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Abstract

Whereas the norm of a vector measures amplitude (and is a 1-homogeneous function), sparsity is
measured by the 0-homogeneous l0 pseudonorm, which counts the number of nonzero components. We
propose a family of conjugacies suitable for the analysis of 0-homogeneous functions. These conjugacies
are derived from couplings between vectors, given by their scalar product divided by a 1-homogeneous
normalizing factor. With this, we characterize the best convex lower approximation of a 0-homogeneous
function on the unit “ball” of a normalization function (i.e. a norm without the requirement of subaddi-
tivity). We do the same with the best convex and 1-homogeneous lower approximation. In particular, we
provide expressions for the tightest convex lower approximation of the l0 pseudonorm on any unit ball,
and we show that the tightest norm which minorizes the l0 pseudonorm on the unit ball of any lp-norm
is the l1-norm. We also provide the tightest convex lower convex approximation of the l0 pseudonorm
on the unit ball of any norm.

Key words: l0 pseudonorm, convexity, Capra conjugacy, generalized top-k and k-support norms, sparsity
inducing norm.

AMS classification: 46N10, 49N15, 46B99, 52A41, 90C46

1 Introduction

The counting function, also called cardinality function or ℓ0 pseudonorm, counts the number of nonzero
components of a vector in R

d. It is used in sparse optimization, either as objective function or in the
constraints, to obtain solutions with few nonzero entries. However, the mathematical expression of the
ℓ0 pseudonorm makes it difficult to handle as such in optimization problems on Rd. This is why most of the
literature on sparse optimization resorts to substitute or surrogate problems, obtained either from estimates
(inequalities) for the ℓ0 pseudonorm, or from alternative sparsity-inducing terms (especially suitable norms)
[2]. We follow this approach, but using (and extending) the so-called Capra (Constant Along Primal RAys)
couplings and conjugacies introduced in [3, 4].

The paper is organized as follows. In Section 2, we introduce a new Capra-coupling that extends the def-
inition in [3]. We establish expressions for Capra-conjugates and Capra-subdifferentials of 0-homogeneous
functions. Then, in §3.1, we manage to obtain convex lower bounds for general 0-homogeneous functions,
thanks to this new coupling. We specialize these results for the ℓ0 pseudonorm in §3.2 and we obtain, in
particular, that the tightest norm below ℓ0 on any ℓp-unit ball (p ∈ [1,∞]) is the ℓ1-norm, hence justify-
ing the use of the ℓ1-norm as a sparsity-inducing term. We also provide the tightest convex lower convex
approximation of the l0 pseudonorm on the unit ball of any norm.

1



2 Capra-conjugacies for 0-homogeneous functions

In §2.1, we recall definitions related to homogeneous functions on Rd, and we introduce a new Capra-
coupling between vectors of Rd. This Capra coupling is suited for the analysis of 0-homogeneous functions,
for which we provide the expression of Capra-conjugates and Capra-subdifferential in §2.2.

We work on the Euclidean space Rd (where d is a positive integer), equipped with the scalar product 〈·, ·〉.
We use the notation Jj, kK = {j, j + 1, . . . , k − 1, k} for any pair of integers such that j ≤ k. As we manipulate
functions with values in R = [−∞,+∞], we adopt the Moreau lower and upper additions [7] that extend the
usual addition with (+∞) ·+ (−∞) = (−∞) ·+ (+∞) = −∞ or with (+∞)∔ (−∞) = (−∞)∔ (+∞) = +∞.
For any subset W ⊂ Rd, δW : Rd → R denotes the characteristic function of the set W : δW (w) = 0 if w ∈ W ,
and δW (w) = +∞ if w 6∈ W .

2.1 Definitions

Definition 1 We say that a function f : Rd → R is

(1a) 0-homogeneous if f(ρx) = f(x) , ∀ρ ∈ R \ {0} , ∀x ∈ Rd ,

(1b) positively 1-homogeneous if f(ρx) = ρf(x) , ∀ρ ∈ R+ \ {0} , ∀x ∈ Rd ,

(1c) absolutely 1-homogeneous if f(ρx) = |ρ|f(x) , ∀ρ ∈ R \ {0} , ∀x ∈ Rd .

Example 1 An example of 0-homogeneous function is the pseudonorm ℓ0 : Rd → J0, dK defined by

ℓ0(x) = number of nonzero components of x , ∀x ∈ R
d . (2)

For any p ∈]0,∞[, we define ℓp(x) =
(∑d

i=1 |xi|p
) 1

p , as well as ℓ∞(x) = maxi∈J1,dK |xi|. All these functions
ℓp are absolutely 1-homogeneous (and therefore also positively 1-homogeneous). When p ∈ [1,∞], ℓp is a
convex function which is the well-known ℓp-norm ‖ · ‖p. For p ∈]0, 1[, ℓp is not convex anymore and is only
a normalization function (see below) as it lacks the subadditivity property.

Definition 2 A function ν : Rd → R+ is said to be a normalization function if it is a nonnegative, absolutely
1-homogeneous and such that, for any x ∈ Rd, we have that ν(x) = 0 if and only if x = 0. We introduce the
subsets, abusively called unit “sphere” and “ball”,

Sν =
{
x ∈ R

d
∣
∣ ν(x) = 1

}
, S

(0)
ν = Sν ∪ {0} , Bν =

{
x ∈ R

d
∣
∣ ν(x) ≤ 1

}
, (3)

and the primal normalization mapping1 nν : Rd → S
(0)
ν by

nν : x ∈ R
d 7→

{
x

ν(x) , x 6= 0 ,

0 , else.
(4)

A normalization function satisfies the same properties as a norm except subadditivity. Thus, the unit
“ball” Bν in (3) is not necessarily convex. When ν = |||·||| is a norm on Rd (resp. ν = ||·||p is the ℓp norm, for
p ∈ [1,+∞]), we denote by B (resp. Bp) the unit ball:

B =
{
x ∈ R

d
∣
∣ |||x||| ≤ 1

}
, Bp =

{
x ∈ R

d
∣
∣ ||x||p ≤ 1

}
. (5)

1We distinguish the normalization function with codomain R+ from the normalization mapping with codomain S
(0)
ν . Indeed,

adopting usage in mathematics, we follow Serge Lang and use ”function” only to refer to mappings in which the codomain is a
set of numbers (i.e. a subset of R or C), and reserve the term mapping for more general codomains.
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Capra-couplings and conjugacies We introduce a new coupling, which extends [3, Definition 8], where
the normalizing factor was a norm, whereas it is more general in the definition below.

Definition 3 Let ν : Rd → R+ be a normalization function. The constant along primal rays coupling
¢ : Rd × Rd → R, or Capra, between Rd and itself, associated with ν, is the function

¢ : (x, y) ∈ R
d × R

d 7→ 〈nν(x), y〉 =

{
〈x, y〉
ν(x) , x 6= 0 ,

0 , else.
(6)

The coupling Capra has the property of being constant along primal rays, hence the acronym Capra

(Constant Along Primal RAys). This is a special case of a one-sided linear coupling as introduced in [4].
We review concepts and notations related to Fenchel-Moreau conjugacies [12, 11, 6]. The classical Fenchel
conjugacy ⋆ is outlined in Appendix A.

Definition 4 The ¢-Fenchel-Moreau conjugate of a function f : Rd → R, with respect to the coupling ¢, is

the function f¢ : Rd → R defined by

f¢(y) = sup
x∈Rd

(

¢(x, y) ·+
(
−f(x)

))

, ∀y ∈ R
d . (7a)

With ⋆′ the Fenchel conjugate as defined in (12b), we denote

f¢⋆
′

=
(
f¢

)⋆′

. (7b)

The ¢-Fenchel-Moreau biconjugate of a function f : Rd → R, with respect to the coupling ¢, is the function

f¢¢
′

: Rd → R defined by2

f¢¢
′

(x) = sup
y∈Rd

(

¢(x, y) ·+
(
−f¢(y)

))

, ∀x ∈ R
d . (7c)

The Fenchel-Moreau biconjugate of a function f : Rd → R satisfies f¢¢
′

≤ f . We define the Capra-
subdifferential of a function f : Rd → R at x ∈ R

d by [1]

∂¢f(x) =
{
y ∈ R

d
∣
∣ f¢(y) = ¢(x, y) ·+

(
−f(x)

)}
(8)

2.2 Capra-conjugates and subdifferentials of 0-homogeneous functions

We now provide expressions for the Capra-conjugates and subdifferentials of 0-homogeneous functions.

Proposition 5 Let ν : Rd → R+ be a normalization function and ¢ be the associated coupling (6). For any
0-homogeneous function f : Rd → R, we have that (with ⋆ the Fenchel conjugate as defined in (12a)),

f¢ =
(
f ∔ δBν

)⋆
=

(
f ∔ δ

S
(0)
ν

)⋆
. (9)

Proof. For any y ∈ R
d, we have that

f¢(y) = sup
x∈Rd

(

¢(x, y) ·+
(

−f(x)
)

)

= sup
x′∈Rd

(

〈

nν(x
′), y

〉

·+
(

−f
(

nν(x
′)
))

)

by definition (6) of ¢(x, y), by definition (4) of the normalization mapping nν and by 0-homogeneity (1a) of the
function f (including the case x = 0)

= sup
s∈S

(0)
ν

(

〈s, y〉 ·+
(

−f(s)
)

)

2With the coupling ¢, we associate the reverse coupling ¢′ defined by ¢′(y, x) = ¢(x, y) for (x, y) ∈ Rd
× Rd, hence the

notation f¢¢
′

.
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by definition (3) of S
(0)
ν and as nν(R

d) ⊂ S
(0)
ν = nν(S

(0)
ν ) ⊂ nν(R

d) using the positive homogeneity of ν and the
property that ν(x) 6= 0 if x 6= 0

= sup
x∈Rd

(

〈x, y〉 ·+
(

−
(

f ∔ δ
S
(0)
ν

)

(x)
)

)

=
(

f ∔ δ
S
(0)
ν

)⋆
(y) . (by (12a))

We have shown that f¢ =
(

f ∔ δ
S
(0)
ν

)⋆
. We now prove that

(

f ∔ δBν

)⋆
=

(

f ∔ δ
S
(0)
ν

)⋆
.

On the one hand, as Bν ⊃ S
(0)
ν implies that f ∔ δBν ≤ f ∔ δ

S
(0)
ν

, we deduce that
(

f ∔ δBν

)⋆
≥

(

f ∔ δ
S
(0)
ν

)⋆
by

taking the order-reversing Fenchel conjugate (12a). On the other hand, we fix y ∈ R
d and we show that, for any

x ∈ Bν , there exists s ∈ S
(0)
ν such that 〈x, y〉 ≤ 〈s, y〉 and f(x) = f(s). Indeed, it suffices to take s = 0 when x = 0,

s = x/ν(x) when x 6= 0 and 〈x, y〉 ≥ 0, and s = −x/ν(−x) when x 6= 0 and 〈x, y〉 ≤ 0 (by using ν(x) = ν(−x) ≤ 1
as x ∈ Bν and the 0-homogeneity (1a) of the function f). We deduce that

(

f ∔ δBν

)⋆
(y) = sup

x∈Bν

(

〈x, y〉 ·+
(

−f(x)
)

)

≤ sup
s∈S

(0)
ν

(

〈s, y〉 ·+
(

−f(s)
)

)

=
(

f ∔ δ
S
(0)
ν

)⋆
(y) .

This ends the proof. 2

Whereas Proposition 5 relates theCapra-conjugate of 0-homogeneous functions with the classical Fenchel-
Moreau conjugate, in Proposition 6, we relate the Capra-subdifferential with the well-known Rockafellar-
Moreau subdifferential.

Proposition 6 Let f : Rd → R be any function. For all x ∈ Rd, the Capra-subdifferential ∂¢f(x), as

in (8), is a closed convex set. Moreover, if the function f is 0-homogeneous, we have that







∂¢f(0) = ∂(f ∔ δBν
)(0) ,

s ∈ Sν and f¢⋆
′

(s) = f(s) =⇒ ∂¢f(s) = ∂f¢⋆
′

(s) ,

(10a)

(10b)

where Bν is defined in (3) for the normalization function ν that generates the coupling ¢, and ∂(f ∔ δBν
) and

∂f¢⋆
′

are (Rockafellar-Moreau) subdifferentials as in (13).

Proof. We prove that ∂¢f(x) is a closed convex set. Let x ∈ R
d and first suppose that f(x) = −∞. Using (7a)

and (8), we can check that ∂¢f(x) = R
d, which is closed and convex. In the case where f(x) = +∞, we have that

∂¢f(x) = ∅ if f is not identically +∞, and that ∂¢f(x) = R
d otherwise; in either cases, the Capra-subdifferential

is closed and convex. Now, suppose that f(x) ∈ R. By definition (7a) of f¢, the Capra-subdifferential (8) can

be written as ∂¢f(x) =
{

y ∈ R
d
∣

∣ f¢(y) ≤ ¢(x, y) ·+
(

−f(x)
)}

where the function f¢ =
(

f ∔ δ
S
(0)
ν

)⋆
is a Fenchel

conjugate by (9) hence is closed convex (see the background material in Appendix A), and the function gx : y 7→

¢(x, y) ·+
(

−f(x)
)

= ¢(x, y) − f(x) is affine. As a consequence, the set of points where f¢ ≤ gx, which is exactly
∂¢f(x), is a closed convex set.

We prove (10a) as follows:

y ∈ ∂(f ∔ δBν )(0) ⇐⇒
(

f ∔ δBν

)⋆
(y) = 〈0, y〉 ·+

(

−(f ∔ δBν )(0)
)

by definition (13) of the (Rockafellar-Moreau) subdifferential of a function

⇐⇒ f¢(y) = 〈0, y〉 ·+
(

−f(0)
)

(by Proposition 5)

⇐⇒ f¢(y) = ¢(0, y) ·+
(

−f(0)
)

(since since ¢(0, y) = 0 by (6))

⇐⇒ y ∈ ∂¢f(0) . (by definition (8) of the Capra-subdifferential)
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Letting s ∈ Sν be such that f¢⋆
′

(s) = f(s), we prove (10b) as follows:

y ∈ ∂f¢⋆
′

(s) ⇐⇒
(

f¢⋆
′)⋆

(y) = 〈s, y〉 ·+
(

−f¢⋆
′

(s)
)

(by (13))

⇐⇒ f¢(y) = 〈s, y〉 ·+
(

−f¢⋆
′

(s)
)

because the function f¢ =
(

f ∔ δ
S
(0)
ν

)⋆
is a Fenchel conjugate by (9), hence is closed convex, and therefore equal to

its Fenchel biconjugate f¢⋆
′⋆ , (see the background material in Appendix A)

⇐⇒ f¢(y) = ¢(s, y) ·+
(

−f¢⋆
′

(s)
)

by definition (6) of ¢(s, y) as s ∈ Sν hence ν(x) = 1 by (3),

⇐⇒ f¢(y) = ¢(s, y) ·+
(

−f(s)
)

(by assumption that f¢⋆
′

(s) = f(s))

⇐⇒ y ∈ ∂¢f(s) . (by definition (8) of the Capra-subdifferential)

This ends the proof. 2

Now, we are going to show how Capra-couplings are a suitable tool to obtain lower convex approxima-
tions of 0-homogeneous functions.

3 Best convex lower approximations of 0-homogeneous functions

In §3.1, we identify — in terms of Capra-conjugacy introduced in Section 2 — the best lower approximation
of 0-homogeneous functions by convex and by positively 1-homogeneous convex functions. We apply these
results to the ℓ0 pseudonorm in §3.2.

3.1 General result

We prove that the best convex lower approximation of a 0-homogeneous function can be expressed in term
of its Capra-conjugate (7b). We also prove that the best positively 1-homogeneous closed convex lower
approximation of a 0-homogeneous function can be expressed in term of its Capra-subdifferential (8). We
recall that, for any subset Y ⊂ Rd, σY : Rd → R denotes the support function of the subset Y : σY (x) =
supy∈Y 〈x, y〉, for any x ∈ R

d.
The proof of the following theorem relies on results given in Appendix B.

Theorem 7 Let ν : Rd → R+ be a normalization function, with unit “ball” Bν defined in (3), and with
associated Capra-coupling ¢ in (6). Let f : Rd → R be a 0-homogeneous function. Then,

1. the function f¢⋆
′

is the tightest closed convex function below f on the unit “ball” Bν ,

2. if f(0) = 0, the function σ∂
¢
f(0) is the tightest closed convex positively 1-homogeneous function below f

on the unit “ball” Bν .

Proof. From Proposition 10 with W = Bν , the tightest closed convex function below f on the unit ”ball” Bν is
(

f ∔ δBν

)⋆⋆′

. As the function f is 0-homogeneous, by Proposition 5, we have that f¢ =
(

f ∔ δBν

)⋆
. By taking the

Fenchel conjugate (12b), we deduce that
(

f ∔ δBν

)⋆⋆′

= f¢⋆
′

.

From Proposition 12 with W = Bν , the tightest positively 1-homogeneous closed convex function below f on the

unit “ball” Bν is σ∂(f∔δBν )(0). As the function f is 0-homogeneous, by Proposition 6, we have ∂(f ∔ δBν )(0) = ∂¢f(0)

and therefore σ∂(f∔δBν )(0) = σ∂
¢
f(0), which gives the desired result. 2
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3.2 Application to the ℓ0 pseudonorm

As an application, we study the particular case of the ℓ0 pseudonorm. For any x ∈ Rd and subset K ⊂
{1, . . . , d}, we denote by xK ∈ Rd the vector which coincides with x, except for the components outside
of K that vanish. Let |||·||| be a norm on R

d, called the source norm. For any subset K ⊂ J1, dK, we define
the subspace RK =

{
x ∈ Rd

∣
∣xj = 0 , ∀j 6∈ K

}
of Rd. We introduce the K-restriction norm |||·|||K , defined

by |||x|||K = |||x|||, for any x ∈ RK . We also define the (K, ⋆)-norm |||·|||K,⋆, which is the norm
(
|||·|||K

)

⋆
,

given by the dual norm (on the subspace RK) of the restriction norm |||·|||K to the subspace RK (first
restriction, then dual). Following [3, Definition 3]), for k ∈ J1, dK, we call generalized coordinate-k norm the

norm |||·|||R(k) whose dual norm is the generalized dual coordinate-k norm, denoted by |||·|||R(k),⋆, with expression

|||y|||R(k),⋆ = sup|K|≤k|||yK |||K,⋆ for all y ∈ Rd. We denote by BR
(k) and BR

(k),⋆ the respective unit balls. In
Table 1, we give examples of coordinate-k and dual coordinate-k norms in the case of the ℓp source norms.
We recall that, for p ∈ [1,∞], the dual norm of the ℓp-norm ‖ · ‖p is the ℓq-norm ‖ · ‖q, where q is such that
1/p+ 1/q = 1 (with the extreme cases q = ∞ when p = 1, and q = 1 when p = ∞).

Table 1: Examples of coordinate-k and dual coordinate-k norms generated by the ℓp source norms |||·||| =
‖ · ‖p for p ∈ [1,∞], where 1/p + 1/q = 1. For y ∈ Rd, τ denotes a permutation of {1, . . . , d} such that
|yτ(1)| ≥ |yτ(2)| ≥ · · · ≥ |yτ(d)|.

source norm |||·||| |||·|||R(k), k ∈ J1, dK |||·|||R(k),⋆, k ∈ J1, dK

||·||p (p,k)-support norm, ||x||snp,k top-(q,k) norm, ||y||tnq,k

no analytic expression ||y||tnq,k =
(∑k

l=1 |yτ(l)|
q
) 1

q

||·||1 (1,k)-support norm top-(∞,k) norm
ℓ1-norm ℓ∞-norm

||x||sn1,k = ||x||1, ∀k ∈ J1, dK ||y||tn∞,k = ||y||∞, ∀k ∈ J1, dK

||·||2 (2,k)-support norm top-(2,k) norm

||x||sn2,k no analytic expression ||y||tn2,k =
√
∑k

l=1 |yτ(l)|
2

(computation [2, Prop. 2.1])

||x||sn2,1 = ||x||1 ||y||tn2,1 = ||y||∞
||·||∞ (∞,k)-support norm top-(1,k) norm

||x||sn∞,k = max{ ||x||1
k

, ||x||∞} ||y||tn1,k =
∑k

l=1 |yτ(l)|

||x||sn∞,1 = ||x||1 ||y||tn1,1 = ||y||∞

Best convex lower approximation of the ℓ0 pseudonorm on a unit ball Let |||·||| be a source norm

on Rd and ϕ : J0, dK → R be a function. From Theorem 7, the function
(
(ϕ ◦ ℓ0)¢

)⋆′

is the tightest closed
convex function below ϕ ◦ ℓ0 on the unit ball B, defined in (5). We refer the reader to [3, Proposition 12],

where several expressions of the function
(
(ϕ ◦ ℓ0)¢

)⋆′

are provided. In particular, it is shown that it is
the largest closed convex function below the integer valued function BR

(j)\B
R
(j−1) ∋ x 7→ ϕ(j) for l ∈ J1, dK,

and x ∈ BR
(0) = {0} 7→ ϕ(0), the function being infinite outside BR

(d) = B. In dimension 2, this is seen in

Figure 1 which depicts the tightest closed convex function below ℓ0 on the Euclidean unit ball on R2: the
function goes up from zero to the value 1 on the border (sphere) of the lozenge unit ball B1 = BR

(1) of the

ℓ1-norm; then, from the lozenge to the value 2 on the border (sphere) of the round unit ball B2 = BR
(2) of the

ℓ2-norm; the function is discontinuous on the four “sparse” points on the unit Euclidean circle, and takes
the value +∞ outside the unit disk.

On the square unit ball B∞ of the ℓ∞-norm, we obtain that the best convex lower approximation on B∞

is the ℓ1-norm. Indeed, if ¢ is the Capra-coupling (6) associated with the ℓ∞-norm, this best approximation

6



Figure 1: Tightest closed convex function below the ℓ0 pseudonorm on the Euclidean unit ball on R2

is ℓ
¢⋆′

0 by Theorem 7. Now, using [3, Proposition 12], we get that ℓ
¢⋆′

0 =
(

supj∈J0,dK

[
|||·|||R(j),⋆ − j

])⋆′

=
(

supj∈J0,dK

[
||·||tn1,j − j

])⋆′

(see Table 1). As supj∈J0,dK

[
||y||tn1,j − j

]
=

∑d
i=1(1− |yi|)1|yi|≥1, we get that

∀x ∈ R
d , ℓ

¢⋆′

0 (x) =

d∑

i=1

sup
yi∈R

(
xiyi + (1− |yi|)1|yi|≥1

)
=

{

||x||1 , x ∈ B∞ ,

+∞ , otherwise.

Best norm lower approximation of the ℓ0 pseudonorm on a unit ball We compute the expression
of the best lower approximation of the ℓ0 pseudonorm with a norm. Then, we show that for the ℓp source
norm, with p ∈ [1,∞], the tightest norm below ℓ0 on the unit ball Bp is the ℓ1-norm.

Proposition 8 Let |||·||| be a source norm on Rd, with associated sequence
{

|||·|||R(j)

}

j∈J1,dK
of coordinate-k

norms and sequence
{

|||·|||⋆
R
(j)

}

j∈J1,dK
of dual coordinate-k norms and their respective unit balls

{

BR
(j),⋆

}

j∈J1,dK
.

Let ϕ : J0, dK → R+ ∪ {+∞} be a function such that ϕ(j) > ϕ(0) = 0 for all j ∈ J1, dK, and with ϕ(j) < +∞

for at least one j ∈ J1, dK. Then, there exists a norm |||·|||R(ϕ) on Rd, characterized by its dual norm |||·|||R(ϕ),⋆,

which has unit ball BR
(ϕ),⋆ =

⋂

j∈J1,dK ϕ(j)B
R
(j),⋆, and |||·|||R(ϕ) = σBR

(ϕ),⋆
, where by convention +∞BR

(j),⋆ = Rd.

The norm |||·|||R(ϕ) is the tightest norm below ϕ ◦ ℓ0 on the unit ball B, that is,

|||x|||R(ϕ)
︸ ︷︷ ︸

tightest norm

≤ ϕ
(
ℓ0(x)

)
, ∀x ∈ B . (11)

Proof. From [3, Proposition 14], we have that ∂¢(ϕ ◦ ℓ0)(0) = B
R
(ϕ),⋆. With Theorem 7, we deduce that

σ
BR

(ϕ),⋆
= |||·|||R(ϕ) is the tightest closed convex positively 1-homogeneous function below ϕ ◦ ℓ0 on the unit ball B. We

can easily check that σ
BR

(ϕ),⋆
indeed defines a norm. The norm |||·|||R(ϕ) was introduced in [3, Proposition 15] under the

slightly stronger assumption that ϕ(j) < +∞ for all j ∈ J1, dK. 2

Proposition 9 (Application with the ℓp source norm). Let |||·||| = ||·||p, with p ∈ [1,+∞], be the source
norm and let ϕ : J0, dK → R+ ∪ {+∞} with ϕ(j) > ϕ(0) = 0 for all j ∈ J1, dK and ϕ(j) < +∞ for at least
one j ∈ J1, dK. We also assume that either, for p ∈]1,+∞] and q such that 1/p + 1/q = 1, the function
J1, dK ∋ j 7→ ϕ(j)q/j is nondecreasing, or, for p = 1 and q = +∞, the function ϕ is nondecreasing. Then,

the tightest norm below ϕ ◦ ℓ0 on the unit ball Bp is |||·|||R(ϕ) = ϕ(1)||·||1. In particular, the ℓ1-norm is the

tightest norm below ℓ0 on the unit ball Bp of any ℓp-norm, for p ∈ [1,∞].
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Proof. From Proposition 8, the tightest norm below ϕ ◦ ℓ0 on the unit ball Bp is |||·|||R(ϕ) and, for all y ∈ R
d,

we have that |||y|||R(ϕ),⋆ = supj∈J1,dK

|||y|||R(j),⋆
ϕ(j)

(see [3, Proposition 15]). The source norm is ||·||p. If p = 1, then from

Table 1, |||y|||R(j),⋆ = ||y||tn∞,j = ||y||∞. We deduce that |||y|||R(ϕ),⋆ = supj∈J1,dK
||y||∞
ϕ(j)

= ||y||∞
ϕ(1)

as ϕ is nondecreasing. For

p > 1, from Table 1, we get that |||y|||R(j),⋆ = ||y||tnq,j =
(
∑j

l=1 |yτ(l)|
q
) 1

q . Using that j 7→ ϕ(j)q/j is nondecreasing, it

can be computed that j 7→ ||y||tnq,j/ϕ(j) is nonincreasing as follows:

( ||y||tnq,j+1

ϕ(j + 1)

)q

=
(
∑j

l=1 |yτ(l)|
q) + |yτ(j+1)|

q

ϕ(j + 1)q
≤ (1 +

1

j
)

(
∑j

l=1 |yτ(l)|
q
)

ϕ(j + 1)q
≤

(
∑j

l=1 |yτ(l)|
q)

ϕ(j)q
=

( ||y||tnq,j
ϕ(j)

)q

.

Therefore, |||y|||R(ϕ),⋆ = supj∈J1,dK

|||y|||R(j),⋆
ϕ(j)

=
||y||tnq,1
ϕ(1)

= ||y||∞
ϕ(1)

, as ||y||tnq,1 = |yτ(1)| = ||y||∞. Thus, for p ∈ [1,∞], we have

obtained |||y|||R(ϕ),⋆ = ||y||∞
ϕ(1)

from which we deduce that |||·|||R(ϕ) = ϕ(1)||·||1. The last statement of the theorem follows

by taking ϕ being the identity mapping. This concludes the proof. 2

Fazel [5, Theorem 1, §5.1.4] shows that the best convex lower approximation of the rank function on
the spectral norm unit ball is given by the nuclear norm. By considering singular values, we easily deduce
that the best convex lower approximation of the ℓ0 pseudonorm on the ℓ∞ unit ball is given by the ℓ1-norm.
Thus, in a sense, Proposition 9 generalizes the result of Fazel.

4 Conclusion

In this paper, we have extended the Capra couplings and conjugacies introduced in [3, 4]. Indeed, they now
depend on a given normalization function (i.e. a norm without the requirement for subadditivity). With
this new coupling, we are able to provide expressions for the best convex (and positively 1-homogeneous)
lower approximations of 0-homogeneous functions on the unit “ball” of the normalization function. As
an application, we show that the best norm lower approximation of the ℓ0 pseudonorm on any ℓp unit
ball, p ∈ [1,+∞], is the ℓ1 norm, thus strengthening theoretical grounds for the use of the ℓ1 norm as a
sparsity-inducing term in optimization problems. We have also provided the tightest convex lower convex
approximation of the l0 pseudonorm on the unit ball of any norm.

A Background on the Fenchel conjugacy

We review concepts and notations related to the Fenchel conjugacy (we refer the reader to [8]). For any
function h : Rd → R, its epigraph is epih =

{
(w, t) ∈ Rd × R

∣
∣ h(w) ≤ t

}
, its effective domain is domh =

{
w ∈ Rd

∣
∣ h(w) < +∞

}
. A function h : Rd → R is said to be convex if its epigraph is a convex set, proper

if it never takes the value −∞ and that domh 6= ∅, lower semi continuous (lsc) if its epigraph is closed,
closed if it is either lsc and nowhere having the value −∞, or is the constant function −∞ [8, p. 15]. Closed
convex functions are the two constant functions −∞ and +∞ united with all proper convex lsc functions.3

It is proved that the Fenchel conjugacy (indifferently f 7→ f⋆ or g 7→ g⋆
′

as below) induces a one-to-one
correspondence between the closed convex functions on Rd and themselves [8, Theorem 5]. For any functions
f : Rd → R and g : Rd → R, we denote4

f⋆(y) = sup
x∈Rd

(

〈x, y〉 ·+
(
−f(x)

))

, ∀y ∈ R
d , (12a)

g⋆
′

(x) = sup
y∈Y

(

〈x, y〉 ·+
(
−g(y)

))

, ∀x ∈ R
d , (12b)

f⋆⋆′

(x) = sup
y∈Rd

(

〈x, y〉 ·+
(
−f⋆(y)

))

, ∀x ∈ R
d . (12c)

3In particular, any closed convex function that takes at least one finite value is necessarily proper convex lsc.
4In convex analysis, one does not use the notation ⋆′ in (12b) and ⋆⋆′ in (12c), but simply ⋆ and ⋆⋆. We use ⋆′ and ⋆⋆′ to

be consistent with the notation (7c) for general conjugacies.
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The Fenchel biconjugate of a function f : Rd → R satisfies

f⋆⋆′

(x) ≤ f(x) , ∀x ∈ R
d . (12d)

In [10, p. 214-215], the notions5 of (Moreau) subgradient and of (Rockafellar) subdifferential are defined for
a convex function. Following the definition of the subdifferential of a function with respect to a duality in
[1], we define the (Rockafellar-Moreau) subdifferential ∂f(x) of a function f : Rd → R at x ∈ Rd by

∂f(x) =
{
y ∈ R

d
∣
∣ f⋆(y) = 〈x, y〉 ·+

(
−f(x)

)}
. (13)

When the function f is proper convex and x ∈ domf , we recover the classic definition.

B Best convex lower approximations of a function on a subset

We compute the best convex (and convex positively 1-homogeneous) lower approximations of a general
function on a (not necessarily convex) subset W ⊂ Rd.

Proposition 10 For any subset W ⊂ Rd and any function f : Rd → R, the best closed convex lower

approximation f̂ of f on W is given by f̂ =
(
f ∔ δW

)⋆⋆′

.

Proof. For any subset W ⊂ R
d and any function f : Rd → R, we define the set of functions

Cf
W =

{

closed convex function h : Rd → R
∣

∣ h(x) ≤ f(x) , ∀x ∈ W
}

. (14)

As the set F =
{

function f : Rd → R
}

endowed with the partial order ≤ is a complete lattice, the subset Cf
W ⊂ F

has a (unique) supremum f̂ =
∨

Cf
W . As the set of closed convex functions is stable by pointwise supremum, the

function f̂ : Rd → R is given, for all x ∈ W , by f̂(x) = sup
{

h(x)
∣

∣ h ∈ Cf
W

}

.

By (12d), it is easily established that
(

f ∔ δW
)⋆⋆′

∈ Cf
W . For any h ∈ Cf

W , we have h ∔ δcoW ∈ Cf
W and

h ∔ δcoW ≤
(

f ∔ δW
)⋆⋆′

, as δcoW ≤ δW where coW denotes the closed convex hull of the set W . As h ≤ h ∔ δcoW ,

we conclude that f̂ =
∨

Cf
W ≤

(

f ∔ δW
)⋆⋆′

, hence that f̂ =
(

f ∔ δW
)⋆⋆′

since
(

f ∔ δW
)⋆⋆′

∈ Cf
W . 2

Remark 11 We cannot replace δW by δcoW in the statement of Proposition 10, although δcoW is involved in
the proof. For instance, consider f = | · | being the absolute value function defined on R and W =]−∞,−1]∪

[1,+∞[, hence coW = R. We can easily check that
(
f ∔ δW

)⋆⋆′

(x) = |x| if x ∈ W and
(
f ∔ δW

)⋆⋆′

(x) = 1

if x ∈ R\W , that is, f̂ = max{1, | · |}. On the other hand, we have
(
f ∔ δcoW

)⋆⋆′

= f⋆⋆′

= | · |, and therefore
(
f ∔ δcoW

)⋆⋆′

= | · | 6= max{1, | · |} =
(
f ∔ δW

)⋆⋆′

.

Now, we give the best approximation of a general function f : Rd → R with a closed convex positively
1-homogeneous function.

Proposition 12 For any subset W ⊂ Rd with 0 ∈ W and any function f : Rd → R such that f(0) = 0, the
best closed convex, positively 1-homogeneous approximation f̃ of f on W is given by f̃ = σ∂(f∔δW )(0) .

Proof. For any subset W ⊂ R
d and any function f : Rd → R such that f(0) = 0, we define the set of functions

Hf
W =

{

closed convex, positively 1-homogeneous function h : Rd → R
∣

∣h(x) ≤ f(x) , ∀x ∈ W
}

. (15)

As the set F =
{

function f : Rd → R
}

endowed with the partial order ≤ is a complete lattice, the subset Hf
W ⊂ F

has a (unique) supremum f̃ =
∨

Hf
W . As the set of closed convex, positively 1-homogeneous functions is stable by

pointwise supremum, the function f̃ : Rd → R is given, for all x ∈ W , by f̃(x) = sup
{

h(x)
∣

∣ h ∈ Hf
W

}

. From [9,

5See the historical note in [9, p. 343].
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Theorem 8.24], the proper closed convex positively 1-homogeneous functions can be identified with the support
functions of nonempty closed convex subsets of Rd. Thus, we describe the functions of Hf

W by means of support
functions. Let Y ⊂ R

d be a nonempty closed convex set such that σY (x) ≤ f(x), for all x ∈ W . We have

y ∈ Y =⇒ 〈x, y〉 ≤ f(x) , ∀x ∈ W (by definition of the support function σY )

⇐⇒ 〈x, y〉 ·+
(

−f(x)
)

≤ 0 = 〈0, y〉 ·+
(

−f(0)
)

, ∀x ∈ W

using property of the Moreau lower addition [7], and the assumption that f(0) = 0

⇐⇒ 〈x, y〉 ·+
(

−(f ∔ δW )(x)
)

≤ 〈0, y〉 ·+
(

−(f ∔ δW )(0)
)

, ∀x ∈ R
d , (as 0 ∈ W )

⇐⇒ y ∈ ∂
(

f ∔ δW
)

(0)

by definition (13) of the (Rockafellar-Moreau) subdifferential. Thus, we have obtained that Y ⊂ ∂
(

f ∔ δW
)

(0) from

which we deduce the inequality σY ≤ σ∂(f∔δW )(0). We get that f̃ ≤ σ∂(f∔δW )(0), as the subset
{

σY , Y ⊂ R
d nonempty closed convex

∣

∣σY (

is equal to Hf
W in (15).

On the other hand, using the previous equivalences, if y ∈ ∂
(

f ∔ δW
)

(0), we get that 〈x, y〉 ≤ f(x) for all x ∈ W .

Therefore, we obtain that σ∂(f∔δW )(0)(x) = supy∈∂(f∔δW )(0) 〈x, y〉 ≤ f(x) for all x ∈ W , that is, σ∂(f∔δW )(0) ∈ Hf
W .

We conclude that f̃ = σ∂(f∔δW )(0). 2
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