Thomas Bittar 
  
Jean-Philippe Chancelier 
  
Michel De Lara 
  
Best Convex Lower Approximations of the l 0 Pseudonorm on Unit Balls

Keywords: l0 pseudonorm, convexity, Capra conjugacy, generalized top-k and k-support norms, sparsity inducing norm AMS classification: 46N10, 49N15, 46B99, 52A41, 90C46

Whereas the norm of a vector measures amplitude (and is a 1-homogeneous function), sparsity is measured by the 0-homogeneous l0 pseudonorm, which counts the number of nonzero components. We propose a family of conjugacies suitable for the analysis of 0-homogeneous functions. These conjugacies are derived from couplings between vectors, given by their scalar product divided by a 1-homogeneous normalizing factor. With this, we characterize the best convex lower approximation of a 0-homogeneous function on the unit "ball" of a normalization function (i.e. a norm without the requirement of subadditivity). We do the same with the best convex and 1-homogeneous lower approximation. In particular, we provide expressions for the tightest convex lower approximation of the l0 pseudonorm on any unit ball, and we show that the tightest norm which minorizes the l0 pseudonorm on the unit ball of any lp-norm is the l1-norm. We also provide the tightest convex lower convex approximation of the l0 pseudonorm on the unit ball of any norm.

Introduction

The counting function, also called cardinality function or ℓ 0 pseudonorm, counts the number of nonzero components of a vector in R d . It is used in sparse optimization, either as objective function or in the constraints, to obtain solutions with few nonzero entries. However, the mathematical expression of the ℓ 0 pseudonorm makes it difficult to handle as such in optimization problems on R d . This is why most of the literature on sparse optimization resorts to substitute or surrogate problems, obtained either from estimates (inequalities) for the ℓ 0 pseudonorm, or from alternative sparsity-inducing terms (especially suitable norms) [START_REF] Argyriou | Sparse prediction with the k-support norm[END_REF]. We follow this approach, but using (and extending) the so-called Capra (Constant Along Primal RAys) couplings and conjugacies introduced in [START_REF] Chancelier | Constant along primal rays conjugacies and the l 0 pseudonorm[END_REF][START_REF] Chancelier | Hidden convexity in the l 0 pseudonorm[END_REF].

The paper is organized as follows. In Section 2, we introduce a new Capra-coupling that extends the definition in [START_REF] Chancelier | Constant along primal rays conjugacies and the l 0 pseudonorm[END_REF]. We establish expressions for Capra-conjugates and Capra-subdifferentials of 0-homogeneous functions. Then, in §3.1, we manage to obtain convex lower bounds for general 0-homogeneous functions, thanks to this new coupling. We specialize these results for the ℓ 0 pseudonorm in §3.2 and we obtain, in particular, that the tightest norm below ℓ 0 on any ℓ p -unit ball (p ∈ [1, ∞]) is the ℓ 1 -norm, hence justifying the use of the ℓ 1 -norm as a sparsity-inducing term. We also provide the tightest convex lower convex approximation of the l0 pseudonorm on the unit ball of any norm.

2 Capra-conjugacies for 0-homogeneous functions In §2.1, we recall definitions related to homogeneous functions on R d , and we introduce a new Capracoupling between vectors of R d . This Capra coupling is suited for the analysis of 0-homogeneous functions, for which we provide the expression of Capra-conjugates and Capra-subdifferential in §2.2.

We work on the Euclidean space R d (where d is a positive integer), equipped with the scalar product •, • . We use the notation j, k = {j, j + 1, . . . , k -1, k} for any pair of integers such that j ≤ k. As we manipulate functions with values in R = [-∞, +∞], we adopt the Moreau lower and upper additions [START_REF] Moreau | Inf-convolution, sous-additivité, convexité des fonctions numériques[END_REF] that extend the usual addition with (+∞)

• + (-∞) = (-∞) • + (+∞) = -∞ or with (+∞) ∔ (-∞) = (-∞) ∔ (+∞) = +∞. For any subset W ⊂ R d , δ W : R d → R denotes the characteristic function of the set W : δ W (w) = 0 if w ∈ W , and δ W (w) = +∞ if w ∈ W .

Definitions

Definition 1 We say that a function f : R d → R is (1a) 0-homogeneous if f (ρx) = f (x) , ∀ρ ∈ R \ {0} , ∀x ∈ R d , (1b) positively 1-homogeneous if f (ρx) = ρf (x) , ∀ρ ∈ R + \ {0} , ∀x ∈ R d , (1c) absolutely 1-homogeneous if f (ρx) = |ρ|f (x) , ∀ρ ∈ R \ {0} , ∀x ∈ R d .
Example 1 An example of 0-homogeneous function is the pseudonorm ℓ 0 : R d → 0, d defined by

ℓ 0 (x) = number of nonzero components of x , ∀x ∈ R d .
(2)

For any p ∈]0, ∞[, we define ℓ p (x) = d i=1 |x i | p 1 p , as well as ℓ ∞ (x) = max i∈ 1,d |x i |.
All these functions ℓ p are absolutely 1-homogeneous (and therefore also positively 1-homogeneous). When p ∈ [1, ∞], ℓ p is a convex function which is the well-known ℓ p -norm • p . For p ∈]0, 1[, ℓ p is not convex anymore and is only a normalization function (see below) as it lacks the subadditivity property.

Definition 2 A function ν : R d → R + is said to be a normalization function if it is a nonnegative, absolutely 1-homogeneous and such that, for any x ∈ R d , we have that ν(x) = 0 if and only if x = 0. We introduce the subsets, abusively called unit "sphere" and "ball",

S ν = x ∈ R d ν(x) = 1 , S (0) ν = S ν ∪ {0} , B ν = x ∈ R d ν(x) ≤ 1 , (3) 
and the primal normalization mapping 1 n ν : R d → S

ν by

n ν : x ∈ R d → x ν(x) , x = 0 , 0 , else. (4) 
A normalization function satisfies the same properties as a norm except subadditivity. Thus, the unit

"ball" B ν in (3) is not necessarily convex. When ν = |||•||| is a norm on R d (resp. ν = ||•|| p is the ℓ p norm, for p ∈ [1, +∞]
), we denote by B (resp. B p ) the unit ball:

B = x ∈ R d |||x||| ≤ 1 , B p = x ∈ R d ||x|| p ≤ 1 . ( 5 
)
1 We distinguish the normalization function with codomain R + from the normalization mapping with codomain S (0) ν . Indeed, adopting usage in mathematics, we follow Serge Lang and use "function" only to refer to mappings in which the codomain is a set of numbers (i.e. a subset of R or C), and reserve the term mapping for more general codomains.

Capra-couplings and conjugacies

We introduce a new coupling, which extends [START_REF] Chancelier | Constant along primal rays conjugacies and the l 0 pseudonorm[END_REF]Definition 8], where the normalizing factor was a norm, whereas it is more general in the definition below. Definition 3 Let ν : R d → R + be a normalization function. The constant along primal rays coupling ¢ : R d × R d → R, or Capra, between R d and itself, associated with ν, is the function

¢ : (x, y) ∈ R d × R d → n ν (x), y = x, y ν(x) , x = 0 , 0 , else. (6) 
The coupling Capra has the property of being constant along primal rays, hence the acronym Capra (Constant Along Primal RAys). This is a special case of a one-sided linear coupling as introduced in [START_REF] Chancelier | Hidden convexity in the l 0 pseudonorm[END_REF].

We review concepts and notations related to Fenchel-Moreau conjugacies [START_REF] Singer | Abstract Convex Analysis[END_REF][START_REF] Rubinov | Abstract convexity and global optimization[END_REF][START_REF] Martínez-Legaz | Generalized convex duality and its economic applications[END_REF]. The classical Fenchel conjugacy ⋆ is outlined in Appendix A.

Definition 4

The ¢-Fenchel-Moreau conjugate of a function f : R d → R, with respect to the coupling ¢, is the function f ¢ : R d → R defined by

f ¢ (y) = sup x∈R d ¢(x, y) • + -f (x) , ∀y ∈ R d . ( 7a 
)
With ⋆ ′ the Fenchel conjugate as defined in (12b), we denote

f ¢⋆ ′ = f ¢ ⋆ ′ . ( 7b 
)
The ¢-Fenchel-Moreau biconjugate of a function f : R d → R, with respect to the coupling ¢, is the function

f ¢¢ ′ : R d → R defined by 2 f ¢¢ ′ (x) = sup y∈R d ¢(x, y) • + -f ¢ (y) , ∀x ∈ R d . (7c) 
The Fenchel-Moreau biconjugate of a function f : R d → R satisfies f ¢¢ ′ ≤ f . We define the Caprasubdifferential of a function f :

R d → R at x ∈ R d by [1] ∂ ¢ f (x) = y ∈ R d f ¢ (y) = ¢(x, y) • + -f (x) (8) 
2.2 Capra-conjugates and subdifferentials of 0-homogeneous functions

We now provide expressions for the Capra-conjugates and subdifferentials of 0-homogeneous functions.

Proposition 5 Let ν : R d → R + be a normalization function and ¢ be the associated coupling [START_REF] Martínez-Legaz | Generalized convex duality and its economic applications[END_REF]. For any 0-homogeneous function f : R d → R, we have that (with ⋆ the Fenchel conjugate as defined in (12a)),

f ¢ = f ∔ δ Bν ⋆ = f ∔ δ S (0) ν ⋆ . (9) 
Proof. For any y ∈ R d , we have that

f ¢ (y) = sup x∈R d ¢(x, y) • + -f (x) = sup x ′ ∈R d nν (x ′ ), y • + -f nν (x ′ )
by definition (6) of ¢(x, y), by definition (4) of the normalization mapping nν and by 0-homogeneity (1a) of the function f (including the case

x = 0) = sup s∈S (0) ν s, y • + -f (s) by definition (3) of S (0) ν and as nν(R d ) ⊂ S (0) ν = nν (S (0) 
ν ) ⊂ nν (R d ) using the positive homogeneity of ν and the property that ν

(x) = 0 if x = 0 = sup x∈R d x, y • + -f ∔ δ S (0) ν (x) = f ∔ δ S (0) ν ⋆ (y) .
(by (12a))

We have shown that

f ¢ = f ∔ δ S (0) ν ⋆ . We now prove that f ∔ δ Bν ⋆ = f ∔ δ S (0) ν ⋆ .
On the one hand, as

Bν ⊃ S (0) ν implies that f ∔ δ Bν ≤ f ∔ δ S (0) ν , we deduce that f ∔ δ Bν ⋆ ≥ f ∔ δ S (0) ν ⋆ by
taking the order-reversing Fenchel conjugate (12a). On the other hand, we fix y ∈ R d and we show that, for any x ∈ Bν, there exists s ∈ S (0) ν such that x, y ≤ s, y and f (x) = f (s). Indeed, it suffices to take s = 0 when x = 0, s = x/ν(x) when x = 0 and x, y ≥ 0, and s = -x/ν(-x) when x = 0 and x, y ≤ 0 (by using ν(x) = ν(-x) ≤ 1 as x ∈ Bν and the 0-homogeneity (1a) of the function f ). We deduce that

f ∔ δ Bν ⋆ (y) = sup x∈Bν x, y • + -f (x) ≤ sup s∈S (0) ν s, y • + -f (s) = f ∔ δ S (0) ν ⋆ (y) .
This ends the proof.

Whereas Proposition 5 relates the Capra-conjugate of 0-homogeneous functions with the classical Fenchel-Moreau conjugate, in Proposition 6, we relate the Capra-subdifferential with the well-known Rockafellar-Moreau subdifferential.

Proposition 6 Let f : R d → R be any function. For all x ∈ R d , the Capra-subdifferential ∂ ¢ f (x), as in (8), is a closed convex set. Moreover, if the function f is 0-homogeneous, we have that    ∂ ¢ f (0) = ∂(f ∔ δ Bν )(0) , s ∈ S ν and f ¢⋆ ′ (s) = f (s) =⇒ ∂ ¢ f (s) = ∂f ¢⋆ ′ (s) , (10a) (10b) 
where B ν is defined in (3) for the normalization function ν that generates the coupling ¢, and ∂(f ∔ δ Bν ) and ∂f ¢⋆ ′ are (Rockafellar-Moreau) subdifferentials as in (13).

Proof. We prove that ∂ ¢ f (x) is a closed convex set. Let x ∈ R d and first suppose that f (x) = -∞. Using (7a) and ( 8), we can check that ∂ ¢ f (x) = R d , which is closed and convex. In the case where f (x) = +∞, we have that

∂ ¢ f (x) = ∅ if f is not identically +∞,
and that ∂ ¢ f (x) = R d otherwise; in either cases, the Capra-subdifferential is closed and convex. Now, suppose that f (x) ∈ R. By definition (7a) of f ¢ , the Capra-subdifferential (8) can be written as [START_REF] Rockafellar | Variational Analysis[END_REF] hence is closed convex (see the background material in Appendix A), and the function gx

∂ ¢ f (x) = y ∈ R d f ¢ (y) ≤ ¢(x, y) • + -f (x) where the function f ¢ = f ∔ δ S (0) ν ⋆ is a Fenchel conjugate by
: y → ¢(x, y) • + -f (x) = ¢(x, y) -f (x) is affine.
As a consequence, the set of points where f ¢ ≤ gx, which is exactly

∂ ¢ f (x), is a closed convex set.
We prove (10a) as follows:

y ∈ ∂(f ∔ δ Bν )(0) ⇐⇒ f ∔ δ Bν ⋆ (y) = 0, y • + -(f ∔ δ Bν )(0)
by definition (13) of the (Rockafellar-Moreau) subdifferential of a function

⇐⇒ f ¢ (y) = 0, y • + -f (0) (by Proposition 5) ⇐⇒ f ¢ (y) = ¢(0, y) • + -f (0) (since since ¢(0, y) = 0 by (6)) ⇐⇒ y ∈ ∂ ¢ f (0) .
(by definition (8) of the Capra-subdifferential)

Letting s ∈ Sν be such that f ¢⋆ ′ (s) = f (s), we prove (10b) as follows:

y ∈ ∂f ¢⋆ ′ (s) ⇐⇒ f ¢⋆ ′ ⋆ (y) = s, y • + -f ¢⋆ ′ (s) (by (13)) ⇐⇒ f ¢ (y) = s, y • + -f ¢⋆ ′ (s) because the function f ¢ = f ∔ δ S (0)
ν ⋆ is a Fenchel conjugate by [START_REF] Rockafellar | Variational Analysis[END_REF], hence is closed convex, and therefore equal to its Fenchel biconjugate f ¢⋆ ′ ⋆ , (see the background material in Appendix A)

⇐⇒ f ¢ (y) = ¢(s, y) • + -f ¢⋆ ′ (s)
by definition (6) of ¢(s, y) as s ∈ Sν hence ν(x) = 1 by (3),

⇐⇒ f ¢ (y) = ¢(s, y) • + -f (s) (by assumption that f ¢⋆ ′ (s) = f (s)) ⇐⇒ y ∈ ∂ ¢ f (s) .
(by definition (8) of the Capra-subdifferential)

This ends the proof.

Now, we are going to show how Capra-couplings are a suitable tool to obtain lower convex approximations of 0-homogeneous functions.

Best convex lower approximations of 0-homogeneous functions

In §3.1, we identify -in terms of Capra-conjugacy introduced in Section 2 -the best lower approximation of 0-homogeneous functions by convex and by positively 1-homogeneous convex functions. We apply these results to the ℓ 0 pseudonorm in §3.2.

General result

We prove that the best convex lower approximation of a 0-homogeneous function can be expressed in term of its Capra-conjugate (7b). We also prove that the best positively 1-homogeneous closed convex lower approximation of a 0-homogeneous function can be expressed in term of its Capra-subdifferential [START_REF] Rockafellar | Conjugate Duality and Optimization[END_REF]. We recall that, for any subset = f ¢⋆ ′ . From Proposition 12 with W = Bν, the tightest positively 1-homogeneous closed convex function below f on the unit "ball" Bν is σ ∂(f ∔δ Bν )(0) . As the function f is 0-homogeneous, by Proposition 6, we have

Y ⊂ R d , σ Y : R d → R
∂(f ∔ δ Bν )(0) = ∂ ¢ f (0) and therefore σ ∂(f ∔δ Bν )(0) = σ ∂ ¢ f (0)
, which gives the desired result.

Application to the ℓ 0 pseudonorm

As an application, we study the particular case of the ℓ 0 pseudonorm. For any x ∈ R d and subset K ⊂ {1, . . . , d}, we denote by x K ∈ R d the vector which coincides with x, except for the components outside of K that vanish. Let |||•||| be a norm on R d , called the source norm. For any subset K ⊂ 1, d , we define the subspace R K = x ∈ R d x j = 0 , ∀j ∈ K of R d . We introduce the K-restriction norm |||•||| K , defined by |||x||| K = |||x|||, for any x ∈ R K . We also define the (K, ⋆)-norm |||•||| K,⋆ , which is the norm |||•||| K ⋆ , given by the dual norm (on the subspace R K ) of the restriction norm |||•||| K to the subspace R K (first restriction, then dual). Following (k) and B R (k),⋆ the respective unit balls. In Table 1, we give examples of coordinate-k and dual coordinate-k norms in the case of the ℓ p source norms. We recall that, for p ∈ [1, ∞], the dual norm of the ℓ p -norm • p is the ℓ q -norm • q , where q is such that 1/p + 1/q = 1 (with the extreme cases q = ∞ when p = 1, and q = 1 when p = ∞). 

|y τ (1) | ≥ |y τ (2) | ≥ • • • ≥ |y τ (d) |. source norm |||•||| |||•||| R (k) , k ∈ 1, d |||•||| R (k),⋆ , k ∈ 1, d ||•|| p (p,k)-support norm, ||x|| sn p,k top-(q,k) norm, ||y|| tn q,k no analytic expression ||y|| tn q,k = k l=1 |y τ (l) | q 1 q ||•|| 1 (1,k)-support norm top-(∞,k) norm ℓ 1 -norm ℓ ∞ -norm ||x|| sn 1,k = ||x|| 1 , ∀k ∈ 1, d ||y|| tn ∞,k = ||y|| ∞ , ∀k ∈ 1, d ||•|| 2 (2,k)-support norm top-(2,k) norm ||x|| sn 2,k no analytic expression ||y|| tn 2,k = k l=1 |y τ (l) | 2 (computation [2, Prop. 2.1]) ||x|| sn 2,1 = ||x|| 1 ||y|| tn 2,1 = ||y|| ∞ ||•|| ∞ (∞,k)-support norm top-(1,k) norm ||x|| sn ∞,k = max{ ||x||1 k , ||x|| ∞ } ||y|| tn 1,k = k l=1 |y τ (l) | ||x|| sn ∞,1 = ||x|| 1 ||y|| tn 1,1 = ||y|| ∞
Best convex lower approximation of the ℓ 0 pseudonorm on a unit ball Let |||•||| be a source norm on R d and ϕ : 0, d → R be a function. From Theorem 7, the function (ϕ • ℓ 0 ) ¢ ⋆ ′ is the tightest closed convex function below ϕ • ℓ 0 on the unit ball B, defined in [START_REF] Fazel | Matrix rank minimization with applications[END_REF]. We refer the reader to [START_REF] Chancelier | Constant along primal rays conjugacies and the l 0 pseudonorm[END_REF]Proposition 12],

where several expressions of the function (ϕ • ℓ 0 ) ¢ ⋆ ′ are provided. In particular, it is shown that it is the largest closed convex function below the integer valued function

B R (j) \B R (j-1) ∋ x → ϕ(j) for l ∈ 1, d , and x ∈ B R (0) = {0} → ϕ(0), the function being infinite outside B R (d) = B.
In dimension 2, this is seen in Figure 1 which depicts the tightest closed convex function below ℓ 0 on the Euclidean unit ball on R 2 : the function goes up from zero to the value 1 on the border (sphere) of the lozenge unit ball B 1 = B R

(1) of the ℓ 1 -norm; then, from the lozenge to the value 2 on the border (sphere) of the round unit ball B 2 = B R

(2) of the ℓ 2 -norm; the function is discontinuous on the four "sparse" points on the unit Euclidean circle, and takes the value +∞ outside the unit disk.

On the square unit ball B ∞ of the ℓ ∞ -norm, we obtain that the best convex lower approximation on B ∞ is the ℓ 1 -norm. Indeed, if ¢ is the Capra-coupling (6) associated with the ℓ ∞ -norm, this best approximation (see Table 1). As sup j∈ 0,d ||y|| tn 1,jj

= d i=1 (1 -|y i |)1 |yi|≥1 , we get that ∀x ∈ R d , ℓ ¢⋆ ′ 0 (x) = d i=1 sup yi∈R x i y i + (1 -|y i |)1 |yi|≥1 = ||x|| 1 , x ∈ B ∞ , +∞ , otherwise.
Best norm lower approximation of the ℓ 0 pseudonorm on a unit ball We compute the expression of the best lower approximation of the ℓ 0 pseudonorm with a norm. Then, we show that for the ℓ p source norm, with p ∈ [1, ∞], the tightest norm below ℓ 0 on the unit ball B p is the ℓ 1 -norm. 

R (ϕ) = σ B R (ϕ),⋆
, where by convention +∞B R

(j),⋆ = R d . The norm |||•||| R (ϕ) is the tightest norm below ϕ • ℓ 0 on the unit ball B, that is, |||x||| R (ϕ) tightest norm ≤ ϕ ℓ 0 (x) , ∀x ∈ B . (11) 
Proof. From [3, Proposition 14], we have that

∂ ¢ (ϕ • ℓ0)(0) = B R (ϕ),⋆ . With Theorem 7, we deduce that σ B R (ϕ),⋆ = |||•||| R (ϕ) is the tightest closed convex positively 1-homogeneous function below ϕ • ℓ0 on the unit ball B. We can easily check that σ B R (ϕ),⋆ indeed defines a norm. The norm |||•||| R (ϕ)
was introduced in [3, Proposition 15] under the slightly stronger assumption that ϕ(j) < +∞ for all j ∈ 1, d .

Proposition 9 (Application with the ℓ p source norm). Let |||•||| = ||•|| p , with p ∈ [1, +∞], be the source norm and let ϕ : 0, d → R + ∪ {+∞} with ϕ(j) > ϕ(0) = 0 for all j ∈ 1, d and ϕ(j) < +∞ for at least one j ∈ 1, d . We also assume that either, for p ∈]1, +∞] and q such that 1/p + 1/q = 1, the function 1, d ∋ j → ϕ(j) q /j is nondecreasing, or, for p = 1 and q = +∞, the function ϕ is nondecreasing. Then, the tightest norm below ϕ • ℓ 0 on the unit ball

B p is |||•||| R (ϕ) = ϕ(1)||•|| 1 .
In particular, the ℓ 1 -norm is the tightest norm below ℓ 0 on the unit ball B p of any ℓ p -norm, for p ∈ [1, ∞].

Proof. From Proposition 8, the tightest norm below ϕ • ℓ0 on the unit ball Bp is |||•||| R (ϕ) and, for all

y ∈ R d , we have that |||y||| R (ϕ),⋆ = sup j∈ 1,d |||y||| R (j),⋆ ϕ(j) (see [3, Proposition 15]). The source norm is ||•||p. If p = 1, then from Table 1, |||y||| R (j),⋆ = ||y|| tn ∞,j = ||y||∞. We deduce that |||y||| R (ϕ),⋆ = sup j∈ 1,d ||y||∞ ϕ(j) = ||y||∞ ϕ(1)
as ϕ is nondecreasing. For p > 1, from Table 1, we get that |||y||| R (j),⋆ = ||y|| tn q,j = j l=1 |y τ (l) | q 1 q . Using that j → ϕ(j) q /j is nondecreasing, it can be computed that j → ||y|| tn q,j /ϕ(j) is nonincreasing as follows: Fazel [5, Theorem 1, §5. 1.4] shows that the best convex lower approximation of the rank function on the spectral norm unit ball is given by the nuclear norm. By considering singular values, we easily deduce that the best convex lower approximation of the ℓ 0 pseudonorm on the ℓ ∞ unit ball is given by the ℓ 1 -norm. Thus, in a sense, Proposition 9 generalizes the result of Fazel.

||y|| tn q,j+1 ϕ(j + 1) q = ( j l=1 |y τ (l) | q ) + |y τ (j+1) | q ϕ(j + 1) q ≤ (1 + 1 j ) j l=1 |y τ (l) | q ϕ(j + 1) q ≤ ( j l=1 |y τ (l) | q ) ϕ(j) q = ||y|| tn q,j ϕ(j) q . Therefore, |||y||| R (ϕ),⋆ = sup j∈ 1,d |||y||| R ( 

Conclusion

In this paper, we have extended the Capra couplings and conjugacies introduced in [START_REF] Chancelier | Constant along primal rays conjugacies and the l 0 pseudonorm[END_REF][START_REF] Chancelier | Hidden convexity in the l 0 pseudonorm[END_REF]. Indeed, they now depend on a given normalization function (i.e. a norm without the requirement for subadditivity). With this new coupling, we are able to provide expressions for the best convex (and positively 1-homogeneous) lower approximations of 0-homogeneous functions on the unit "ball" of the normalization function. As an application, we show that the best norm lower approximation of the ℓ 0 pseudonorm on any ℓ p unit ball, p ∈ [1, +∞], is the ℓ 1 norm, thus strengthening theoretical grounds for the use of the ℓ 1 norm as a sparsity-inducing term in optimization problems. We have also provided the tightest convex lower convex approximation of the l0 pseudonorm on the unit ball of any norm.

A Background on the Fenchel conjugacy

We review concepts and notations related to the Fenchel conjugacy (we refer the reader to [START_REF] Rockafellar | Conjugate Duality and Optimization[END_REF]). For any function h : R d → R, its epigraph is epih = (w, t) ∈ R d × R h(w) ≤ t , its effective domain is domh = w ∈ R d h(w) < +∞ . A function h : R d → R is said to be convex if its epigraph is a convex set, proper if it never takes the value -∞ and that domh = ∅, lower semi continuous (lsc) if its epigraph is closed, closed if it is either lsc and nowhere having the value -∞, or is the constant function -∞ [8, p. 15]. Closed convex functions are the two constant functions -∞ and +∞ united with all proper convex lsc functions. 3It is proved that the Fenchel conjugacy (indifferently f → f ⋆ or g → g ⋆ ′ as below) induces a one-to-one correspondence between the closed convex functions on R d and themselves [START_REF] Rockafellar | Conjugate Duality and Optimization[END_REF]Theorem 5]. For any functions f : R d → R and g : R d → R, we denote4 

f ⋆ (y) = sup x∈R d x, y • + -f (x) , ∀y ∈ R d , (12a) 
g ⋆ ′ (x) = sup y∈Y x, y • + -g(y) , ∀x ∈ R d , (12b) 
f ⋆⋆ ′ (x) = sup y∈R d x, y • + -f ⋆ (y) , ∀x ∈ R d . (12c) 
The Fenchel biconjugate of a function f : R d → R satisfies

f ⋆⋆ ′ (x) ≤ f (x) , ∀x ∈ R d . (12d) 
In [10, p. 214-215], the notions5 of (Moreau) subgradient and of (Rockafellar) subdifferential are defined for a convex function. Following the definition of the subdifferential of a function with respect to a duality in [START_REF] Akian | Invertibility of functional Galois connections[END_REF], we define the (Rockafellar-Moreau) subdifferential ∂f (x) of a function f :

R d → R at x ∈ R d by ∂f (x) = y ∈ R d f ⋆ (y) = x, y • + -f (x) . (13) 
When the function f is proper convex and x ∈ domf , we recover the classic definition.

B Best convex lower approximations of a function on a subset

We compute the best convex (and convex positively 1-homogeneous) lower approximations of a general function on a (not necessarily convex) subset W ⊂ R d . 

As the set F = function f : R d → R endowed with the partial order ≤ is a complete lattice, the subset H f W ⊂ F has a (unique) supremum f = H f W . As the set of closed convex, positively 1-homogeneous functions is stable by pointwise supremum, the function f : R d → R is given, for all x ∈ W , by f (x) = sup h(x) h ∈ H f W . From [9, 

Theorem 7

 7 denotes the support function of the subset Y : σ Y (x) = sup y∈Y x, y , for any x ∈ R d . The proof of the following theorem relies on results given in Appendix B. Let ν : R d → R + be a normalization function, with unit "ball" B ν defined in (3), and with associated Capra-coupling ¢ in (6). Let f : R d → R be a 0-homogeneous function. Then, 1. the function f ¢⋆ ′ is the tightest closed convex function below f on the unit "ball" B ν , 2. if f (0) = 0, the function σ ∂ ¢ f (0) is the tightest closed convex positively 1-homogeneous function below f on the unit "ball" B ν . Proof. From Proposition 10 with W = Bν, the tightest closed convex function below f on the unit "ball" Bν is f ∔ δ Bν ⋆⋆ ′ . As the function f is 0-homogeneous, by Proposition 5, we have that f ¢ = f ∔ δ Bν ⋆ . By taking the Fenchel conjugate (12b), we deduce that f ∔ δ Bν ⋆⋆ ′

[ 3 ,

 3 Definition 3]), for k ∈ 1, d , we call generalized coordinate-k norm the norm |||•||| R (k) whose dual norm is the generalized dual coordinate-k norm, denoted by |||•||| R (k),⋆ , with expression |||y||| R (k),⋆ = sup |K|≤k |||y K ||| K,⋆ for all y ∈ R d . We denote by B R

Figure 1 :

 1 Figure 1: Tightest closed convex function below the ℓ 0 pseudonorm on the Euclidean unit ball on R 2

Proposition 8

 8 Let |||•||| be a source norm on R d , with associated sequence |||•||| R (j) j∈ 1,d of coordinate-k norms and sequence |||•||| ⋆ R (j) j∈ 1,d of dual coordinate-k norms and their respective unit balls B R (j),⋆ j∈ 1,d . Let ϕ : 0, d → R + ∪ {+∞} be a function such that ϕ(j) > ϕ(0) = 0 for all j ∈ 1, d , and with ϕ(j) < +∞ for at least one j ∈ 1, d . Then, there exists a norm |||•||| R (ϕ) on R d , characterized by its dual norm |||•||| R (ϕ),⋆ , which has unit ball B R (ϕ),⋆ = j∈ 1,d ϕ(j)B R (j),⋆ , and |||•|||

= ||y||∞ ϕ( 1 )

 1 , as ||y|| tn q,1 = |y τ (1) | = ||y||∞. Thus, for p ∈ [1, ∞], we have obtained |||y||| R (ϕ),⋆ = ||y||∞ ϕ(1) from which we deduce that |||•||| R (ϕ) = ϕ(1)||•||1. The last statement of the theorem follows by taking ϕ being the identity mapping. This concludes the proof.

Proposition 10 Remark 11

 1011 For any subset W ⊂ R d and any function f : R d → R, the best closed convex lower approximation f of f on W is given by f = f ∔ δ W ⋆⋆ ′ .Proof. For any subset W ⊂ R d and any function f : R d → R, we define the set of functionsC f W = closed convex function h : R d → R h(x) ≤ f (x) , ∀x ∈ W . (14)As the set F = function f : R d → R endowed with the partial order ≤ is a complete lattice, the subsetC f W ⊂ F has a (unique) supremum f = C f W .As the set of closed convex functions is stable by pointwise supremum, the function f :R d → R is given, for all x ∈ W , by f (x) = sup h(x) h ∈ C f W . By (12d), it is easily established that f ∔ δW ⋆⋆ ′ ∈ C f W . For any h ∈ C f W , we have h ∔ δcoW ∈ C f W and h ∔ δ coW ≤ f ∔ δW ⋆⋆ ′, as δ coW ≤ δW where coW denotes the closed convex hull of the set W . As h ≤ h ∔ δ coW ,we conclude that f = C f W ≤ f ∔ δW ⋆⋆ ′, hence that f = f ∔ δW We cannot replace δ W by δ coW in the statement of Proposition 10, although δ coW is involved in the proof. For instance, consider f = | • | being the absolute value function defined on R andW =] -∞, -1] ∪ [1, +∞[, hence coW = R. We can easily check that f ∔ δ W ⋆⋆ ′ (x) = |x| if x ∈ W and f ∔ δ W ⋆⋆ ′ (x) = 1 if x ∈ R \ W , that is, f = max{1, | • |}. On the other hand, we have f ∔ δ coW ⋆⋆ ′ = f ⋆⋆ ′ = | • |, and therefore f ∔ δ coW ⋆⋆ ′ = | • | = max{1, | • |} = f ∔ δ W ⋆⋆ ′. Now, we give the best approximation of a general function f : R d → R with a closed convex positively 1-homogeneous function.Proposition 12 For any subset W ⊂ R d with 0 ∈ W and any function f : R d → R such that f (0) = 0, the best closed convex, positively 1-homogeneous approximation f of f on W is given by f = σ ∂(f ∔δW )(0) .Proof. For any subset W ⊂ R d and any function f : R d → R such that f (0) = 0, we define the set of functions H f W = closed convex, positively 1-homogeneous function h : R d → R h(x) ≤ f (x) , ∀x ∈ W .

Table 1 :

 1 Examples of coordinate-k and dual coordinate-k norms generated by the ℓ p source norms |||•||| = •

p for p ∈ [1, ∞], where 1/p + 1/q = 1. For y ∈ R d , τ denotes a permutation of {1, . . . , d} such that

With the coupling ¢, we associate the reverse coupling ¢ ′ defined by ¢ ′ (y, x) = ¢(x, y) for (x, y) ∈ R d × R d , hence the notation f ¢¢ ′ .

In particular, any closed convex function that takes at least one finite value is necessarily proper convex lsc.

In convex analysis, one does not use the notation ⋆ ′ in (12b) and ⋆⋆ ′ in (12c), but simply ⋆ and ⋆⋆ . We use ⋆ ′ and ⋆⋆ ′ to be consistent with the notation (7c) for general conjugacies.

See the historical note in[9, p. 343].

 Theorem 8.24], the proper closed convex positively 1-homogeneous functions can be identified with the support functions of nonempty closed convex subsets of R d . Thus, we describe the functions of H f W by means of support functions. Let Y ⊂ R d be a nonempty closed convex set such that σY (x) ≤ f (x), for all x ∈ W . We have

using property of the Moreau lower addition [START_REF] Moreau | Inf-convolution, sous-additivité, convexité des fonctions numériques[END_REF], and the assumption that f (0) = 0

by definition (13) of the (Rockafellar-Moreau) subdifferential. Thus, we have obtained that Y ⊂ ∂ f ∔ δW (0) from which we deduce the inequality σY ≤ σ ∂(f ∔δ W )(0) . We get that f ≤ σ ∂(f ∔δ W )(0) , as the subset σY , Y ⊂ R d nonempty closed convex σY ( is equal to H f W in (15). On the other hand, using the previous equivalences, if y ∈ ∂ f ∔ δW (0), we get that x, y ≤ f (x) for all x ∈ W . Therefore, we obtain that σ ∂(f ∔δ W )(0) (x) = sup y∈∂(f ∔δ W )(0) x, y ≤ f (x) for all x ∈ W , that is, σ ∂(f ∔δ W )(0) ∈ H f W . We conclude that f = σ ∂(f ∔δ W )(0) .