4 and θ+3π/4 which ensures
the fulfillment of the constraint. Due to the a priori lack of privileged orientation, we consider θ
uniformly distributed in the interval (−π/2,π/2]. We populate each mesoscale element with N
multiple of 4 to apply the procedure defined above.

Slip thresholds are independently drawn, with the only requirement of being positive-definite.
For simplicity, we use the Weibull distribution

P (τc|λ,k) = k

λ

(
τc

λ

)k−1

exp

[
−

(
τc

λ

)k
]

, (5)

where the parameter λ defines the scale and the exponent k the shape of the distribution.

C. R. Physique — Online first, 21st May 2021



8 David Fernández Castellanos et al.

3.3. Performing a slip event

When a slip event occurs within an element, we update the plastic strain field εpl by adding a
tensorial increment ∆εpl defined by (1), which is homogeneous through the element and zero
everywhere else. We consider the amplitude ∆γpl of the strain increment statistically distributed
to represent the effects of the heterogeneous microstructure on an initiated slip event. We
impose the constraint of avoiding negative dissipation [54]. Within our model (Appendix A.7),
this constraint is fulfilled if the slip amplitude verifies ∆γpl < γmax with

γmax(τ) = −2τ

(C : (S− I) : M) : M
, (6)

where S is the Eshelby tensor of the elasto-plastic elements [55]. We consider a bounded distri-
bution in order to explicitly verify the constraint. Specifically, we choose a bounded power-law
distribution of the form

P (∆γpl|γmax,χ) = χ

γmax

(
1− ∆γ

pl

γmax

)χ−1

, (7)

with 0 < ∆γpl < γmax and χ > 0. This distribution has the advantage of having a single free
parameter, which allows to vary its shape while limiting the complexity of the model calibration.
We note, however, that its specific functional form does not significantly affect the results, as will
be shown in Section 6.

After a slip event has occurred in a certain element, we renew the orientations and thresholds
of the N slip systems within the element from their respective probability distributions. The value
of N remains fixed. This process aims to represent stochastic changes in the local microstructural
properties induced by plastic activity.

3.4. Loading protocol

We implement an athermal quasistatic protocol to represent as faithfully as possible the AQS
driving protocol of the atomistic model (Section 2.1). In the absence of temperature effects,
we consider that whenever one or more slip systems are active, slip events are simultaneously
performed in all those systems (Section 3.3). Due to stress redistribution, new slip systems might
become active. This process is repeated in a series of relaxation steps until no slip system is active.
During this process, the external strain γext is kept fixed. In the case where several slip systems
within the same mesoscale element simultaneously become active, only the slip system with the
lowest distance to threshold ∆τc is considered active.

When there is no active slip system, we perform discrete external shear strain increments of
∆γext = 10−4. Slip events taking place between two external strain increments are known as an
avalanche. We apply external strain increments until reaching a maximum external strain target
of γext = 2.

3.5. Elasto-plastic implementation of the local shear test

To reproduce as faithfully as possible the results measured at local scales in atomistic simula-
tions, we mimic the method described in Section 2.2 with the elasto-plastic model. Elasto-plastic
patches are defined respecting the geometrical restrictions imposed by the lattice discretization.
Thus, we define quadrilateral patches formed by n ×n contiguous elasto-plastic elements se-
lected from the system (Figure 1). We associate to each elasto-plastic patch an effective radius
R = (l /

p
π)n by considering the radius of a circular patch of equal area. This allows us to compare

the results with atomistic patches of a specific radius.
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To measure the mechanical response of a patch, we consider it in isolation from the rest of
the system (Figure 1, left). The stress Σ̃ of a patch is defined as the average stress of the n ×n
elements forming the patch. Before the initiation of a shear test, a patch has an initial stress Σ̃

i
.

We apply to its free boundary a pure shear strain with orientation α and amplitude γ̃. When one
slip system becomes active, the patch has reached a critical stress Σ̃

c
. At this point, an avalanche

of slip events occurs at a constant external strain. Afterward, the patch has a final stress Σ̃
f
. This

process is illustrated in Figure 1 (right). Except for the non-periodic boundary conditions, elasto-
plastic patches are driven, and slip events occur, according to the same rules described for the
full system (Section 3).

We note that, although the patch is led to mechanical instability by raising the stress till Σ̃
c
,

this value corresponds to the total amount of stress at the moment of instability. Thus, it depends
only on the patch structural properties. We can use it to establish definitions which closely
mimic the atomistic ones. Thus, we define the coarse-grained yield stress for the orientation α

as τ̃c = M(α) : Σ̃
c

that is, the resolved shear stress on the shearing plane α at the moment of the
patch mechanical instability. In order to characterize local stability in a manner analogous to the
atomistic method, we define the coarse-grained distance to threshold ∆τ̃c as ∆τ̃c = τ̃c − τ̃i where
τ̃i = M(α) : Σ̃

i
. Moreover, we define the coarse-grained stress drop δτ̃c from the yield stress to the

final stress state as δτ̃c = τ̃c − τ̃f.
We remark the difference between the coarse-grained patch-scale yield stress τ̃c and the slip

thresholds τc defined in Section 3.1. The former characterizes the measured resistance to plastic
deformation at the coarse-graining scale defined by the patch radius R, while the latter refers to
the resistance to slip of individual weak planes within the patch, with values drawn from (5).

4. Calibration of the elasto-plastic model

In this section, we calibrate the mesoscale resolution l and the elasto-plastic parametersλ, k, and
χ associated with the threshold scale, threshold disorder, and slip event amplitude, respectively.
The elasto-plastic model considers isotropic and homogeneous elastic properties. To this end,
we use the system-scale effective shear modulus G = 13.2 and bulk modulus B = 59 (in LJ units)
measured in the atomistic model.

First, we focus our attention on the macroscale behavior in the stationary state, which does
not depend on the initial conditions. Macroscale behavior provides us with an initial general un-
derstanding of the system dynamics. Moreover, it introduces constraints in the mesoscale pa-
rameter space, establishing a strategy to calibrate the local spatially-fluctuating scale-dependent
mesoscale properties. We perform the calibration at different element length scales l and estab-
lish an optimum range of values.

In addition, we also take advantage of this calibration procedure to generate reasonable
quench states by assuming that the thermally-activated structural changes occurring in glass-
forming liquids are statistically close to those induced by plastic activity [56]. The optimal set
of parameters are thus resorted to generating the quench states from a Kinetic Monte Carlo
approach where only the temperature needs to be calibrated, as detailed in Appendix A.3.

4.1. Macroscale behavior

As the externally applied strain γext increases, the system exhibits transient behavior related to
the initial system configuration. Eventually, the system reaches a stationary regime in which
its statistical properties are independent of the external strain (Figure 2a). This regime can
be identified by a plateau in the external stress Σext

x y . For our analysis, we focus on the region
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γext > 0.5. To quantitatively calibrate the macroscale behavior, we compute the overlap between
the elasto-plastic and the atomistic probability densities of external stress valuesΣext

x y , increments
∆Σext

x y induced by the loading mechanism and drops δΣext
x y caused by avalanches of plastic activity.

Based on the overlap, we define an error function L[P ] for each probability density as

L[P ] =
[

1−
∫ +∞

−∞
min{PEP(x), PMD(x)}dx

]
, (8)

where PEP and PMD respectively refer to the elasto-plastic and atomistic versions of the probabil-
ity densities. When the densities perfectly overlap, L[P ] = 0 and L[P ] → 1 as they differ. We define
the overall macroscale error as the average Lmacro = 1/3

∑
P L[P ] of the errors computed for each

distribution.
We explore the 3-dimensional space of values for k, λ and χ. To do so efficiently, we consider

discrete values of k from k = 1 to k = 3 in intervals of 0.05. We ensure that this is a range of
plausible values for reproducing the atomistic measurements. For each k, we explore the 2-
dimensional space of values forλ and χ> 0, repeating each combination 48 times with a different
realization of the initial conditions. Among the studied combinations of parameters, for each
value of k we consider only the pair λ and χ with the lowest Lmacro. We repeat this procedure
for different mesoscale element lengths l . For each l , the size of the elasto-plastic lattice and
the number N of slip systems per element are set as detailed in Appendix A.2. We find that an
excellent simultaneous agreement in all the compared macroscale magnitudes is possible for the
different element lengths l considered (see Figure 2 for the specific case of l = 6.6).

Moreover, a fit of similar quality is possible for a wide range of k (Figure 3a). Consequently,
macroscale behavior can be regarded as a constraint that must be fulfilled by any acceptable set
of elasto-plastic mesoscale parameters but does not provide us with enough information for the
calibration of the model, for which knowledge of local mesoscale properties becomes mandatory.

The error L[P (δΣext
x y )] in the fit to the distribution of external stress drops increases as the

model resolution l is reduced (Figure 3a). External stress drops are the consequence of avalanches
of slip events. The bigger the value of l , the bigger the portion that each mesoscale element
covers, and therefore in this case avalanches become composed of fewer slip events. Eventually,
for big enough l avalanches become single events, with amplitudes that are fit as part of the
model optimization. On the other hand, for smaller values of l , avalanches become collective
events whose sizes are not explicitly part of the model optimization and emerge from the self-
organization of plastic activity.

4.2. Mesoscale local properties

For each simulated sample, an ensemble of patches representative of the system is defined, and
for each patch, shear tests are performed with discrete orientations. Special attention is paid to
the forward direction α = 0° aligned with the external load, and the backward direction α = 90°,
which will be used for the quantitative calibration of the mesoscale properties.

We define a set of mesoscale magnitudes that allow us to quantitatively compare different
aspects of the local mechanical response of both models when measured at the same scale
R. Specifically, we consider the average and standard deviations of the local resolved shear
stress τ̃i(R,α), yield stress τ̃c(R,α), distance to threshold ∆τ̃c(R,α) and stress drop δτ̃c(R,α).
By generically denoting the elasto-plastic measurements as FEP(R,α) and the atomistic ones as
FMD(R,α), we define for these 8 magnitudes the errors L[F ] as

L[F ] =
∣∣∣∣1− FEP(R,α)

FMD(R,α)

∣∣∣∣ . (9)

Although we will explore the impact of R in the statistics of local properties, we compute the error
functions using the largest available value of R = 30, since presumably it is less affected by the
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Figure 3. Relative errors in the fit as a function of the exponent k of the Weibull distribution
of slip thresholds for different mesoscale element lengths l for: (a) the macroscale and (b)
the aggregated macroscale and mesoscale properties. (c) Minimum of the aggregated error
Lstat as a function of l , where error bars indicate one standard deviation. (d) Individual
components of Lstat for l = 6.6.

rigid boundary bias introduced by the patch measuring method. We define the mesoscale error in
the forward direction α= 0° as the average L+

meso = 1/8
∑

F L[F ]. We define the error L−
meso in the

backward direction α= 90° in a similar fashion. The overall stationary state error, Lstat, is defined
as the average between the macroscale and the mesoscale errors, Lstat = 1/2(Lmacro+1/2(L+

meso+
L−

meso)). We optimize Lstat by exploring the neighborhood of the values that optimized Lmacro

(Section 4.1). This allows us to optimize the fit to the mesoscale properties while fulfilling the
constraint imposed by the macroscale behavior.

As discussed previously, macroscale properties are not enough to establish the optimum set of
mesoscale parameters. However, thanks to the addition of the mesocale properties, Lstat exhibits
a minimum L̂stat at a specific value of k (Figure 3b). We fit a parabola a + bx + cx2 to Lstat to
estimate the optimum value k̂. Since to each value of k we associate a pair of λ and χ, we can by
interpolation obtain the optimum values λ̂ and χ̂. As shown in Figure 3c, L̂stat depends on the
element length l . We find an optimum value in the range of l = 4.4–6.6. The error minimum is
however rather shallow and the error starts to increase more appreciably only for larger element
length.

In order to further set the value of the element length l we take into account several consid-
erations: first, the model loses spatial resolution for the coarser element lengths (but remarkably
can reproduce macroscale properties with excellent quality). Second, we also expect that the rep-
resentation of STs requires a larger plastic strain amplitude for a lower element length l . Indeed,
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lowering l leads to best-fit parameters with a decreasing value of χ, which implies larger local
stress drops. We found that, below l ≈ 5, χ < 1. That is, the limit at which changing the sign of
the resolved shear stress in the active slip plane becomes the dominant behavior. If this does not
necessarily violate the non-negative dissipation criterion (Section 3.3), it seems unlikely regard-
ing the expected physics of STs. Third, the range l = 4.4–6.6 is comparable to the lower limit es-
tablished in [36] for the validity of linear elasticity. Moreover, when employed as the patch size
in the local yield stress method, it has been shown that this length scale optimizes the correla-
tion between plastic activity and ∆τ̃c [47]. Since we do not observe a significant difference in the
error computed within that range, in the following, we consider the upper bound l = 6.6. This
scale is presumably above the typical size of atomistic rearrangements and larger than spatial
correlations in the structural renewal process, both of which are fundamental assumptions of the
elasto-plastic model.

We can have more insight into the origin of the error basin ofLstat by looking at its components
Lmacro, L+

meso and L−
meso separately. As shown in Figure 3d with l = 6.6, the error L+

meso of the
forward-oriented mesoscale properties exhibits qualitatively similar behavior as the macroscale
error, with a wide range of parameters leading to quantitatively similar values without a clear
minimum. However, the error L−

meso of the backward-oriented mesoscale properties exhibits a
minimum at a specific combination of parameters. Consequently, among the parameters that
reproduce the macroscale and the mesoscale properties aligned with the external load, only a
specific combination k̂, λ̂ and χ̂ can simultaneously reproduce the behavior of the patches when
unloaded from the stationary state.

The estimated optimal parameter combination for the stationary state at the mesoscale l = 6.6
is k̂ = 2.18, λ̂ = 2.05 and χ̂ = 2.25. The overall relative fit error Lstat is 16%. With the optimal
parameters, we perform 1024 simulation runs. Figure 4 shows von Mises stress Σ̃vm = (1/2Σ̃

′
:

Σ̃
′
)1/2 (Figure 4 first row), yield stress τ̃c (Figure 4 second row), distance to the threshold ∆τ̃c

(Figure 4 third row) and stress drop δτ̃c (Figure 4 fourth row) in the quench and stationary states.
Their probability distributions and dependence on orientation measured with R = 30 are shown
in the first and third column, respectively. In the second column, we plot the averages measured
for different scales R. The same analysis carried out for the standard deviations is reported in
Appendix A.5. A detailed overview of the fitting errors for the individual magnitudes is shown in
Figure 10(model C).

We obtain a qualitative agreement in the quench and stationary states for all the investigated
properties that progressively improves both on average and standard deviation as R increases.
At R = 30, we find a good general quantitative agreement. In the quench state, the results are
independent of α due to the lack of privileged orientation. On the other hand, we observe in the
stationary state a dependence on shear orientation related to the mere static equilibrium (τ̃i) but
also to the induced anisotropy (τ̃c and ∆τ̃c) known as the Bauschinger effect [49].

The local shear stress 〈τ̃i〉 and the yield stress exhibit a remarkably good match for every ori-
entation α. However, the distances to threshold 〈∆τ̃c〉 and the stress drops 〈δτ̃c〉 exhibit qualita-
tive differences, suggesting that the elasto-plastic model captures the emergent anisotropy with
a different degree of accuracy depending on the orientation α. Specifically, we observe a system-
atically higher accuracy in the forward direction (α= 0°) than in the backward direction (α= 90°).
Moreover, the distance to threshold in the backward direction exhibits an incompatible scaling
with R. Another qualitative discrepancy between models are the small local minima (Figure 4l,
Figure 8d and f), presumably an artifact induced by the FEM quadrilateral structured mesh.

We note that Figure 4(e,f) reports negative yield stress 〈τ̃c〉 < 0. Although slip systems have
positive-definite slip thresholds τc > 0 the definition of coarse-grained yield stress (Section 3.5)
allows the measurement of negative values. A detailed discussion can be found in Appendix A.4.
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Figure 4. Comparison of the local properties of the atomistic (blue) and elasto-plastic (red)
models in the quench and stationary regimes: von Mises stress Σ̃vm and resolved shear
stress τ̃i on the shear test plane (first row), yield stress τ̃c (second row), distance to threshold
∆τ̃c (third row) and stress drop δτ̃c (forth row). The columns correspond to the probability
distribution functions for R = 30 (left), the averages as a function of R (center) and the
averages as a function of the shear orientation α for R = 30 (right). The results shown
correspond to the optimal parameters with l = 6.6.

5. Emergent properties

The optimal elasto-plastic parameters are estimated by minimizing the discrepancies between
models at the macroscale, and at a local scale only for the forward and backward orientations
(see Section 4). We find that, for the optimal parameters found, a great deal of non-trivial and
quantitatively accurate phenomenology naturally emerges without the need to explicitly include
it into the optimization process.

An example of such finding is the root-mean-square deviation r of the external stress and the
system size dependence of stress fluctuation std(Σext

x y ), reported in Figure 5a and b, respectively.
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Figure 5. Comparison of the behavior of the atomistic (blue) and elasto-plastic (red) mod-
els. (a) Root-mean-square deviation r of the external stress. (b) Finite-size scaling of the
external stress standard deviation std(Σext

x y ). (c) Average local stress drop versus average

yield stress with R = 30. (d) Bauschinger tests: reloading (αext = 0°) and reverse loading
(αext = 90°) for systems previously unloaded from the stationary state. The results shown
correspond to the optimal parameters with l = 6.6.

We compute the root-mean-square deviation over external strain intervals as

r (∆γext) =
〈

std
(
Σext

x y |γext,γext +∆γext
)〉

γext
, (10)

where the average is performed over intervals of width ∆γext, centered at different positions
γext of the stress–strain curve in the stationary regime. r (∆γext) increases and saturates to the
std(Σext

x y ), the latter decreasing with system size as∼L−0.94. We find that both stress correlation and
standard deviation show excellent quantitative agreement with molecular statics simulations.

Furthermore, in the elasto-plastic model specification we have defined a statistical relation
between the amplitude of a slip event and the resolved shear stress τ on the active slip system at
the moment of activation (7). To keep the model simple, we avoided a detailed description of the
slip events and chose (7) based solely on fulfilling the physical constraint of avoiding negative
dissipation. Nonetheless, when coarse-grained stress drops δτ̃c are measured, we observe an
emergent non-linear relation between 〈δτ̃c〉 and 〈τ̃c〉. This relation is shown in Figure 5c for the
quenched state and the stationary forward and backward directions, measured with R = 30. The
elasto-plastic model reproduces accurately the relation found in the atomistic system.

On the other hand, the elasto-plastic model consistently reproduces the anisotropy in the sta-
tionary state observed in the atomistic measurements for the different local properties studied,
as discussed in Section 4.2. Note that such anisotropy is not a built-in ingredient of the model.
Neither the laws of slip system renewal nor slip event performance consider a privileged ori-
entation. Rather, the anisotropic response emerges naturally from the system’s dynamics in the
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presence of the external load. This effect can be understood as the result of statistical hardening,
i.e., the growth of the yield stress that occur due to a statistically biased slip activation. For sim-
plicity, but without loss of generality, we consider the anisotropic response in terms of only for-
ward and backward responses. In steady state, forward-oriented slip systems (i.e., θ ≈ αext = 0°)
experience a higher resolved shear stress. Consequently, forward-oriented slip systems suffer a
statistical rise of slip threshold while backward-oriented (i.e., θ ≈αext +90°) systems do not.

To further assess this plasticity-induced anisotropy, we perform a reloading test for different
orientations. To this end, systems are driven until the stationary state and from there are un-
loaded until they bear no external stress, Σext

x y = 0. While in the stationary state the behavior of
the system is history-independent, once unloaded the future response depends strongly on the
past deformation history, since the local yield stresses have been subjected to an anisotropic bias
due to plastic deformation. When the unloaded systems are reloaded with αext = 0°, we observe
a nearly elastic-perfectly plastic response (Figure 5d). However, when the system is loaded in the
reverse direction αext = 90°, we observe a much softer behavior showing a slow strain-hardening.
The origin of this Bauschinger effect has been shown to come from the inversion of the polariza-
tion in the low distance to threshold population during unloading [49]. As reported in Figure 5d,
we find a remarkable quantitative agreement between the atomistic measurements and the pre-
dictions of the elasto-plastic model regarding the plasticity-induced asymmetrical response to an
external load.

6. Successes, failures and key ingredients

The elasto-plastic model reproduces all the phenomenology investigated in the stationary state
with a relative aggregated error of Lstat ≈ 16%. Specifically, the model reproduces the macroscale
behavior with an excellent agreement for all the element lengths l investigated, despite the
diminishing spatial resolution as l increases. We find a good quantitative agreement at the
mesoscale with R = 30. However, when mesoscale properties are measured in the forward
direction, i.e. aligned with the external load, such measures do not restrict the range of optimum
mesoscale parameters with respect to the macroscale estimation. To further restrict the range, we
measure the mesoscale properties oriented against the external load, which allows us to establish
a specific combination of optimum mesoscale parameters. Moreover, the quenched state results
generated by the Kinetic Monte Carlo method are of similar quality as the measures performed
in the stationary state. These successes have been thoroughly discussed in the previous sections.

Despite the success of the elasto-plastic model, some disagreements are worth mentioning.
We find that for the acceptable combinations of mesoscale parameters (i.e., that fulfill the con-
straint of matching the macroscale behavior), the elasto-plastic model systematically underes-
timates the distances to threshold in the forward direction in the stationary state (Figure 4h).
Moreover, we find a wrong scaling in the left tail of the probability density, with a negative expo-
nent in contrast with the marginal stability expected in elasto-plastic models and observed in our
atomistic results. This discrepancy implies that, in the stationary state, elasto-plastic elements are
closer to mechanical instability than atomistic regions are. We note that the non-coarse-grained
single element response exhibits a scaling which is qualitatively right, with a positive exponent.

On the other hand, measurements in the backward direction α = 90° are, in general, less
satisfactory than in the forward direction α = 0°. A backward behavior with a lower fit quality
is especially appreciable in the scaling of the distance to threshold 〈∆τ̃c〉 (Figure 4h). Since the
distances to threshold and the forward–backward anisotropy result from self-organization, the
mentioned discrepancies suggest that a new ingredient that modifies the dynamical evolution of
the system might be required in the elasto-plastic description.
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A general trend in our results is the deviation of the elasto-plastic results from the atomistic
ones at the lower scales. In the local properties, a convergence between measurements at coarser
scales is expected since model-specific details and possible measuring artifacts related to local
shear tests become less relevant. Nonetheless, this trend is also reflected in the macroscale behav-
ior when looking at fine details. Specifically, Figure 2d reveals a discrepancy in the low-stress in-
crement tail. While the elasto-plastic distribution exhibits discrete stress increments induced by
the driving protocol, the atomistic distribution is smoothed. Such discrepancy in the low-stress
increments results from elastic heterogeneity at the smallest scales, which leads to external stress
increments that fluctuate around discrete values imposed by the discrete external strain incre-
ments. Moreover, the root-mean-square deviation of external stress (Figure 5a) deviates below
strain windows of ∆γext < 10−3. This value is the lower bound above which both stress–strain
curves exhibit a similar correlation structure between stress increments and drops.

Even before questioning the validity and the ingredients of the elasto-plastic model, other
sources of error can be discussed, first of which is the accuracy of the atomistic local yield stress
method itself. Since the method uses rigid boundary conditions, it is likely to overestimate the
yield stress and undereste the stress drops. This is in line with the underestimation of the local
yield stress below R < 15 in the elasto-plastic model, and consistent with the recent work done by
Liu et al. [50]. Moreover, the measurement is purely local and does not take into account the
elastic heterogeneities influencing the effective mechanical loading of each zone. All of these
effects are expected to vanish asymptotically as the patch size increases, which is consistent with
our results. These limits highlight the interest of developing flexible loading conditions for the
atomistic local yield stress method, which will be the subject of future works.

In order to establish the impact of each ingredient employed in the elasto-plastic model, we
finally quantify the different relative errors for various model flavors (see Appendix A.8 for a
detailed description). As reported in Figure 6, these errors are classified into three categories
corresponding to macroscale and mesoscale properties in the forward and backward directions.

Elastic heterogeneity has been shown to become progressively more important for the cor-
rect representation of elasticity in glasses as the coarse-graining scale decreases [36]. Therefore,
it is the first candidate ingredient to enhance the agreement between the magnitudes mentioned
above and their respective atomistic measurements. As discussed before, elastic heterogeneity
leads to small disagreements between the atomistic and the elasto-plastic model at the lowest
scales. Thanks to our FEM computation of the elastic fields, we study the impact of inhomoge-
neous but non-evolving elastic properties and conclude that it has a small effect on the mea-
surements performed on the elasto-plastic model and specifically does not improve systematic
disagreements such as the distances to threshold.

In our mesoscale description, quenched elastic inhomogeneity leads only to subtle variations
of the optimal parameters and a very slight improvement (Figure 6A), but the global picture is
not altered with respect to the homogeneous case. An explanation might be that the model is
sensitive to very few fundamental ingredients, namely disorder in slip activation and amplitude
of elastic coupling, while the physical origin of such ingredients does not alter the model dynam-
ics. Since the leading effect of elastic inhomogeneity is an increment in the local stress fluctu-
ations, the right fluctuation might already be captured, in an effective sense, by the calibrated
homogeneous model. Along similar lines, a more accurate description based on evolving elastic
properties induced by structural evolution might, through the correspondence between elastic
inhomogeneity and eigenstrain [57], have a similar impact as increasing the fluctuation of slip
event amplitudes. Considering correlations between slip thresholds and elastic properties might
also lead to further improvements in the model results.

We introduced pressure sensitivity by considering a Drucker–Prager-like criterion. As shown
in Figure 6B, the error increases with respect to the original model, especially in the backward
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Figure 6. Relative errors between the atomistic simulations and different versions of the
elasto-plastic model (A–I) computed with their respective optimum parameters with R = 30
and l = 6.6 in the stationary state. Shown are the errors in the macroscale behavior (L̂macro)
and mesoscale properties aligned with the external load (L̂+

meso) and against it (L̂−
meso). The

different model ingredients are: (i) randomly oriented slip systems with their own thresh-
old versus scalar model with a single threshold value per element. (ii) Stochastic thresh-
old renewal versus fixed value. (iii) Stochastic slip amplitudes versus fixed value. (iv) Es-
helby, randomly shuffled Eshelby or mean-field interaction kernels. (v) Non-evolving and
inhomogeneous versus homogeneous shear modulus. (vi) Drucker–Prager versus pressure-
independent yield criterion.

direction. This finding is surprising since pressure sensitivity is known to be present in the
atomistic system [48], and suggests that pressure effects are not correctly captured by a Drucker–
Prager criterion alone as discussed in [10,58]. An improvement would involve considering a local
criterion for permanent local dilation and contraction based on free volume dynamics [59].

Along similar lines, we studied the impact of diverse extra model features that do not bring
new fundamental ingredients. Namely, we considered (i) a fluctuating number N of slip system
per elasto-plastic element; (ii) a typical plastic strain amplitude controlling correlations between
the previous and renewed thresholds; (iii) an explicit built-in anisotropy in the slip thresholds
as a function of orientation, understood as a bias in the structural renewal process induced by
external stress. These ingredients induce minimal changes in the overall picture presented in this
paper, and we find that the mentioned deficiencies in the comparison between both models do
not improve.

We finally follow the opposite approach by assessing the quality of simpler models. To this
end, we implement a scalar model with only two slip systems of orientations 0° and 90°, fixed
slip amplitudes, and spatially homogeneous non-evolving slip thresholds (Figure 6H). In this
case, the only source of disorder is the quenched pre-stress field. Consequently, the stationary
regime exhibits quasi-deterministic features, and the atomistic macroscale behavior cannot
be reproduced accurately. If we restore the original stochastic renewal of the slip thresholds
(Figure 6F), a calibration of quality only slightly below the original model C is possible (note
that this scalar model cannot, by construction, reproduce the behavior for all the orientations
shown in the left columns of Figures 4 and 8). However, if instead, we restored the stochastic
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slip orientations and amplitudes (Figure 6E), the emergent plasticity-induced anisotropy is lost
since the model fails to reproduce the backward response. Therefore, stochastic renewal of slip
thresholds is the most physically relevant source of disorder in the system for reproducing the
emergent anisotropy observed in the atomistic glasses.

The original model C uses an Eshelby-type elastic interaction obtained by solving the stress
balance equation. In this case, slip events induce anisotropic stress variations with alternating
signs as a function of orientation, which lead to spatial correlations in the stress field and to strain
localization [23, 60]. To assess the role of spatial correlations, we consider a random interaction
kernel obtained by element-wise randomly shuffling the stress variations induced by slip events
in the rest of the system. This kernel maintains the same statistical properties as the original
one except for spatial correlations. As shown by Figure 6D, a calibration of quality only slightly
below the original model C is possible. We take a step further and consider a homogeneous
mean-field interaction by averaging the stress variations induced by slip events in the rest of
the system (Figure 6I). In this case, the atomistic macroscale behavior cannot be reproduced
accurately. We conclude that stress fluctuations induced by slip events play a fundamental role
in the steady state flow stress response, while spatial correlations do not. We note, however, that
spatial correlations are mandatory to reproduce the strain localization observed in the transient
regime observed in more stable glasses [47].

For all the model versions, the emergent relations depicted in Figure 5 remain qualitatively
valid. The mean-field and the simplest model (Figure 6I and H, respectively), however, fail
to reproduce the root-mean-square deviation of the external stress (Figure 5a) and thus the
correlations in the stress–strain curve.

7. Conclusions

We have presented a comparison between two very distinct approaches to simulating the plastic
deformation and structural evolution of glasses. On the one hand, we consider an atomistic
model (Section 2), based on the detailed knowledge of individual atomic trajectories. On the
other hand, we present an elasto-plastic model (Section 3), which coarse-grains details into a
continuum mechanics description with local slip systems and random structural properties. We
considered strain-driven systems in athermal quasistatic shear (AQS) conditions, which reduces
the complexity of the process by, e.g., ruling out temperature and inertial effects, and therefore
the number of ingredients necessary for a successful elasto-plastic simulation.

The method for measuring local properties proposed by [41] was extended here to an elasto-
plastic implementation. We compared the results obtained with the same method but imple-
mented with two different models describing the same system. Despite the differences in fun-
damental building-blocks and time and length scales, the method allowed us to compare the
mechanical behavior independently of microscopic details. Thus, its applicability is wide and
beyond atomistic simulations, and could be generalized to other models that can resolve mi-
crostructural details. Consequently, it is well-suited for the calibration of coarse-grained models
based on data obtained at lower scales.

The elasto-plastic model reproduces the macroscale behavior in AQS conditions with a high
degree of accuracy, although macroscale behavior alone is insufficient for determining a unique
set of optimum mesoscale elasto-plastic parameters. To this end, we probed portions of the sys-
tem and measured their mechanical response in isolation. By comparing observations at differ-
ent scales with the atomistic system, we established the optimal values of the parameters. The
model can reproduce the main phenomenology associated with plastic activity and structural
evolution observed in the atomistic samples, such as the emergent anisotropy in the yield re-
sponse induced by previous plastic deformation history. By calibrating the model, we have found
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an optimum mesoscale length within the range l = 4.4–6.6. For coarser element lengths, the
model loses spatial resolution but still reproduces macroscale behavior with an excellent qual-
ity.

Despite the generally good quantitative agreement between models, we have shown that
some discrepancies at the local scales cannot be solved within the proposed model even for
the coarser scales investigated. Moreover, simplified versions of the model are still able to
reproduce the rich emergent phenomenology investigated. Therefore, it seems sensible that
alternative novel ingredients are necessary to enhance the agreement between elasto-plastic
descriptions and atomistic measurements at the mesoscale. Possible extra ingredients include
using a more complex structural renewal process or the evolution of local elastic properties and
their correlations with local yield thresholds and slip amplitudes. Moreover, the assumption of
small deformations is only justified by model simplicity and computational performance, but is
at odds with the large deformations undergone by the atomistic system when measurements are
performed in the stationary state. Along similar lines, the consideration of advection [19] would
capture material flows and rotations, a kind of structural evolution that is entirely missing in
the presented elasto-plastic approach. Extra ingredients used in the literature that are missing in
the present work are a distribution of element sizes and shapes in an unstructured mesh [26, 53,
61], rounded potentials [62] for the activation of slip events, free volume creation/annihilation
dynamics [59], the effects of viscosity and finite plastic relaxation times [25, 50] or the effects of
shear wave propagation [34, 53, 63].

Along similar lines, future research is expected to be based on quantitative optimization of
coarse-grained models that include diverse physically-motivated ingredients. Moreover, design-
ing new optimization techniques, definitions of error between models, and improved methods
for coarse-graining microscopic observations are natural steps forward to build upon the present
work. The optimization of coarse-grained models through quantitative comparison with lower-
scale reference data is a wide-open area, with the potential to impact the multi-scale modeling of
mechanical properties of amorphous materials and enhance our understanding of the complex-
ity emerging from the mechanisms at play.
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Appendix A.

A.1. Impact of the number of slip systems

For a certain element length scale, we set a number N of slip systems per element based on
the density ρs of slip systems estimated in Section 3.2. We assess the robustness of the results
upon variation of the density ρs. To this end, for a fixed scale l = 6.6, we vary the number N of
slip systems per element and re-tune the optimum parameters k̂, λ̂ and χ̂. We find that the only
effect is a rescaling of λ̂ (Figure 7) according to the expected behavior for the Weibull distribution
(5). This behavior can be understood by noting that slip activation is controlled by the statistics
of minimum distances to the threshold. If the number N of slip systems present in an element
increases, the minimum distance to the threshold in that element decreases. Therefore, to recover
the typical distance to the threshold that best fits the atomistic data, the thresholds must be
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Figure 7. Optimal slip threshold scale parameter λ̂ as a function of the number N of slip
systems in mesocale elements of length l = 6.6.

Table 1. Element lenght l , elasto-plastic lattice size LEP, number N of slip systems per
element and elasto-plastic patch size n with equivalent radius of R = 30

l LEP N n(R = 30)
3.5 29 8 15
4.4 23 16 12
6.6 15 36 8
8.8 11 64 6

10.5 9 92 5
13.2 8 144 4

increased accordingly. The elasto-plastic results remain unaffected by variations of N , once the
parameter λ̂ has been properly rescaled.

A.2. System sizes, number of slip systems and patch sizes

In our analyses, we consider mesoscale elements of different length l . The physical domain
represented by the elasto-plastic model has, in atomistic units, a side of length L = 98.8045.
To match the domain, we construct elasto-plastic lattices with a different number of elements
LEP × LEP. We compute the number of slip systems as N = ρsl 2, where ρs = 0.8. However, we
round N to its closest value multiple of 4 to distribute the slip orientations as explained in
Section 3.2. Elasto-plastic patches are formed by n ×n elements (Section 3.5), and each patch
has an associated equivalent radius. Especially important is the patch with an equivalent radius
of R = 30, which we use for calibrating the elasto-plastic model. The values used for these
parameters are reported in Table 1.

A.3. Initial configuration—quenched super-cooled liquid

Before applying the strain-driven protocol detailed in Section 3.4, we must define the initial
system configuration. To mimic the atomistic protocol as faithfully as possible, we consider an
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equilibrated super-cooled liquid (ESL) at a finite temperature T . The liquid is instantaneously
quenched, and the resulting state is used as the initial system configuration. To this end, we
simulate the atomistic rearrangements taking place in the ESL state within our elasto-plastic
framework as a series of slip events that can spontaneously occur via thermal activation [64].
Since we aim at a coarse-grained description of the process, we simulate thermal slip activation
using the Kinetic Monte Carlo (KMC) method [26, 27, 29, 56].

The KMC method requires only knowledge of all the possible transitions to a next state and
the energy cost associated with each one. Intermediate details of the transition process are not
resolved. In the elasto-plastic model, a transition corresponds to the activation of a slip event
among all the existing slip systems. Thus, one is probabilistically chosen from all the possible slip
events based on the energy cost ∆E associated with their activation. We consider a thermal slip
activation rate

νn = exp

(
−∆En

kBT

)
, (11)

where the index n refers to each slip system present in the system in a sequential manner, i.e.,
n = 1,2, . . . , N L2 where N is the number of slip systems per element and L2 is the number of
elasto-plastic elements. We write the activation energy in terms of stress as ∆En =∆τc

nVa, where
Va is a microscopic activation volume estimated to be ≈1 from molecular dynamics. Assuming
thermal activation as a Poisson process, the total activation rate is given by νtot =∑N L2

n=1 νn .
We aim to select a slip event with a probability proportional to its activation rate. To this end,

first we compute the activation probability as Pn = νn/νtot, from where we create a list of partial
sums Sn = ∑n

i=1 Pi . Then, a random number r from a uniform distribution in (0,1] is drawn. We
look in the list Sn for the first index k such that Sk > r . Slip event k is then chosen by the KMC
method. Since the probability for r of landing in the portion of the partial sum Sn is proportional
to νn , the algorithm chooses the slip event n with probability Pn [65]. The chosen event is then
performed (Section 3.3), and the elastic fields are updated. After each thermally-activated event,
an athermal adiabatic avalanche might be triggered, as described in Section 3.4. For thermally-
activated events, we set the maximum amplitude as γmax(τc) (6), since the local stress τ must
reach, at the moment of activation, a value of at least τc as result of thermal fluctuations.

Before starting the KMC simulation, the system is initially given random slip angles θ and
thresholds τc drawn from their respective distribution (see Section 3.2). We consider no pre-
stress Σ0 field and an initially homogeneous zero elastic strain εel = 0. Slip events are thermally
activated under a fixed external strain γext = 0 until the slip thresholds, and the local stress field
become statistically stationary, at which point the system has been equilibrated at temperature T .

We mimic the atomistic instantaneous quench and subsequent relaxation by setting T = 0
in the elasto-plastic system and performing an athermal mechanical relaxation, as described
in Section 3.4. The resulting state is used to create the initial configuration for the athermal
quasistatic strain-driven protocol. Specifically, the local stress field of the quenched liquid is used
as the pre-stress field Σ→Σ0 for the athermal solid, and the elastic strain is homogeneously re-
set to zero εel = 0. Similarly, the slip angles and slip thresholds are used as the initial ones for the
AQS simulation.

During the calibration process detailed in Section 4, we find that the properties of the stress
field in the quenched state depend almost exclusively on the equilibration temperature T . On
the other hand, the stationary state properties are independent of T , since they do not depend
on the initial conditions. Consequently, we calibrate the value of T in a straightforward manner
based only on the quenched state stress field properties. For the optimal parameters reported in
the main text, we find for l = 6.6 a value T̂ = 0.25 Va, a very reasonable value when compared with
the molecular dynamics equilibration temperature T = 0.351.
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A.4. Negative threshold

We note that Figure 4(e,f) report negative average yield stress, 〈τ̃c〉 < 0. Although slip sys-
tems have positive-definite slip thresholds τc > 0 the definition of coarse-grained yield stress
τ̃c = M(α) : Σ̃

c
(Section 3.5) allows the measurement of negative values. To understand this, let

us consider a macroscale system in its stationary state, loaded along αext = 0°. If we unload the
system until the first instability occurs, we need to perform, given its macroscopic size, a very
small load increment with orientation αext = 90°. Thus, when the instability occurs, the system’s
overall stress state remains oriented with αext = 0°. Consequently, the resolved shear stress at the
moment of instability on the plane αext = 90° is negative, i.e., the yield stress is negative.

We can find a criterion for negative yield stress more rigorously by considering a shear test
of orientation α performed on a patch belonging to a system at the stationary state. The initial
resolved shear stress along the tested orientation is τ̃i(α) = M(α) : Σ̃

i
. As a function of the von

Mises stress Σ̃vm = (1/2Σ̃
′

: Σ̃
′
)1/2 it can be written as τ̃i(α) = M(α) : M(β̃) : 2Σ̃vm. Taking into

account that ∆τ̃c = τ̃c − τ̃i and M(α) : M(β̃) = cos(2(α− β̃))/2, the condition for a negative yield
stress τ̃c < 0 is

|α− β̃| > 1

2
arccos

(
−∆τ̃

c(α)

Σ̃vm

)
. (12)

Therefore, it becomes increasingly more likely to measure a negative yield stress τ̃c(α) < 0 the
more the shear tests orientation α differs from the orientation β̃ of the patch initial state. On the
other hand, a negative threshold becomes more likely to occur when the distance to threshold
∆τ̃c(α) is low compared to the patch’s initial shear stress amplitude Σ̃vm. Moreover, since the
distances to threshold decrease, on average, with R, negative thresholds are more likely measured
at bigger scales.

A.5. Local fluctuations

We reach similar conclusions for the standard deviation of the explored local properties reported
in Figure 8 as we did for the averages in the main text (see Figure 4). Namely, the elasto-
plastic and atomistic model converge for big coarse-graining scales R. Nonetheless, we observed
unexpected local minima in the vicinity of α ≈ ±45°, which we attribute to artifacts induced by
the FEM quadrilateral structured mesh. The quench state is successfully reproduced from our
KMC approach.

A.6. Backward local distributions

The probability densities of the explored local properties measured in the backward direction
reported in Figure 9 are in good agreement in the quenched state and a qualitative one in the
stationary state. The local drops exhibit an excellent agreement in both cases.

A.7. Limit to the amplitude of the slip events

When a local slip event takes place an elasto-plastic element, a uniform eigenstrain is prescribed
to the element. Therefore, a deforming element can be interpreted as an Eshelby inclusion with
uniform eigenstrain embedded within an elastic matrix. As shown by [54], there exists a limit
to the amount of eigenstrain an Eshelby inclusion can undergo to prevent negative dissipation.
In the case of uniform eigenstrain, such limit is given by

R : εpl ≥ 0, R = (
Σ+ 1

2∆Σ
)

, (13)
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Figure 8. Comparison of the local property standard deviations of the atomistic (blue) and
elasto-plastic (red) models in the quench and stationary regimes: von Mises stress Σ̃vm and
resolved shear stress τ̃i (first row), yield stress τ̃c (second row), distance to threshold ∆τ̃c

(third row) and stress drop δτ̃c (forth row). The columns correspond to the averages as a
function of R (left) and the averages as a function of shear orientation α for R = 30 (right).
The results shown correspond to the optimal parameters with l = 6.6.

whereΣ is the local stress before the eigenstrain addition and∆Σ the change as a consequence of
the addition. By means of the Eshelby tensor S, defined by ∆ε=S :∆εpl, we can write the stress
change as ∆Σ=C : (∆ε−∆εpl) =C : (S− I) :∆εpl. Since we consider shear eigenstrain increments
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Figure 9. Comparison of the probability density of the local stress drop for the backward
direction α= 90° of the atomistic (blue) and elasto-plastic (red) models in the quench and
stationary regimes for R = 30: (a) local yield stress, (b) distance to threshold and (c) and
stress drops. The results shown correspond to the optimal parameters with l = 6.6.

Figure 10. Relative errors in the stationary state between the atomistic simulations and
different versions of the elasto-plastic model computed with R = 30 and l = 6.6.

of the form ∆εpl =∆γplM, with ∆γpl > 0, the criterion (13) becomes(
Σ+ 1

2C : (S− I) :∆γplM
)

: M ≥ 0. (14)

The factor (C : (S− I) : M) : M corresponds to the local shear stress variation induced by a local
shear eigenstrain ∆γpl > 0 and is therefore negative. Rearranging (14) we arrive at the final form

∆γpl ≤ −2M :Σ

(C : (S− I) : M) : M
. (15)

To increase the numerical accuracy of our approach, we compute numerically the Eshelby tensor
S of our quadrilateral finite elements. To do so, we prescribe local eigenstrains, solve the stress
balance equation with the FEM and compute the induced strain response. The same operation
carried out for different eigenstrain tensors allows us to obtain the components of S from a
system of linear equations.

A.8. Alternative models

We have quantified the fitting error of different models with l = 6.6. Each model differs in certain
implementation details and, therefore, in the optimal mesoscale parameters. This section details
the differences between models and gives the values of the estimated optimum parameters. The
fitting error for each compared quantity is reported in Figure 10.
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A.8.1. Model A

This model corresponds to the original model (Section 3) with spatially fluctuating, but non-
evolving, values of the shear modulus G , drawn from a Weibull distribution with average 〈G〉 =
18.4 and kG = 1.3. The estimated optimal parameters are k̂ = 2.18, λ̂= 2.08, χ̂= 2.19.

A.8.2. Model B

This model corresponds to the original model (Section 3) with slip thresholds updated by the
local pressure p as τc → τc +αp, where α is the pressure sensitivity. Atomistic systems exhibit a
non-zero average pressure 〈p〉 = 1.95 with a sample to sample fluctuation of the average value of
std(〈p〉) = 0.22. Since we do not consider a criterion for local free volume creation or annihilation,
the average pressure cannot be reached dynamically. Instead, we set its value by manually
adding a hydro-static contribution to the computed stress fields. The pressure sensitivity is set
to α = 0.2 [48] by looking at the dependence of the yield stress τ̃c on pressure p̃, measured in
patches with R = 30. The estimated optimal parameters are k̂ = 1.88, λ̂= 1.05 and χ̂= 3.33.

A.8.3. Model C

This model corresponds to the original model (Section 3), with optimum parameters k̂ = 2.18,
λ̂= 2.05 and χ̂= 2.25.

A.8.4. Model D

We consider the original model with a randomized interaction kernel, which maintains the
same statistical properties as the real Eshelby-type elastic interaction kernel but loses spatial
correlations. To this end, we randomly shuffle the tensorial stress variations induced by yielding
elements in the rest of the system. The local stress variation of the yielding elements is not
shuffled. The estimated optimal parameters are k̂ = 2.03, λ̂= 2.53 and χ= 3.05.

A.8.5. Model E

We consider the original model with non-evolving homogeneous slip thresholds. The remain-
ing sources of disorder are the heterogeneous pre-stress field, the stochastic strain amplitudes
∆γpl, and the randomly oriented slip systems. In this case, we replace the free parameters k and
λ by the slip threshold τc. The estimated optimal parameters are χ̂= 2.27 and τ̂c = 0.925.

A.8.6. Model F

We consider a model with a simplified implementation with respect to the original one
(Section 3). Namely, the elements contain only two slip systems of orientationsα= 0° andα= 90°,
respectively. Both slip systems have the same slip threshold. Moreover, the consider constant slip
amplitudes ∆γpl. Consequently, we replace the free parameter χ by ∆γpl. The estimated optimal
parameters are k̂ = 1.17, λ̂= 0.38 and ∆γ̂pl = 0.022.

A.8.7. Model G

The same as Section A.8.6 but including the randomly shuffled kernel described in Sec-
tion A.8.4. The estimated optimal parameters are k̂ = 1.09, λ̂= 0.57 and ∆γ̂pl = 0.064.

A.8.8. Model H

The same as Section A.8.6 with non-evolving homogeneous thresholds as described in
Section A.8.5. No combination of free parameters leads to a satisfactory fit to the atomistic
macroscale behavior.
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A.8.9. Model I

We consider the original model with a mean-field homogeneous kernel. To this end, whenever
a mesoscale element yields, we compute the average tensorial stress variation over all the non-
yielding elements. The stress in all the non-yielding elements is updated with the computed
average variation. No combination of free parameters leads to a satisfactory fit to the atomistic
macroscale behavior.
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[45] V. Bapst, T. Keck, A. Grabska-Barwińska, C. Donner, E. D. Cubuk, S. S. Schoenholz, A. Obika, A. W. R. Nelson, T. Back,
D. Hassabis, P. Kohli, “Unveiling the predictive power of static structure in glassy systems”, Nat. Phys. 16 (2020), no. 4,
p. 448.

[46] D. Richard, M. Ozawa, S. Patinet, E. Stanifer, B. Shang, S. A. Ridout, B. Xu, G. Zhang, P. K. Morse, J. L. Barrat,
L. Berthier et al., “Predicting plasticity in disordered solids from structural indicators”, Phys. Rev. Mater. 4 (2020),
article no. 113609.

[47] A. Barbot, M. Lerbinger, A. Hernandez-Garcia, R. García-García, M. L. Falk, D. Vandembroucq, S. Patinet, “Local yield
stress statistics in model amorphous solids”, Phys. Rev. E 97 (2018), article no. 033001.

[48] A. Barbot, M. Lerbinger, A. Lemaître, D. Vandembroucq, S. Patinet, “Rejuvenation and shear banding in model
amorphous solids”, Phys. Rev. E 101 (2020), article no. 033001.

[49] S. Patinet, A. Barbot, M. Lerbinger, D. Vandembroucq, A. Lemaître, “Origin of the bauschinger effect in amorphous
solids”, Phys. Rev. Lett. 124 (2020), article no. 205503.

[50] C. Liu, S. Dutta, P. Chaudhuri, K. Martens, “Elastoplastic Approach Based on Microscopic Insights for the Steady State
and Transient Dynamics of Sheared Disordered Solids”, Phys. Rev. Lett. 126 (2021), no. 13, article no. 138005.

[51] C. Maloney, A. Lemaître, “Universal breakdown of elasticity at the onset of material failure”, Phys. Rev. Lett. 93 (2004),
no. 19, article no. 195501.

C. R. Physique — Online first, 21st May 2021



28 David Fernández Castellanos et al.

[52] S. Sandfeld, Z. Budrikis, S. Zapperi, D. Fernandez Castellanos, “Avalanches, loading and finite size effects in 2d
amorphous plasticity: results from a finite element model”, J. Stat. Mech.: Theor. Exp. 2 (2015), article no. P02011.

[53] K. Karimi, J.-L. Barrat, “Role of inertia in the rheology of amorphous systems: a finite-element-based elastoplastic
model”, Phys. Rev. E 93 (2016), no. 2, article no. 022904.

[54] M. Vasoya, B. Kondori, A. A. Benzerga, A. Needleman, “Energy dissipation rate and kinetic relations for eshelby
transformations”, J. Mech. Phys. Solids 136 (2020), article no. 103699.

[55] J. D. Eshelby, “The determination of the elastic field of an ellipsoidal inclusion, and related problems”, Proc. R. Soc.
Lond. Ser. A 241 (1957), no. 1226, p. 376-396.

[56] V. V. Bulatov, A. S. Argon, “A stochastic model for continuum elasto-plastic behavior. II. A study of the glass transition
and structural relaxation”, Model. Simul. Mater. Sci. Eng. 2 (1994), no. 2, p. 185.

[57] L. Ma, A. M. Korsunsky, “The principle of equivalent eigenstrain for inhomogeneous inclusion problems”, Int. J.
Solids Struct. 51 (2014), no. 25, p. 4477-4484.

[58] J. Rottler, M. O. Robbins, “Yield conditions for deformation of amorphous polymer glasses”, Phys. Rev. E 64 (2001),
article no. 051801.

[59] L. Li, E. R. Homer, C. A. Schuh, “Shear transformation zone dynamics model for metallic glasses incorporating free
volume as a state variable”, Acta Mater. 61 (2013), no. 9, p. 3347-3359.

[60] G. Picard, A. Ajdari, F. Lequeux, L. Bocquet, “Elastic consequences of a single plastic event: a step towards the
microscopic modeling of the flow of yield stress fluids”, Eur. Phys. J. E 15 (2004), no. 4, p. 371-381.

[61] K. Karimi, E. E. Ferrero, J.-L. Barrat, “Inertia and universality of avalanche statistics: the case of slowly deformed
amorphous solids”, Phys. Rev. E 95 (2017), no. 1, article no. 013003.

[62] E. A. Jagla, “Different universality classes at the yielding transition of amorphous systems”, Phys. Rev. E 96 (2017),
article no. 023006.

[63] F. Puosi, J. Rottler, J.-L. Barrat, “Time-dependent elastic response to a local shear transformation in amorphous
solids”, Phys. Rev. E 89 (2014), article no. 042302.

[64] A. Lemaître, “Structural relaxation is a scale-free process”, Phys. Rev. Lett. 113 (2014), article no. 245702.
[65] A. F. Voter, “Introduction to the Kinetic Monte Carlo Method”, in Radiation Effects in Solids, Springer, 2007, p. 1-23.

C. R. Physique — Online first, 21st May 2021


	1. Introduction
	2. Atomistic model and methods
	2.1. Preparation and loading protocols
	2.2. Atomistic implementation of the local shear test

	3. Elasto-plastic model
	3.1. Local slip systems
	3.2. Structural properties
	3.3. Performing a slip event
	3.4. Loading protocol
	3.5. Elasto-plastic implementation of the local shear test

	4. Calibration of the elasto-plastic model
	4.1. Macroscale behavior
	4.2. Mesoscale local properties

	5. Emergent properties
	6. Successes, failures and key ingredients
	7. Conclusions
	Acknowledgements
	Appendix A. 
	A.1. Impact of the number of slip systems
	A.2. System sizes, number of slip systems and patch sizes
	A.3. Initial configuration—quenched super-cooled liquid
	A.4. Negative threshold
	A.5. Local fluctuations
	A.6. Backward local distributions
	A.7. Limit to the amplitude of the slip events
	A.8. Alternative models
	A.8.1. Model A
	A.8.2. Model B
	A.8.3. Model C
	A.8.4. Model D
	A.8.5. Model E
	A.8.6. Model F
	A.8.7. Model G
	A.8.8. Model H
	A.8.9. Model I


	References

