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Abstract

We consider the space of matrices, with given number of rows and of columns, equipped with the
classic trace scalar product. With any matrix (source) norm, we associate a coupling, called Capra,
between the space of matrices and itself. Then, we compute the Capra conjugate and biconjugate of
the rank function. They are expressed in function of a sequence of rank-based norms, more precisely
generalized r-rank and dual r-rank matrix norms associated with the matrix source norm. We deduce
a lower bound of the rank function given by a variational formula which involves the generalized r-rank
norms. In the case of the Frobenius norm, we show that the rank function is equal to the variational
formula.

1 Introduction

The rank of a matrix is used in sparse optimization, either as criterion or in the constraints, to obtain matrix
solutions with few independent rows or columns. However, the mathematical expression of the rank makes
it difficult to handle in optimization problems. This is why one often resorts to surrogate expressions of the
(noncontinuous and nonconvex) rank function, like norms. As it is not possible to cover all the references on
such a large subject, we refer the reader to a small subset [8, 9] of the literature and to [13] which offers a
kind of survey of the rank function.

In this paper, we address the question of the relation between the rank function and suitable norms.
For this purpose, we introduce sequences of rank-based norms — more precisely, generalized r-rank and
dual r-rank matrix norms — generated from any (source) norm. With such a source norm, we also define
a coupling between the space of matrices and itself, and we compute the biconjugate of the rank function
under the associated conjugacy. We deduce a lower bound variational formula for the rank function which
involves generalized r-rank norms. Moreover, when the source norm is the Frobenius norm, we prove that
the inequality is an equality.

The paper is organized as follows. In Sect. 2, we define and study rank-based norms. In Sect. 3, we
introduce Capra-conjugacies and their relations with the rank function.

2 Rank-based norms

In §2.1, we fix notation. In §2.2, we define rank-based norms as, more precisely, generalized r-rank and dual
r-rank matrix norms. In §2.3, we detail the case of unitarily invariant source matrix norms.

2.1 Notation

In all the paper, we consider two fixed positive integers m (number of rows) and n (number of columns), and
we denote d = min(m, n). We use the notation Jk, lK = {k, k + 1, . . . , l − 1, l} for any pair of integers such
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that k ≤ l. We denote by Mm,n the space of real matrices with m rows and n columns, by rk : Mm,n → N

the rank function and by M≤r (resp. M=r) the subset of matrices of rank less than or equal to r (resp. equal
to r). We recall that the singular values of a matrix M ∈ Mm,n are the square root of the (nonnegative)
eigenvalues of the square matrix MTM , and we denote by s(M) = {si(M)}i∈J1,dK ∈ Rd the vector composed
of the singular values of M arranged in nonincreasing order, that is,

s(M) ∈ K =
{

x ∈ R
d

∣

∣ 0 ≤ x1 ≤ · · · ≤ xd

}

= s(Mm,n) , ∀M ∈ Mm,n . (1)

For any t ∈ N∗, we denote by Ot the group of orthogonal square t × t matrices. It is established that, for
any matrix M ∈ Mm,n, there exists a singular value decomposition [3, p. 6] M = U diag(s(M))V T of the
matrix M , where U ∈ Om and V ∈ On. It is also readily proven that, for any matrix M ∈ Mm,n, for any
U ∈ Om and V ∈ On, we have that s(M) = s(UMV ).

When equipped with the scalar product M2
m,n ∋ M, N 7→ Tr(MNT), Mm,n is a Euclidean space which

is in duality with itself. As we manipulate functions with values in R = [−∞, +∞], we adopt the Moreau
lower and upper additions [14] that extend the usual addition with (+∞) ·+ (−∞) = (−∞) ·+ (+∞) = −∞
or with (+∞) ∔ (−∞) = (−∞) ∔ (+∞) = +∞. For any subset Y ⊂ Mm,n, σY : Mm,n → R denotes the
support function of the subset Y :

σY (M) = sup
N∈Y

Tr(MNT) , ∀M ∈ Mm,n . (2)

For any norm |||·||| on the space Mm,n of matrices, also called matrix norm, we denote by B|||·||| ⊂ Mm,n

and S|||·||| ⊂ B|||·||| ⊂ Mm,n the associated unit ball and unit sphere. The dual norm |||·|||⋆ of the norm |||·||| is
defined by |||·|||⋆ = σB|||·|||

.

2.2 Definition of generalized r-rank and dual r-rank matrix norms

To define rank-based norms, one could take inspiration from the construction of vector norms. Given a vector
norm, one may define other norms as follows: for any vector, one evaluates the norms of all subvectors with
dimension less than or equal to a fixed integer, and then take the maximum. Unfortunately, this procedure
does not work with the rank.

Indeed, let |||·||| be the ℓ1-norm on the space Mm,n of matrices, that is, |||M ||| is the sum of the modules
of all the components of the matrix M ∈ Mm,n. Define, for any matrix M ∈ Mm,n and r ∈ J1, dK,

|||M |||
tn
(r) = supX⊂M,rk(X)≤r|||X |||, where X ⊂ M is a shorthand for matrices X of Mm,n for which there exists

K ⊂ J1, mK and L ⊂ J1, nK such that X coincides with M , except for entries Xk,l = 0 for (k, l) /∈ K × L.

We now show that the function |||·|||
tn
(r) is not a norm by contradicting the triangular inequality. Indeed,

consider m = n = 2 and the matrix M =

(

1 1
1 1

)

. As rk(M) = 1, we get that |||M |||tn
(1) = 4. We can write

M =

(

1 0
0 1

)

+

(

0 1
1 0

)

and we easily get that
∣

∣

∣

∣

∣

∣

∣

∣

∣

(

1 0
0 1

)

∣

∣

∣

∣

∣

∣

∣

∣

∣

tn

(1)

=
∣

∣

∣

∣

∣

∣

∣

∣

∣

(

0 1
1 0

)

∣

∣

∣

∣

∣

∣

∣

∣

∣

tn

(1)

= 1. However, the triangular

inequality does not hold true as we have that 4 = |||M |||
tn
(1) >

∣

∣

∣

∣

∣

∣

∣

∣

∣

(

1 0
0 1

)

∣

∣

∣

∣

∣

∣

∣

∣

∣

tn

(1)

+
∣

∣

∣

∣

∣

∣

∣

∣

∣

(

0 1
1 0

)

∣

∣

∣

∣

∣

∣

∣

∣

∣

tn

(1)

= 1 + 1 = 2.

This is why we turn to the following definition, inspired by the construction of generalized coordinate-r
vector norms in [4, Definition 3]. This construction, for matrices, can also be found in [12] in the unitarily
invariant norm case (see the discussion at the beginning of §2.3).

Proposition 1. Let |||·||| be a norm on the space Mm,n of matrices. We denote by B|||·||| and S|||·||| the
associated unit ball and unit sphere, as well as, for any r ∈ J0, dK,

B
≤r

|||·||| = B|||·||| ∩ M≤r , B
=r
|||·||| = B|||·||| ∩ M=r , S

≤r

|||·||| = S|||·||| ∩ M≤r , S
=r
|||·||| = S|||·||| ∩ M=r . (3)
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The following expressions |||·|||rk
(r),⋆ define a nondecreasing sequence

{

|||·|||rk
(r),⋆

}

r∈J1,dK
of norms on Mm,n

|||N |||
rk
(r),⋆ = σ

B
≤r

|||·|||

(N) = sup
M∈B

≤r

|||·|||

Tr(MNT) , ∀N ∈ Mm,n , ∀r ∈ J1, dK , (4)

which satisfy
|||·|||rk

(r),⋆ = σB=r
|||·|||

= σ
S

≤r

|||·|||

= σS=r
|||·|||

, ∀r ∈ J1, dK . (5)

Proof. The sequence
{

|||·|||
rk
(r),⋆

}

r∈J1,dK
in (4) is nondecreasing since the sequence

{

B
≤r

|||·|||

}

r∈J1,dK
of unit balls

in (3) is nondecreasing, as so is the sequence
{

M≤r
}

r∈J1,dK
.

First, we prove that σS=r
|||·|||

= σ
S

≤r

|||·|||

, for r ∈ J1, dK. For this purpose, we show that S=r
|||·||| = S

≤r

|||·|||, where ·

denotes the topological closure. The inclusion S=r
|||·||| ⊂ S

≤r

|||·||| is straightforward because it is well known [13,

Theorem 2] that M=r = M≤r, from which we deduce that S=r
|||·||| = S|||·||| ∩ M=r ⊂ S|||·||| ∩ M=r = S|||·||| ∩ M≤k,

the inclusion being a property of the topological closure.
To prove the reverse inclusion S|||·||| ∩ M≤r ⊂ S=r

|||·|||, we consider M ∈ S|||·||| ∩ M≤r. As M=r = M≤r,

there exists a sequence {Mn}n∈N in M=r such that Mn → M when n → +∞. Since M ∈ S|||·|||, we can

always suppose that Mn 6= 0, for all n ∈ N. Therefore Mn

|||Mn||| is well defined, and when n → +∞ we have

that Mn

|||Mn||| → M
|||M||| = M since M ∈ S|||·|||. Now, for all n ∈ N, on the one hand, Mn

|||Mn||| ∈ M=r and, on

the other hand, Mn

|||Mn||| ∈ S|||·|||. As a consequence, we get that the sequence
{

Mn

|||Mn|||

}

n∈N
∈ S|||·||| ∩ M=r, and

we conclude that the limit of the sequence M ∈ S=r
|||·|||. Thus, we have proven that S=r

|||·||| = S
≤r

|||·|||, hence that

σ
S

≤r

|||·|||

= σ
S=r

|||·|||

= σS=r
|||·|||

by [2, Proposition 7.13].

Second, we prove that σ
B

≤r

|||·|||

= σ
S

≤r

|||·|||

. It is readily established that S
≤r

|||·||| ⊂ B
≤r

|||·||| ⊂ coS≤r

|||·||| (the convex

hull of S≤r

|||·|||) as any point in B
≤r

|||·||| = B|||·||| ∩ M≤r is the convex combination of a point and its opposite in

S
≤r

|||·||| = S|||·||| ∩ M≤r. Therefore, by property [2, Proposition 7.13] of the support function (2), we get that

σ
B

≤r

|||·|||

= σ
S

≤r

|||·|||

. By the same reasoning, we also obtain that σB=r
|||·|||

= σS=r
|||·|||

which, combined with the first part,

gives σ
B

≤r

|||·|||

= σ
S

≤r

|||·|||

= σS=r
|||·|||

= σB=r
|||·|||

.

Third, we prove that (4) defines norms. We consider a fixed r ∈ J1, dK. As the set B
≤r

|||·||| is easily seen to

be bounded and symmetric, |||·|||
rk
(r),⋆ = σ

B
≤r

|||·|||

is a 1-homogeneous subadditive function with values in [0, +∞[.

It remains to prove that, for any N ∈ Mm,n, σ
B

≤r

|||·|||

(N) = 0 ⇔ N = 0. For this purpose, we consider

a matrix N ∈ Mm,n which satisfies σ
B

≤r

|||·|||

(N) = 0, and we prove that N = 0. We consider the singular

value decomposition N = U diag(s(N))V T of the matrix N . Defining M = U diag
(

s1(N), 0, . . . , 0
)

V T, the
matrix M has rank less than or equal to 1. Thus, we obtain that

|s1(N)|2 = |s1(M)|2 = Tr(MNT) ≤ |||M ||| sup
M ′∈S

≤r

|||·|||

Tr(M ′TN) = |||M |||σ
B

≤r

|||·|||

(N) = 0 ,

hence that s1(N) = 0. This implies that all the singular values of N are null because s1(N) is the largest
one. Hence, we get that N = 0.

This ends the proof.

Now, we define rank-based norms as follows.
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Definition 2. Let |||·||| be a norm on the space Mm,n of matrices, that we call source (matrix) norm. The

matrix norms in the nondecreasing sequence
{

|||·|||
rk
(r),⋆

}

r∈J1,dK
, given by Proposition 1, are called generalized

dual r-rank matrix norms. By taking their dual norms |||·|||rk
(r) =

(

|||·|||rk
(r),⋆

)

⋆
, we obtain a nonincreasing

sequence
{

|||·|||rk
(r)

}

r∈J1,dK
of norms on Mm,n called generalized r-rank matrix norms.

Notice that, by (4) for r = d, and then by taking the dual norms, we get that

|||·|||
rk
(1),⋆ ≤ · · · ≤ |||·|||

rk
(d),⋆ = |||·|||⋆ and |||·|||

rk
(1) ≥ · · · ≥ |||·|||

rk
(d) = |||·||| . (6)

2.3 The case of unitarily invariant source matrix norms

When the source norm is unitarily invariant, the norms in Proposition 1 have been introduced and studied
in [12]. The rank constrained dual norm in [12, Equation (9)] is a case of generalized dual r-rank matrix
norm, and the low-rank inducing norm in [12, Equation (10)] is a case of generalized r-rank matrix norm.
Hence, the term generalized in Definition 2.

In §2.3.1, we provide background on unitarily invariant matrix norms. In §2.3.2, we make the link between
generalized r-rank and dual r-rank matrix norms, on the one hand, and generalized coordinate and dual
coordinate-r norms and the ℓ0 pseudonorm, on the other hand. In §2.3.3, we treat the case of Schatten and
Ky Fan norms.

2.3.1 Background on unitarily invariant matrix norms

We recall that a unitarily invariant norm on Mm,n is a matrix norm such that |||UMV ||| = |||M |||, for any
matrix M ∈ Mm,n and orthogonal matrices U ∈ Om, V ∈ On.

We recall that a symmetric absolute norm is a vector norm ||·|| on Rd which satisfies the following
properties: ||·|| is absolute in the sense that || |x| || = ||x||, for any x ∈ Rd, where |x| = (|x1|, . . . , |xd|); ||·|| is
symmetric (or permutation invariant), that is, ||(xν(1), . . . , xν(d))|| = ||(x1, . . . , xd)||, for any x ∈ R

d and for
any permutation ν of the indices in J1, dK. In the literature, a symmetric absolute norm is also often called
a symmetric gauge function.

These two notions are linked by the following property (a proof can be found in [12], for example).

Proposition 3 (Von Neumann). A norm |||·||| on the space Mm,n of matrices is unitarily invariant if and
only there exists a symmetric absolute norm ||·|| on Rd such that

|||·||| = ||·|| ◦ s that is, |||M ||| = ||
(

s1(M), . . . , sd(M)
)

|| , ∀M ∈ Mm,n . (7)

In that case, one has the following relation between dual norms

|||·|||⋆ = ||·||⋆ ◦ s . (8)

The proof relies on the so-called Von Neumann inequality trace theorem [7]:

sup
U∈Om,V ∈On

Tr(UMV NT) = 〈s(M), s(N)〉 , ∀M, N ∈ Mm,n , (9)

where 〈·, ·〉 is the scalar product on Rd.

2.3.2 Links with generalized coordinate-r norms and the ℓ0 pseudonorm

We recall that the so-called ℓ0 pseudonorm on Rd is the function ℓ0 : Rd → J0, dK defined by

ℓ0(x) = number of nonzero components of x , ∀x ∈ R
d . (10)
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It is clear that rank and ℓ0 pseudonorm are related through the relation

rk(M) = ℓ0(s(M)) , ∀M ∈ Mm,n . (11)

In [4, Definition 3], we introduce, for any vector norm ||·|| on Rd, the sequence
{

||·||
R
(r)

}

r∈J1,dK
of gener-

alized coordinate-r norms on Rd, and the sequence
{

||·||
R
(r),⋆

}

r∈J1,dK
of generalized dual coordinate-r norms,

their dual norms. We do not detail their definition as we will only need the forthcoming characterization (13),

that we now detail. The norms ||·||R(r),⋆, for any r ∈ J1, dK, are related to the ℓ0 pseudonorm by means of

the level sets ℓ≤r
0 =

{

x ∈ R
d

∣

∣ ℓ0(x) ≤ r
}

, ∀r ∈ J0, dK , (12a)

and the level curves ℓ=r
0 =

{

x ∈ R
d

∣

∣ ℓ0(x) = r
}

, ∀r ∈ J0, dK . (12b)

Indeed, it is proven in [4, Equation (16)] that, for any r ∈ J1, dK, the dual coordinate-r norm satisfies

||·||
R
(r),⋆ = σ

ℓ
≤r

0 ∩S||·||
= σℓ=r

0 ∩S||·||
, (13)

where S||·|| ⊂ Rd denotes the unit sphere of the norm ||·||. The expression (13) is reminiscent, using (3), of
the property (5) of the generalized rank-based norms.

In [12, Lemma 3], it is shown that, when the source norm |||·||| is unitarily invariant, so are the generalized
r-rank matrix norms and the generalized dual r-rank matrix norms (respectively called rank constrained
dual norms and low-rank inducing norms). In the coming proposition, we recover this result but we add
the relation (14) which establishes links between rank-based norms and generalized coordinate and dual
coordinate-r norms.

Proposition 4. When the source norm |||·||| on Mm,n is unitarily invariant, with associated symmetric abso-

lute norm ||·|| on Rd as in Proposition 3, then both the generalized dual r-rank matrix norms
{

|||·|||rk
(r),⋆

}

r∈J1,dK

and the generalized r-rank matrix norms
{

|||·|||
rk
(r)

}

r∈J1,dK
, given by Definition 2, are unitarily invariant, with

|||·|||
rk
(r) = ||·||

R
(r) ◦ s and |||·|||

rk
(r),⋆ = ||·||

R
(r),⋆ ◦ s , ∀r ∈ J1, dK . (14)

Proof. We suppose that the norm |||·||| is unitarily invariant on Mm,n and that ||·|| is the associated symmetric
absolute norm. For any N ∈ Mm,n, we have that

|||N |||rk
(r),⋆ = sup

|||M|||=1 , rk(M)≤r

Tr(MNT) (by definition (4) and property (5))

= sup
|||M|||=1,rk(M)≤r,U∈Om,V ∈On

Tr(UMV NT)

by change of variable M → UMV , and using the properties that |||UMV ||| = |||M ||| and that rk(UMV ) =
rk(M)

= sup
|||M|||=1,rk(M)≤r

{

sup
U∈Om,V ∈On

Tr(UMV NT)
}

= sup
|||M|||=1,rk(M)≤r

〈s(N), s(M)〉 (using Von Neumann inequality trace theorem (9))

= sup
||s(M)||=1,ℓ0(s(M))≤r

〈s(N), s(M)〉 (by (7) and (11))

= sup
||x||=1,ℓ0(x)≤r,x∈K

〈s(N), x〉

5



as easily seen from the definition (1) of the cone K = s(Mm,n), which is in one-to-one correspondence with
the image of the singular values mapping s

= sup
||x||=1,ℓ0(x)≤r

〈s(N), x〉

because s(N) ∈ K, hence the supremum is achieved on the cone K by the well-known Hardy-Littlewood-
Pólya rearrangement inequality

= σ
ℓ

≤r

0 ∩S||·||
(s(N))

by definition (12a) of the level sets ℓ≤r
0 , and as S||·|| ⊂ Rd is the unit sphere of the norm ||·||

= ||s(N)||R(r),⋆ . (as ||·||R(r),⋆ = σ
ℓ

≤r

0 ∩S||·||
by (13))

Thus, we have proven that |||·|||
rk
(r),⋆ = ||·||

R
(r),⋆ ◦ s, that is, the second equality in (14).

Now, it is easily established by (13) that the vector norm ||·||R(r),⋆ is a symmetric absolute norm (hence

so is its dual norm ||·||R(r)). As a consequence, the first equality in (14) easily follows by using (8) (see [3,

Proposition IV.2.11]), giving

|||·|||
rk
(r) =

(

|||·|||
rk
(r),⋆

)

⋆
=

(

||·||
R
(r),⋆ ◦ s

)

⋆
=

(

||·||
R
(r),⋆

)

⋆
◦ s = ||·||

R
(r) ◦ s . (15)

By Proposition 3, we obtain the unitarily invariance of both the generalized dual r-rank matrix norms
{

|||·|||
rk
(r),⋆

}

r∈J1,dK
and the generalized r-rank matrix norms

{

|||·|||
rk
(r)

}

r∈J1,dK
.

Because the symmetric absolute norm ||·|| in Proposition 4 is a symmetric monotonic norm [1, Theorem 2],
it is an orthant-monotonic norm [10, 11]. As a consequence, by [5, Proposition 13], we get that, for any

r ∈ J1, dK, the generalized r-rank matrix norm ||·||R(r) is equal to the so-called r-support dual norm ||·||⋆sn
⋆,(r),

and the generalized dual r-rank matrix norm ||·||
R
(r),⋆ is equal to the top-r dual norm ||·||

tn
⋆,(r) as introduced

in [5, Definition 3].

2.3.3 The case of Schatten and Ky Fan source norms

For any p ∈ [1, ∞[, we define the ℓp norm on Rd by ||x||ℓp
=

(
∑d

i=1 |xi|
p
)

1
p , as well as ||x||ℓ∞ = maxi∈J1,dK |xi|,

for any vector x ∈ Rd. The Schatten p-norm on the space Mm,n of matrices is defined (see [3, IV.31]) as
the unitarily invariant norm

|||M |||sp
= ||s(M)||ℓp

, ∀M ∈ Mm,n , ∀p ∈ [1, ∞] . (16)

In particular, the Schatten 1-norm is the nuclear norm given by

|||M |||s1 = ||s(M)||ℓ1 =
d

∑

i=1

si(M) , ∀M ∈ Mm,n , (17a)

the Schatten 2-norm is the Frobenius norm given by

√

Tr(MMT) = |||M |||s2 = ||s(M)||ℓ2 =

√

√

√

√

d
∑

i=1

si(M)2 , ∀M ∈ Mm,n , (17b)

and the Schatten ∞-norm is the spectral norm given by

|||M |||s∞ = ||s(M)||ℓ∞ = s1(M) , ∀M ∈ Mm,n . (17c)
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Now, we build upon Proposition 4 to obtain expressions for the generalized dual r-rank matrix norms
{

|||·|||
rk
(r),⋆

}

r∈J1,dK
and the generalized r-rank matrix norms

{

|||·|||
rk
(r)

}

r∈J1,dK
, given by Definition 2, when the

source norm is a Schatten p-norm as follows. For this purpose, we use the following properties [5]. With

the notation of §2.3.2, if ||·|| is the ℓp norm, the associated generalized coordinate-r norm ||·||
R
(r) is the (p,r)-

support norm ||x||sn
p,r , and the generalized dual coordinate-r norm ||·||

R
(r),⋆ is the top-(q,r) norm ||·||tn

q,r, where

1/p + 1/q = 1. For y ∈ Rd, letting ν denote a permutation of {1, . . . , d} such that |yν(1)| ≥ |yν(2)| ≥ · · · ≥

|yν(d)|, we have that ||y||tn
q,r =

(
∑r

l=1 |yν(l)|
q
)

1
q .

source norm |||·||| |||·|||
rk
(r), r ∈ J1, dK |||·|||

rk
(r),⋆, r ∈ J1, dK

Schatten 1-norm Schatten 1-norm Schatten ∞-norm
= nuclear norm for all r ∈ J1, dK for all r ∈ J1, dK
Schatten 2-norm

= Frobenius norm ||s(M)||sn
2,r ||s(N)||tn

2,r =

√

r
∑

i=1

si(N)2

Schatten p-norm ||s(M)||sn
p,r ||s(N)||tn

q,r =
( r

∑

i=1

si(N)q
)

1
q

Schatten ∞-norm ||s(M)||sn
∞,r = s1(M) ||s(N)||tn

1,r =
r

∑

i=1

si(N)

= spectral norm Schatten ∞-norm
Ky Fan k-norm Schatten 1-norm Schatten ∞-norm

k ∈ J1, dK for all r ∈ J1, kK for all r ∈ J1, kK

Table 1: Generalized r-rank matrix norms
{

|||·|||rk
(r)

}

r∈J1,dK
and generalized dual r-rank matrix norms

{

|||·|||
rk
(r),⋆

}

r∈J1,dK
associated with by Schatten and Ky Fan source norms |||·||| (for p ∈ [1, ∞], and where

1/p + 1/q = 1).

Table 1 summarizes our findings. The well-known Ky Fan k-norms on the space Mm,n of matrices are
defined by

||s(M)||tn
1,k =

k
∑

i=1

si(M) , ∀M ∈ Mm,n , ∀k ∈ J1, dK .

3 CAPRA-conjugacies and the rank function

In §3.1, we adapt the definition of Capra-couplings in [4] to the case of matrices instead of vectors. In §3.2,
we provide a variational lower bound of the rank function.

3.1 CAPRA-couplings and conjugacies for matrices

We adapt the definition of Capra-couplings in [4] to the space Mm,n of matrices.

Definition 5. Let |||·||| be a source matrix norm on Mm,n. The Capra-coupling ¢, between Mm,n and
Mm,n, associated with |||·|||, is defined by:

∀M, N ∈ Mm,n , ¢(M, N) =

{

Tr(MNT)
|||M||| if M 6= 0 ,

0 otherwise.
(18)
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For any function F : Mm,n → R, the ¢-Fenchel-Moreau conjugate, or Capra-conjugate, is the function

F¢ : Mm,n → R defined by

F¢(N) = sup
M∈Mm,n

(

¢(M, N) ·+
(

−F (M)
)

)

, ∀N ∈ Mm,n , (19)

and the ¢-Fenchel-Moreau biconjugate, or Capra-biconjugate, is the function F¢¢
′

: Mm,n → R defined by

F¢¢
′

(M) = sup
N∈Mm,n

(

¢(M, N) ·+
(

−F¢(N)
)

)

, ∀M ∈ Mm,n . (20)

Then, we show below that the Capra-conjugate and biconjugate of the rank function are expressed in

function of the generalized dual r-rank matrix norms
{

|||·|||rk
(r),⋆

}

r∈J1,dK
and the generalized r-rank matrix

norms
{

|||·|||
rk
(r)

}

r∈J1,dK
, given by Definition 2. We do not give the proof as it is a simple adaptation, to the

matrix case, of the proofs of [4, Propositions 11, 12].

Proposition 6. Let |||·||| be a source matrix norm on Mm,n, and ¢ be the associated Capra-coupling as in
Definition 5.

For any function ϕ : J0, dK → R, we have that (with the convention that |||·|||rk
(0),⋆ = 0)

(ϕ ◦ rk)¢(N) = sup
i∈J0,dK

{

|||N |||
rk
(i),⋆ − ϕ(i)

}

, ∀N ∈ Mm,n , (21)

and, for any function ϕ : J0, dK → R+ (that is, with nonnegative finite values) and such that ϕ(0) = 0, we
have that

(ϕ ◦ rk)¢¢
′

(M) =
1

|||M |||
min

M(1)∈Mm,n,...,M(d)∈Mm,n
∑

d

r=1
|||M(r)|||

rk

(r)≤|||M|||
∑

d

r=1
M(r)=M

d
∑

r=1

ϕ(r)|||M (r)|||
rk

(r) , ∀M ∈ Mm,n \ {0} . (22)

3.2 Variational lower bound of the rank function

Now, thanks to Proposition 6, we obtain a variational lower bound of the rank function.

Theorem 7. Let |||·||| be a source norm on the space Mm,n of matrices, with associated sequence
{

|||·|||
rk
(r)

}

r∈J1,dK

of generalized r-rank matrix norms as in Definition 2. Then, we have the following variational lower bound
of the rank function

rk(M) ≥
1

|||M |||
min

M(1)∈Mm,n,...,M(d)∈Mm,n
∑

d

r=1
|||M(r)|||

rk

(r)≤|||M|||
∑

d

r=1
M(r)=M

d
∑

r=1

r|||M (r)|||
rk

(r) , ∀M ∈ Mm,n \ {0} . (23)

Moreover, if the source norm |||·||| is the Frobenius norm (17b), the inequality in (23) is an equality.

Proof. From the expression (22) of rk¢¢
′

, with ϕ the identity function, and from the (true for any coupling)

inequality rk ≥ rk¢¢
′

, we readily deduce (23).
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In the rest of the proof — which follows that of [6, Theorem 11] — |||·||| denotes the Frobenius norm (17b).

We consider a fixed matrix M ∈ Mm,n \ {0} and we are going to show that rk(M) = rk¢¢
′

(M). We denote
by r = rk(M) ≥ 1 the rank of M . By Table 1, and as si(M) = 0 ⇐⇒ i > r, we have that

|||M |||
rk
(k),⋆ = ||s(M)||tn

2,k =

√

√

√

√

k
∑

i=1

si(M)2























=

√

r
∑

i=1

si(M)2 = |||M ||| , ∀k ≥ r ,

<

√

r
∑

i=1

si(M)2 = |||M ||| , ∀k < r .

(24)

We consider the mapping φ :]0, +∞[→ R defined by

φ(λ) =
Tr(λMMT)

|||M |||
− sup

k∈J0,dK

{

|||λM |||
rk
(k),⋆ − k

}

, ∀λ > 0 , (25)

and we will show that limλ→+∞ φ(λ) = r. We have that

φ(λ) = λ|||M ||| − sup
(

0, sup
k∈J1,dK

{

λ|||M |||rk
(k),⋆ − k

})

by definition (25) of φ, by the convention that |||M |||
rk
(0),⋆ = 0 and by |||M |||2 = Tr(MMT)

= λ|||M |||
rk
(r),⋆ + inf

{

0, − sup
k∈J1,dK

[

λ|||M |||
rk
(k),⋆ − k

]}

(as |||M ||| = |||M |||
rk
(r),⋆ by (24))

= inf
{

λ|||M |||rk
(r),⋆, λ|||M |||rk

(r),⋆ + inf
k∈J1,dK

(

−
[

λ|||M |||rk
(k),⋆ − k

])}

= inf
{

λ|||M |||rk
(r),⋆, inf

k∈J1,dK

(

λ
(

|||M |||rk
(r),⋆ − |||M |||rk

(k),⋆

)

+ k
)}

= inf
{

λ|||M |||
rk
(r),⋆, inf

k∈J1,r−1K

(

λ
(

|||M |||
rk
(r),⋆ − |||M |||

rk
(k),⋆

)

+ k
)

, inf
k∈Jr,dK

(

λ
(

|||M |||
rk
(r),⋆ − |||M |||

rk
(k),⋆

)

+ k
)}

= inf
{

λ|||M |||
rk
(r),⋆, inf

k∈J1,r−1K

(

λ
(

|||M |||
rk
(r),⋆ − |||M |||

rk
(k),⋆

)

+ k
)

, r
}

as |||M |||
rk
(k),⋆ = |||M |||

rk
(r),⋆ for k ≥ r by (24). Let us show that the two first terms in the infimum go to +∞

when λ → +∞. The first term λ|||M |||
rk
(r),⋆ goes to +∞ because |||M |||

rk
(r),⋆ = |||M ||| > 0 by assumption (M 6= 0).

The second term infk∈J1,r−1K

(

λ
(

|||M |||
rk
(r),⋆ − |||M |||

rk
(k),⋆

)

)

+ k also goes to +∞ because rk(M) = r, so that

|||M ||| = |||M |||rk
(r),⋆ > |||M |||rk

(k),⋆ for k ∈ J1, r − 1K as shown in (24). Therefore, we get that limλ→+∞ φ(λ) =

inf{+∞, +∞, r} = r. This concludes the proof since

r = lim
λ→+∞

φ(λ) ≤ sup
N∈Mm,n

(

Tr(MNT)

|||M |||
− sup

k∈J0,dK

{

|||N |||
rk
(k),⋆ − k

}

)

(by definition (25) of φ)

= sup
N∈Mm,n

(

Tr(MNT)

|||M |||
− rk¢(N)

)

by the formula (21) for the conjugate rk¢

= rk¢¢
′

(M) (by the biconjugate formula (20))

≤ rk(M) (as rk¢¢
′

≤ rk)

= r . (by assumption)

Therefore, we have obtained that r = rk¢¢
′

(M) = rk(M).

This ends the proof.
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4 Conclusion

As recalled in the Introduction, since the mathematical expression of the rank makes it difficult to handle in
optimization problems, one often resorts to surrogate expressions like matrix norms. In this paper, we have
shown how such surrogates can be obtained as variational lower bound of the rank function (Theorem 7).
Interestingly, the formula depends on a (source) matrix norm and on the derived generalized r-rank matrix
norms, that we introduce (Definition 2). This is made possible by the versatility of the Capra-couplings,
themselves depending on a matrix norm (Definition 5). Thus, we hope to offer a general framework to
derive matrix norms suitable for optimization problems involving the rank function, as well as variational
formulations.
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