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Abstract: Object identification in highly turbid optical media depends mainly on the quality 
of collected images. Underwater images acquired in a turbid environment are generally of 
very poor quality. Attenuation and backscattering of light by water, by materials dissolved in 
the water, and by particulate material are the main causes of the degradation of underwater 
images. It is therefore essential to improve the quality of such images to facilitate object 
identification. The focus of this paper is to report the principle and validation of a fast and 
effective method of improving the quality of underwater images. On the one hand, this 
method uses a polarimetric imaging optical system to reduce the effect of diffusion on the 
image acquisition. On the other hand, it is based on an optimized version of the dark channel 
prior (DCP) method that has received a great deal of attention for image dehazing. Results 
derived from images obtained in a controlled laboratory water tank environment with 
different turbidity conditions and images from tests using the proposed method at sea 
demonstrate an ability to significantly improve visibility and reduce runtime by a factor of 
about 50 for a 4K image when compared to conventional DCP methods. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

1.1 Background 

Most underwater (scientific, industrial or military) vehicles are equipped with at least one 
embedded camera to observe and analyze the seabed. Typically, these remote operated 
vehicles (ROV) are often operated by crew operators aboard a research vessel. The ROV has 
an umbilical cable that contains electrical cables and optical fibers to carry electrical power, 
data and video signals [1]. Tethering systems to ROVs impose speed and depth restrictions 
that limit maneuverability. In addition, human intervention implies that the treatment is often 
long, tedious and dangerous. Such issues can be reduced by the use of autonomous 
underwater vehicles (AUV). The AUV is an untethered underwater robot that carries out a 
mission fully autonomously even without communication with crew operators. However, the 
treatment and the automatic analysis of acquired images are limited by the very bad quality of 
underwater images which decreases the performance of the detection and object recognition 
algorithms. Absorption and scattering of light by water, by materials dissolved in the water, 
and by particulate material are the main causes of the degradation of these images. Morel [2], 
give excellent reviews of the associated physics and mathematics. Both phenomena are highly 
wavelength dependent and depend also on the size of the particles within the water which also 
governs the type of scattering that occurs, namely Mie or Rayleigh scattering [3]. Blue light 
penetrates deeper than red light (Fig. 1). 
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Fig. 1. Absorption and scattering in water. 

One of the major difficulties inherent in the treatment of the collected underwater images 
comes from the exponential attenuation of light which limits visibility to around 20 m in clear 
water and to less than 5m in turbid water [4]. A useful background underwater image model 
of formation has been proposed by Jaffe [5]. This assumes that the underwater image I 
received by the camera is the sum of three components, i.e. direct attenuation AI , forward 

scattering FI  and backscattering BI  such as: 

 ( ) ( ) ( ) ( )A F AI x I x I x I x= + +  (1) 

where x denotes image coordinates. According to Schechner and Karpel [6], backscattering is 
the main reason for deterioration of the underwater visibility, thus forward scattering can be 
neglected. 

This assumption is valid when the distance between the scene and the camera is large. 
Equation (1) can be written as: 

 ( ) ( ) ( )A BI x I x I x= +  (2) 

or 

 ( ) ( ) ( ) ( )( )1I x J x t x A t x= + −  (3) 

In Eq. (3), ( )I x is the intensity observed at pixel x composed of the scene 

radiance ( )J x mixed with light arising from the background light A according to the optical 

medium transmission coefficient [7]. The transmission map describes the portion of the 
scene ( ) ( )J x t x which has not been scattered or absorbed through the optical medium and 

which reached the camera. When the optical medium is assumed to be homogeneous, the 
transmission map ( )t x is often estimated as an exponential form: 

 ( ) ( )( )expt x d xβ= − ⋅  (4) 

where β is the scattering coefficient of the optical medium ( β is close to 0 in clear water 

conditions) and d is the scene depth. The backscattered light, ( )( )1 t x− , comes from the 

interaction between the propagating light and particles dispersed in the optical medium 
according to the transmission map. As we can see, if ( ( ) ( )0,t x I x A→ = ). Furthermore, 
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forward scattering causes a blur in the image while backscattering produces a light veil which 
reduces the contrast and visibility of the observed scene [4]. Additionally, using artificial 
lighting to improve visibility introduces shadows and illuminates the scene in a non-uniform 
way. Both phenomena make it difficult, even impossible, to detect and/or identify objects in 
strongly turbid optical media. 

1.2 State-of-the-art 

Many techniques of restoration and improvement of the quality of the underwater images 
have been proposed in the archival literature and this continues to be a timely subject of 
research [8]. Restoration techniques are designed to assess the degradation of the image 
during its acquisition and then to apply an inverse transform of the model to recover the 
original image. Deconvolution of the water transfer function is in principle possible for 
restoration of underwater images [9]. Hou and associates [10] incorporated optical properties 
of water in the transfer function of an underwater camera system. Trucco and Olmos-Antillon 
[11] presented a self-adjusting restoration filter based on a simplified model of underwater 
image formation. Ouyang and associates [12] used pulsed laser light and a bilateral filtering 
method based on deconvolution for underwater image enhancement. Schechner and Treibitz 
[13] suggested an effective algorithm that requires two polarized images obtained in two 
orthogonal directions to restore the original scene. Although these approaches were being 
introduced for improving the physical contrast of simple images, they require many unknown 
parameters (such as the attenuation coefficients of the medium and depth of the scene) which 
can be difficult of estimating with precision. In addition, these methods use relatively 
expensive and complex optical components such as e.g. a range-gated laser. Furthermore, 
solutions that require many image entries are usually difficult to apply because the acquisition 
of multiple images of the same scene is difficult in underwater conditions. In recent years, He 
and associates [7] suggested the DCP that allows estimating the depth of a scene from a single 
image and restoring the image without fog. Several studies used DCP to remove the luminous 
veil and adapted it to underwater conditions [14,15]. In contrast to restoration analysis, 
methods to improve quality do not rely on physical models and do not require an a priori 
knowledge of the environment. These methods use qualitative subjective criteria to improve 
the visual quality of the image, to reduce the noise and to correct color. To overcome the issue 
of non-uniform illumination in underwater images, Garcia and associates [16] proposed 
applying a homomorphic filtering. Hitam and associates [17] applied adaptive histogram 
equalization for underwater image enhancement. Ghani and Isa [18] suggested dividing the 
histogram of the image in the middle and stretching the two histograms obtained over the 
entire dynamic range following the Rayleigh distribution. Ancuti and associates [19] adopted 
another strategy by merging images derived from the original degraded image. Bazeille and 
associates [20] suggested an automatic algorithm consisting of several independent steps of 
treatment allowing correcting non-uniform lighting, eliminating noise, improving contrast and 
equalizing colors. Despite the simplicity and the multitude of digital methods designed for 
improving quality, their efficiency decreases as turbidity is increased. The combination of 
several numerical methods increases the runtime which is not desirable for any real-time 
application. For this specific reason, two approaches will be combined in this study. On the 
one hand, our method uses a polarimetric imaging optical system to reduce the effect of 
diffusion on the image acquisition. On the other hand, the method is based on an optimized 
version of the dark channel prior (DCP) method that has received a great deal of attention for 
image dehazing. 

1.3 Motivation and outline 

A question that often appears throughout the literature asks is that of the extent to which 
quality of underwater images can be improved while reducing algorithm runtime in order to 
facilitate real-time object identification?. This challenge is of importance when targeting 
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underwater objects. In this paper, computational and experimental investigations show the 
effect of turbidity on visibility and algorithm runtime of collected images. The successful 
performance of the method developed in the paper is illustrated by considering images 
obtained in underwater field experiments either in a controlled laboratory water tank 
environment with different turbidity conditions and or from tests at sea. 

2. Imaging polarimetry 

In this section, we offer a brief background as well as a set of definition of terms that are used 
in the paper. Then, preliminary tests document the benefit of incorporating polarization 
information into the algorithm. 

2.1 State of the art 

Polarimetry has been widely as a useful technique that removes degradation effects in 
underwater vision [6,21–24]. The propagation of polarized light in water has led to the 
development of active and passive polarimetric imaging systems. Passive imaging uses the 
ambient light from the sun that is unpolarized. The light that does not reach the object 
becomes partially polarized by scattering and can be filtered by an analyzer placed in front of 
the detector [6]. However, natural light illumination is inapplicable at great depth where 
active scene irradiance is required. Active imaging requires artificial light illumination and 
appropriate detection scheme. Several studies have proposed to exploit the differences in 
polarimetric responses between target and backscattering [25,26]. A comprehensive study of 
polarimetric backscatterd light variations was considered in [25]. The backscattered Mueller 
matrix for various concentrations of spherical scatterers with and without painted metal target 
was measured. However, such measurements are time consuming because they often require 
considerable data acquisition. More recent studies proved that the strong backscatter created 
by artificial lighting can be reduced by performing a single acquisition with adapted input and 
output polarization states. The evolution of circularly and linearly polarized states of light as 
they scatters throughout an optical medium composed of particles in suspension in water (e.g. 
randomly scattering media of a polystyrene-microsphere solution), numerical simulation, 
analytical theory and experimental data have shown that circularly polarized light exhibits 
superior persistence (compared to linearly polarized light) for forward-scattering particulate 
medium [27–34]. Assuming that the target is totally depolarizing and handedness of the 
circularly polarized state change after reflection by the scattering particles, Gilbert and 
associates [27] showed that using circularly polarized light permits reduction of backscatter 
and increase by a factor of two of the visibility range compared to intensity measurements. 
Mullen and associates [34] provided a technique using polarization discrimination for 
analyzing the contribution of backscattered light, arising from multiple scattering of the 
interrogating laser beam from water particulate matter in both the forward and backward 
directions, and improving the contrast of the retro-reflected signal. These authors evidence 
that both the light forward scattered on its path to and from an underwater object and the light 
that is scattered back to the detector without reaching the object have a high degree of 
polarization when linearly polarized light is transmitted. 

2.2 Characterization of underwater object 

The detection of an underwater target by use of polarization discrimination depends on the 
different polarimetric responses between the target and scattering medium which separates the 
object from the camera. Several studies have focused on characterizing the transport of 
polarized light through different scattering media by means of the Stokes-Mueller formalism 
[25]. This enables to completely describe the effect of the scattering medium or the target on 
an incident polarized light via Mueller matrices. A Stokes vector S is a four-component vector 
defined as: 
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Where I represents the total intensity of the detected light, and , ,Q U V defined by 
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where 0xE and 0 yE denote the amplitudes of the parallel and perpendicular to the scattering 

plane electric field components and φ  is the relative phase difference. The polarization state 

of the scattered light S ′ can be written as: 
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where the 16 ijM elements define the Mueller matrix. In pure water containing Rayleigh 

spherical scatters, single scattering events dominate over multiple scattering and absorption 
can be neglected. Within these assumptions, the normalized Mueller matrix is [26,33] 
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where θ  is the scattering angle and 
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For backscattering conditions ( 180θ =  ), Eq. (8) becomes 
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Backscattering from Rayleigh spheres preserves the linear polarization state of the incident 
light (vertical or horizontal), while the handedness of the circularly polarized light is reversed 
after a backscattering event. For turbid water conditions, experiments have shown that the 
scattering regime can be described with a matrix which is very similar to Eq. (10) but 
containing the supplemental elements 34M and 43M satisfying 43 34M M= −  [26]. Nevertheless, 

for backscatter-ring condition, ( 180θ =  ) linear polarization is preserved and circular helicity 
is reversed. This backscattering conservation property is widely used for underwater target 
detection by controlling the polarization state of the light source and the camera through 
suitable combination of polarizers. Indeed, imaging with cross-polarization state using 
linearly polarized light and co-polarized state using circularly polarized light better 
discriminates the useful signal from backscattering. However, in practice this method can be 
effective only if the target is sufficiently depolarizing. Other studies have demonstrated that 
performing measurements with two orthogonal states permits decreasing the backscattering 
effect. Treibitz and Schechner [6] presented an approach for recovering the object signal 
using polychromatic polarized light illumination. The camera is fitted with a polarization 
analyzer. Two frames of the scene are taken, with different states of the analyzer or polarizer. 
A recovery algorithm follows the acquisition. This method allows both the backscatter and 
the object reflection to be partially polarized. The algorithm assumes that the underwater 
image is made up of the target signal and the backscattered signal. We will write the 
measured image in the following typical form: 

 ( ) ( ) ( ), , ,I x y S x y B x y= +  (11) 

where ( ),S x y  is the signal from target and ( , )B x y  corresponds to the backscatter. Two 

images minI  and maxI are acquired, corresponding respectively to the linear cross-polarization 

image (co-circular) and the linear-parallel image (cross-circular). The linear cross-
polarization (co-circular) image minI  is obtained when the analyzer is placed in the orthogonal 

(resp. same) state of the light source polarizer. The linear parallel polarization (cross-circular) 
image maxI is obtained when the analyzer is placed in the same (resp. orthogonal) state of the 

light source polarizer. As a large fraction of the linear (circular) polarization is preserved 
(reversed) under wide-angle backscattering, this technique in the cross-state (co-circular) 
yields an image with less backscatter and target signal. Thus, the images are expressed as: 

 ( ) ( ) ( )max max max, , ,I x y S x y B x y= +  (12) 

 ( ) ( ) ( )min min min, , ,I x y S x y B x y= +  (13) 

The degree of polarization (DOP) of the target and backscatter are written, respectively, as: 
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and 
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The target and the backscatter signals can be expressed as: 

 ( ) ( )max min( , ) , ,S x y S x y S x y= +  (16) 

and 
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 ( ) ( )max min( , ) , ,B x y B x y B x y= +  (17) 

Equations (18) and (19) can be used to provide an estimate of the target S and 

backscattering B  as respectively: 

 ( ) ( )min max
arg

1
1 1scat scat

scat t

S I P I P
P P

= + − −  −
  (18) 

 ( ) ( )min min
arg

1
1 1scat scat

scat t

B I P I P
P P

= − − +  −
  (19) 

The target estimate can thus be inferred from measures of minI and maxI , for a given value of 

scatP , since argtP does contribute only to a scale factor for the reconstruction of the signal. The 

target estimate can be done on the basis of Eq. (18) assuming that targP 0= . It should be noted 

that the value of scatP is crucial and must be assessed with precision. We note that this method 

has been used in [22], and it gives good results. However, it is difficult to use it for the current 
application at least for two reasons. Firstly, the acquisition of two images of the same scene is 
difficult without human intervention because of the rapid changes of the 3D scene structure 
and light illumination conditions. Second, the estimate of scatP  requires a precise selection of 

an image area where the target does not appear, which is difficult to implement automatically. 
This is the reason why this study considers a single polarization measure that minimizes the 
backscattering effect in the image. 

2.3 Experimental setup 

Since the nature of the object to be identified is unknown, it remains difficult to estimate its 
depolarization properties. Consequently, no optimized state of polarization can be guessed. In 
this work, we try to use polarization states allowing us to get images with the best quality. 
Two polarization options are considered, either a linearly co-polarized or a cross-polarized 
scheme. The experimental set-up used is depicted in Fig. 2. 

 

Fig. 2. Experimental setup for underwater target detection. Pol1 is a linear polarizer, Pol2 is a 

linear analyzer, and iS  denotes Stokes vector i. 

The image obtained for the linear parallel polarization state \ \I  (resp. ( I⊥ )) is obtained 

when the analyzer Pol2 is placed in the same (resp. orthogonal) state of polarizer Pol1 of the 
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light source. During the light transport from the source to the CCD camera, light polarization 
changes and can be mathematically described by a matrix product with: the Mueller matrix of 
the polarizer Pol1 ( 1 1 0polS M S= ), Mueller matrix of water (source-

target 1wM ( 2 1 1wS M S= )/target-camera 2 4 2 3( )w wM S M S= ),Mueller matrix of the 

target arg 3 arg 2( )t tM S M S= and Mueller matrix 2PolM of the analyzer Pol2 ( 5 2 4polS M S= ). 

Thus, the Stokes vector 5S that characterizes the polarization state of light received by the 

CCD camera can be written as: 

 5 2 2 arg 1 1 0pol w t w polS M M M M M S=  (20) 

We make three more assumptions:(i) the light source is completely unpolarized and 

characterized by the Stokes vector ( )0 00 0 0 0
T

S S= , where 00S  is the total intensity of 

the wave, (ii) the Mueller matrix of the underwater target argtM is 
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And (iii) the Mueller matrix of water (source-target 1wM  / target-camera 2wM ) are also 

unknown because we cannot specify the effect of turbidity of the seabed during image 
acquisition. However, based on the fact that backscattering conserves linear polarization and 
reverse circular helicity, we assume that: 
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Knowing that the Mueller matrix of a linear polarizer is: 
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Where ϕ is the polarization angle, the parallel polarization image \ \I  is obtained when the 

same polarization angle for Pol1 and Pol2 ( 1 2 90pol polϕ ϕ= =  ) is fixed and we get 
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Similarly, the orthogonal polarization image I⊥ is obtained when the polarization angles for 

Pol1 and Pol2 are fixed to orthogonal states ( 1 290 , 0pol polϕ ϕ= =  ) and we get: 
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2.4. Tests in small water tank 

In this part we present our first tests that were carried out in a controlled laboratory water tank 
(15 L of natural water) environment with different turbidity conditions by adding milk [35]. 
Milk is a complex biological fluid composed of water, fat, protein, lactose, organic acids, and 
inorganic compounds. These different kinds of particles in milk change its scattering 
properties based on their differences in size, concentration and optical properties. Skim milk 
contains casein micelles with size polydispersity in the range between 0.04 and 0.3 mm 
(Rayleigh scattering regime). Skim milk appears slightly blue because the small casein 
micelles predominantly scatter the shorter wavelengths of visible light. In addition, low-fat 
milk contains fat droplets with size in the range 1-20 mm, corresponding to Mie scattering 
regime. Thus, for a concentration c (in %) of milk in a certain volume of water, an estimate 
for the diffusion coefficient is respectively 11.40s c cmμ −= ⋅ for low-fat milk and 

10.42s c cmμ −= ⋅ for skim milk [36]. For the wavelength considered in our tests, the 

absorption properties in light scattering can be ignored. The optical thickness 0τ is defined as 

the product of the coefficient of reduction sμ  and the distance d between the object and the 

camera, such as 0 s dτ μ= ⋅ .If 0 1τ >>  light is multiply scattered while light is singly scattered 

if 0 1τ << . Figure 3, shows the experimental set-up used to acquire tests images. As can be 

seen in Fig. 3(b), the target (capital letter “A”) is placed at the bottom of the water tank at a 
distance of 34 cm of a digital camera Sealife DC1400 video pro Set digital camera [37]: high 
resolution 14 megapixel CCD sensor, 26 mm lens wide angle, 20 MB memory internal, 
underwater vision field of 51 and can operate up to 60 m depth. 

 

Fig. 3. (a) Light source and camera with polarizers. (b) The used experimental set-up based on 
polarization. 

The target is illuminated by a light source made by three white LEDs on which a linear 
polarizer is set. A linear analyzer is placed in front of the camera Fig. 3(a). The image 
obtained for the linear parallel polarization state ( \ \I ) (resp. ( I⊥ )) is obtained when the 

analyzer is placed in the same (resp. orthogonal) state of polarization as the light source. 
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Fig. 4. Images of the target for two different turbidity conditions (top 

row:
1

0
0.056 , 1.96

s
cmμ τ−= = ), (bottom row

1

0
0.084 , 2.94

s
cmμ τ−= = ). (a) and (d): 

unpolarized images; (b) and (e) parallel polarization images; (c) and (f). Cross-perpendicular 
polarization images. 

Figures 4(a) and 4(d) show the images acquired for two different turbidity conditions: Fig. 
4(a) is obtained when 2 cl of skim milk is dispersed in 15L of water, the estimated diffusion 
coefficient is 10.056s cmμ −= . The distance traversed by light to attain the camera is d = 35cm 

corresponding to 0 1.96τ = . Similarly, Fig. 4(d) is characterized by 10.084s cmμ −= and 

0 2.94τ = . We can see from these images that the target is not visible in images taken without 

the use of the analyzer (Fig. 4(a) and Fig. 4(d)) and also in the image in the linear parallel 
analyzed polarization (Fig. 4(b) and 4(e)). Visibility is significantly improved when the linear 
cross-polarization arrangement is used (compare Fig. 4(c) and 4(f)) in accordance with the 
fact that polarization of the backscatter is mainly linear and in the same orientation of the 
incident light. 

2.5. Tests in larger water tank 

To validate the interest of using crossed linear polarization to eliminate backscatter effects, 
we extend our experiments to more realistic conditions. Tests were performed in a large water 
tank (Fig. 5(a)) of dimension [3 2m m× ] filled with natural water (5000L) to which we add 
skim-milk to mimic the turbidity conditions. Figure 5(b) shows the waterproof imaging 
system designed by FORSSEA Robotics Company [38]. This system contains a polarized 
light source and two cameras. The first is equipped with a polarizer fixed in the orthogonal 
state with respect to the state of the source. No polarizer is fixed on the second camera, this 
allows us to acquire two images of the scene at the same time (without and with polarization) 
in order to compare them. The linear crossed polarimetric imaging system was precisely 
calibrated in our laboratory (Fig. 5(c)). 
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Fig. 5. (a) Water tank [3m × 2m], (b) FORSSEA Robotics waterproof imaging system, (c) 
polarization calibration, (d) polarimetric imaging system and marker in the water tank. 

On an optical bench, two polarizers were placed oppositely to each other and separated by 
a 30 cm distance. A linear polarization state is generated from the first polarizer illuminated 
by an He-Ne Laser source emitting at 632.8nm. The second polarizer (analyzer) can be 
rotated. Several markers were placed at the bottom of a large water tank at different distances, 
as shown in Fig. 5(d). Figure 6(a) is the unpolarized image of marker in clear water. Figures 
6(b)–6(d) are the unpolarized images obtained when we added respectively 200mL, 400mL 
and 600mL of skim milk to 5000 L of clear water. The diffusion coefficients thus estimated 
are respectively ( 1 1 1

1 2 30.016 , 0.032 , 0.048s s scm cm cmμ μ μ− − −= = = ). Figures 6(e)–6(h) show 

respectively the corresponding images taken at the same time with the crossed linear 
polarization. 

 

Fig. 6. Image of marker for different turbidity conditions (from left to right: (a) clear water, (b) 

turbidity 1sμ ,(c) turbidity 2sμ ,(d) turbidity 3sμ .Top row: unpolarized images, bottom row: 

the corresponding cross linear polarization images. 

As can be seen from results, images taken using cross linear polarization have fewer 
reflections compared to raw images taken without polarized light. Consequently, letters on 
markers are clearly observed and easy to be distinguished in the cross linear polarization 
images. Figure 7 shows a comparison of the marker (framed in red) in Fig. 6(c) and Fig. 6(j). 
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Fig. 7. Image of marker (capital letter P) at turbidity 2sμ . (a) Without polarization. (b) With 

cross linear polarization. 

Capital letter P is very blurred in the unpolarized image (Fig. 7(a)). A significant 
improvement in quality is observed when cross linear polarization is used (Fig. 7(b)). This 
clearly demonstrates the benefit of using polarization for improving the visibility and 
detection of markers. However, the visibility of the markers (especially the most distant ones) 
decreases when the concentration of milk in water is increased (Fig. 6(d)). In this case, 
polarization fails to totally remove the backscattering effect (Fig. 6(h)). Moreover, in real 
conditions, water depth and turbidity which mainly determine the light penetration will 
strongly limit the estimation of parameters of interest from the acquired image in test at sea. 
In the next sections, we introduce an innovative method that uses a combination of optical 
imaging polarimetry and dark channel prior (DCP) methods which enhance contrast in images 
of objects in turbid environments. 

3. Optimized DCP-based method and experimental analysis 

The dark channel prior (DCP) method has been heavily utilized in applications involving haze 
removal (dehazing) because it can significantly improve the quality of images of outdoor 
scenes. Basically, DCP relies on the fact that the intensity value of at least one color channel 
within a local window is close to zero. Based on the DCP, dehazing is accomplished through 
four steps: atmospheric light estimation, transmission map estimation, transmission map 
refinement, and image reconstruction [39]. 

3.1 Brief survey of DCP method 

DCP is based on the following observation on outdoor haze-free images that in most of the 
non-sky patches at least one color (R, G, B) channel contains some pixels whose intensity are 
very low . To render observable this phenomenology, He and associates [7] introduced the 
concept of a dark channel for an arbitrary image J as: 

 
( ) , ,

( ) min min ( )dark c

y x c R G B
J x J y

∈Ω ∈

 =  
 

 (26) 

where cJ denotes a color channel of image and ( )xΩ is a local window centered on pixel x . 

For our purpose, it is appropriate to use DCP in the model described by Eq. (3) to restore the 
radiance ( )J x of the scene. In order to get ( )J x , A needs firstly to be estimated as follows: 

cA  is calculated on each channel by the average of the 0.1% I  intensities corresponding to 
the brightest pixels in darkI .Then, Eq. (3) is normalized to cA according 

 ( )( ) ( )
( ) 1

c c

c c

I x J x
t x t x

A A
= ⋅ + −  (27) 

Now, introducing the dark channel operator (Eq. (26)) in both sides of Eq. (27), we find: 
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( )

( )
( )

( ) ( ) ( )
, , , ,

min min min min 1
c c

c cy x c R G B y x c R G B

I y J y
t x t x

A A∈Ω ∈ ∈Ω ∈

     = + −            
 (28) 

Since ( )J x is the radiance of the scene without haze, the dark channel of ( )J x is close to 

zero. Hence, the multiplicative term in Eq. (28) can be ignored and the transmission ( )t x  has 

the from: 

 
( ) , ,

( )
( ) 1 min min

c

cy x c R G B

I y
t x

A∈Ω ∈

 
= −  

 
  (29) 

Once A and the transmission map have been calculated, the image ( )J x is restored by making 

use of Eq. (3). Explicitly, one obtains: 

 ( )
( )

( )
max ( ),

c c
c c

I x A
J x A

t x γ
−

= +  (30) 

where γ is a parameter (set to 0.1) introduced to avoid out-of-range pixel values in the 

restored image. The DCP is effective in recovering bright colors and unveiling low contrast 
objects. However, it was found that the method presents two drawbacks which can lead to 
false detection of objects. Firstly, computing time increases with image size (typically 175 
seconds for a 4K image). Secondly, the authors mention the appearance of block artifacts and 
halos due to the fact that the transmission is not always constant within a local window. To 
resolve this issue, they propose to refine the transmission map by a soft matting strategy [7]. 
Although satisfactory in many cases, a drawback of this additional treatment is an inherent 
increase of the amount of time it takes to run the algorithm which is unsuitable for real-time 
application. Additionally, this method is only effective for color images. In the next section, 
we propose and study an alternative algorithm which does not take into account colors to 
estimate the transmission map. 

3.2 Optimized DCP-based method in context 

Our method allows estimating the transmission map of the image by making use of a low-
pass filter. In Eq. (3), backscattering light is modeled as: 

 ( ) ( )( )1BI x A t x= −  (31) 

Thus, transmission ( )t x can be evaluated from ( )BI x by: 

 
( )

( ) 1 BI x
t x

A
= −  (32) 

It is often assumed that background light A  can be estimated by the maximum pixel intensity 
in the image. Several methods have been proposed to estimate A  in a more precise way. In 
[7], He and associates calculates A using the dark channel. Likewise, Kim and associates [40] 
propose to calculate A on the hazy area of the image. This region is obtained by subdividing 
the image in several regions and exploiting the fact that the variance of the pixel values is 
generally low in dense regions. However, such process is time consuming and unsuitable for 
our specific purpose. This paper assumes that A corresponds to the intensity of 0.1% times the 
brightest pixel of the image. Here, following the lead of Garcia and associates [16] we 
calculate the light illumination (which is a slowly-varying function in the image) from the 
input image I  by a low-pass Gaussian filter Gσ as: 
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 ( ) ( )fI x G I xσ= ⋅  (33) 

Where Gσ  is a Gaussian function of standard deviationσ . We further allow ( )BI x  to be 

given by: 

 ( ) ( )B f fI x I x σ= −  (34) 

Where fσ is the standard deviation of the filtered image ( )fI x .Finally, once A and the 

transmission map ( )t x  are known, we find that ( )J x  can be obtained by inversing Eq. (3): 

 
( )

( )
max( ( ), )

I x A
J x A

t x γ
−= +  (35) 

Figure 8 summarizes the steps of our algorithm for grayscale images. 

 

Fig. 8. Principle of our algorithm for grayscale images. 
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3.3 Validation tests for underwater grayscale images 

To explore the performance of our algorithm tests are conducted on unpolarized images. 
Figure 9(a) shows the target image in clear water. Figures 9 (b) and 9(c) show the 
corresponding images for two turbidity cases, i.e. 1

00.056 , 1.96s cmμ τ−= =  

and 1
00.084 , 2.94s cmμ τ−= = . 

 

Fig. 9. Examples of image with different turbidity conditions: (a) target image in clear water, 

(b) target image in water tank with turbidity condition defined by 
1

0
0.056 , 1.96

s
cmμ τ−= = , 

when skim milk is added, and (c) as in (b) with turbidity 
1

0
0.084 , 2.94

s
cmμ τ−= = . 

As is expected the intensity of the veil increases with water turbidity. In Fig. 10, we 
present a qualitative comparison for the improvement of quality of the images by making use 
of three methods: DCP, DCP with refinement of the transmission map by soft matting [7], 
and our approach. 

 

Fig. 10. The top row of each image block shows a comparison of the recovered images when 
the input image is Fig. 9 (a): (b) using DCP, (c) using DCP with refinement of transmission 
map by soft matting, and (d) using our approach. The bottom row shows a comparison of the 
recovered images when the input image is Fig. 9(c). 

When viewing the results shown in Fig. 10, we observe that the DCP and our approach 
significantly reduced the veil and improved the target visibility. To quantitatively evaluate 
this improvement for the images shown in Fig. 10, the underwater image contrast measure 
(UIconM) is used: 

 

( )
1 2

max, , min, , max, , min, ,

1 11 2 max, , min, , max, , min, ,

UIconM logAMEE I

1
log

k k
k l k l k l k l

l k k l k l k l k l

I I I I

k k I I I I= =

= =

 Θ Θ
⊗ ×   ⊕ ⊕ 


 (36) 
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where an image is divided into 1 2k k  blocks, and , ,⊗ Θ ⊗  are the PLIP operations [41]. As can 

be seen in Table 1, a better contrast is obtained with our approach. 

Table 1. UIconM values for images of Fig. 10. 

 Figure 10(a) Figure 10(b) Figure 10(c) Figure 10(d) 
UIconM 0.1431 0.2418 0.1637 0.2552 

 Figure 10(e) Figure 10(f) Figure 10(g) Figure 10(h) 
UIconM 0.1044 0.2175 0.2021 0.2385 

Our overall estimate of the transmission map allows us to avoid the effects of windowing 
as is evidenced for the conventional DCP method (visible in Fig. 10(b)) which requires a map 
refinement by another algorithm such as soft matting (Fig. 10(c)). To illustrate further this 
point, Fig. 11 shows a comparison of the transmission maps obtained by the conventional 
DCP method (Fig. 11(b)) and our approach (Fig. 11(c)). 

 

Fig. 11. (a) Input image. A comparison of transmission map between: (b) DCP and (c) our 
method. 

In addition to gain in quality, an added benefit is that it is less computationally expensive 
than the DCP model, which allows for fast detection and recognition of objects. Our approach 
based on global filtering is much faster than the local calculation of dark channel. The 
runtime results in Table 2 show that our algorithm is much faster than the DCP algorithm. 
Hence, the proposed method significantly reduces runtime by a factor of about 50 for a 4K 
image compared to DCP. 

Table 2. Comparison of algorithm runtime between conventional DCP method and our 
approach. 

Image (i) 1 2 3 4 5 

Image size [644 × 858] 
 

[1287 × 1716] [1930 × 2573] [2573 × 3431] [3216 × 4288] 

Runtime 
(s) 

DCP 

6.64 27.36 62.72 111.73 176.37 

Runtime 
(s) 

our method 

0.17 0.53 1.45 2.68 3.57 

The low computational burden is important for optical-imaging applications where we 
desire real-time, high-quality color images. For this purpose, we now extend our approach to 
deal with color image processing. This method has been tested in experiment to determine 
sensitivity to turbidity. The results are shown to compare favorably with DCP data. 

3.4 Validation tests for underwater color images 

In this section, we present the details for how we execute the proposed algorithm shown in 
Fig. 12. Building on the algorithm described in Fig. 8 image data models ( )cJ x  can be 

obtained for each individual color channel { }, ,c R G B∈  in the form: 
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 ( ) ( )
( )( )max ,

c c
c c

c

I x A
J x A

t x γ
−

= +  (37) 

These three images are then combined to give the improved color image output. Using this 
approach we can estimate for each channel c its own transmission map ( )ct x   

 
( )

( ) 1 Bc
c

c

I x
t x

A
= −  (38) 

where BcI  and cA  are respectively the estimated backscattering component and the overall 

light for channel c. This approach is adapted to underwater images since the attenuation 
coefficients , ,R G Bβ β β depend on wavelength. However, the three estimated transmission 

maps ( , ,R G Bt t t   ) introduce color distortion in the restored image. To avoid this problem, we 

consider for each pixel x the color for which the transmission is maximum, i.e. the less 
attenuated color. Thus, only a single transmission map is considered which can be represented 
by: 

 ( ) ( )
( ) max 1 min Bc

c x
c

I x
t x t x

A

 
= = −    

 
   (39) 

The backscattering component BcI for channel c is defined as: 

 ( ) ( )Bc fc fcI x I x σ= −  (40) 

where ( )fcI x  is obtained by a low-pass Gaussian filter of ( )cI x : 

 ( ) ( )fcI x G I xσ=  (41) 

and fcσ  is the standard deviation of the filtered image ( )fcI x : 
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Fig. 12. Principle of our algorithm for color images. 

Figure 13 shows the results of validation tests of our approach for color images. To 
compare our approach to the conventional DCP method and its extended version for color 
images, we consider data similar to those presented in Fig. 9. 
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Fig. 13. The top row of each block of images shows a comparison of the recovered images 
when the input image is Fig. 9(a): (b) using DCP, (c) using DCP with refinement of 
transmission map by soft matting, and (d) using our approach. The bottom row shows a 
comparison of the recovered images when the input image is Fig. 9(c). 

When viewing the example of Fig. 13, our method allows us to get a better contrast better 
than that obtained by the DCP and DCP with soft matting. 

3.5 Validation tests for underwater grayscale polarized images 

The examples in Fig. 10 and 13 show that our algorithm is able to significantly improve 
visibility of the images acquired in turbid optical media. In Fig. 14 we compare images of the 
target in turbid water acquired without polarization, with linear cross-polarization and linear 
cross-polarization using our processing method, respectively. 

 

Fig. 14. The top row of each block of images corresponds to turbidity condition 

(
1

0
0.056 , 1.96

s
cmμ τ−= = ): (a) target image acquired without polarization, (b) target image 

acquired with linear cross-polarization, and (c) target image acquired with linear. 

It can be seen from Fig. 14(b) and Fig. 14(e) that the veil is not completely filtered out and 
the contours of the target are not well defined by using linear cross-polarization. However, 
numerical improvement of these images (see Fig. 14(c) and Fig. 14(f)) by our method allows 
removing the remaining backscattering contribution and permits to significantly enhance the 
target contours. 
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4. Preliminary results from tests at sea 

We show consider experimentally determined images obtained by tests at sea (bay area of 
Brest, France) in collaboration with FORSSEA Robotics which designed an autonomous 
docking underwater technology for AUVs based on our proposed method. This system was 
the subject of a patent (N/Ref: BG/EBU/DD-FR 1763336: DISPOSITIF 
D’AMELIORATION D’IMAGE SOUS-MARINE). This imaging system contains a 
polarized light source and two cameras. One is equipped with a polarizer oriented 
perpendicularly to the source polarization in order to acquire the linear cross-polarization 
image. No polarization filter is attached to the other camera. The system is connected to our 
boat in real time (Fig. 15). 

 

Fig. 15. Underwater imaging system. 

The tests were performed in the port of Brest at night (http://www.google.fr/place/Brest). 
Preliminary results at 8 meters depth are shown in Fig. 16. Two targets are used to acquire 
test images. A swimmer adjusts the target-camera distance and stir the sand of the seabed to 
increase turbidity. 1379 [728× 1288] image size are acquired during this experiment. As can 
be seen from Fig. 16, a significant gain in quality is observed when the linear cross-
polarization arrangement is used (Fig. 16(b)). The acquired images are much less affected by 
the veil of backscattering compared to those obtained without polarization (Fig. 16(a)). The 
additional processing of polarized images to fully remove the remaining backscattering 
contribution has the effect of significantly enhancing the contours of the target images (Fig. 
16(c)). 
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Fig. 16. Results at 8 meters deep in the port of Brest at night. (a) Images acquired without 
polarization, (b) images acquired with linear perpendicular-polarization, and (c) images 
acquired with linear perpendicular-polarization and using our processing. 

4. Concluding remarks and directions for further work 

The novelty of this paper is to propose and study a relatively simple and computationally 
inexpensive yet effective algorithm for improving the quality of images in automating 
detection and recognition of objects under the surface of the water. The paper describes how 
to use a system of linear cross-polarization to filter out most of backscattering contribution 
during image acquisition and combining it to our numerical dehazing approach to these 
images. The latter assumes that backscattering is characterized by a low-frequency 
component which affects the image: this property is used as a prior (or knowledge) to 
estimate the transmission of the scene and restore the image from a simplified model of 
underwater image formation. The proposed method was tested in simulation and experiment 
over a range of conditions. It performs better than previously published dehazing algorithms 
in optical imaging applications. Based on its simplicity, consistency, and improvement in 
quality and algorithm runtime, this method is recommended for use in future real-time 
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automating image processing technique designed for detection and recognition of objects 
under the surface of the water. Future investigations of the effects of turbidity on the 
predictive method proposed here will explore approaches to circumvent current limitations in 
underwater imaging applications due to the blurring of the collected images. A complete 
description of the robustness of this approach for imaging in optically scattering media is 
under investigation. In this work, we focus on detecting relatively simple objects. Any future 
work will include more testing and validation with more complicated objects, e.g. underwater 
mines. Another continuing challenge in underwater optical imaging is the interpretation of the 
physical meaning of the Mueller matrix of an acquired image of a depolarizing object present 
in a turbid medium. 

Funding 

Institut Supérieur d’Electronique et du Numérique (ISEN-Brest), and also by Région 
Bretagne (ARED program). 

Acknowledgments 

The authors wish to thank Forssea Robotic Company that designed the polarimetric imaging 
system based on our proposed method, which was the subject of a patent (N/Ref: 
BG/EBU/DD-FR 1763336: DISPOSITIF D’AMELIORATION D’IMAGE SOUS- 
MARINE). 

References 

1. M. Legris, K. Lebart, F. Fohanno, and B. Zerr, “Les capteurs d’imagerie en robotique sous-marine : tendances 
actuelles et futures,” Trait. du Signal 20, 137–164 (2003). 

2. A. Morel, “Optical properties of pure water and pure sea water,” Opt. Asp. Oceanogr 1(1), 1–24 (1974). 
3. S. S. Sankpal and S. S. Deshpande, “A review on image enhancement and color correction techniques for 

underwater images,” Advances in Computational Sciences and Technology 9(1), 11–23 (2016). 
4. R. Schettini and S. Corchs, “Underwater Image Processing : State of the art of restoration and image 

enhancement methods,” EURASIP J. Adv. Signal Process. 2010(1), 14 (2010). 
5. J. S. Jaffe, “Computer modeling and the design of optimal underwater imaging systems,” IEEE J. Oceanic Eng. 

15(2), 101–111 (1990). 
6. Y. Y. Schechner and N. Karpel, “Recovery of underwater visibility and structure by polarization analysis,” IEEE 

J. Oceanic Eng. 30(3), 570–587 (2005). 
7. K. He, J. Sun, and X. Tang, “Single image haze removal using dark channel prior,” IEEE Trans. Pattern Anal. 

Mach. Intell. 33(12), 2341–2353 (2011). 
8. H. Lu, Y. Li, Y. Zhang, M. Chen, S. Serikawa, and H. Kim, “Underwater optical image processing: a 

comprehensive review,” Mob. Netw. Appl. 22(6), 1204–1211 (2017). 
9. B. L. McGlamery, “A computer model for underwater camera systems,” International Society for Optics and 

Photonics, In Ocean Optics VI. 208, 221–231 (1980). 
10. W. Hou, D. J. Gray, A. D. Weidemann, G. R. Fournier, and, J. L. Forand, “Automated underwater image 

restoration and retrieval of related optical properties,” IGARSS (2007). 
11. E. Trucco and A. T. Olmos-Antillon, “Self-tuning underwater image restoration,” IEEE J. Oceanic Eng. 31(2), 

511–519 (2006). 
12. B. Ouyang, F. R. Dalgleish, F. M. Caimi, A. K. Vuorenkoski, T. E. Giddings, and J. J. Shirron, “Image 

enhancement for underwater pulsed laser line scan imaging system,” International Society for Optics and 
Photonics 8372, 83720R (2012). 

13. T. Treibitz and Y. Y. Schechner, “Active polarization descattering,” IEEE Trans. Pattern Anal. Mach. Intell. 
31(3), 385–399 (2009). 

14. J. V. C. I. R. A. Galdran, D. Pardo, A. Picón, and A. Alvarez-gila, “Automatic red-channel underwater image 
restoration,” J. Vis. Commun. Image Represent. 26, 132–145 (2015). 

15. H. Lu, Y. Li, Y. Zhang, M. Chen, S. Serikawa, and H. Kim, “Underwater optical image Processing : a 
comprehensive review,” Mob. Netw. Appl. 22(6), 1204–1211 (2017). 

16. R. Garcia, T. Nicosevici, and X. Cufi, “On the way to solve lighting problems in underwater Imaging,” In 
Oceans'02 MTS/IEEE 2, 1018–1024 (2002). 

17. M. S. Hitam, “ Mixture contrast limited adaptive histogram equalization for underwater image enhancement,” 
Computer Applications Technology (ICCAT), 1–5 (2013). 

18. A. Shahrizan, A. Ghani, N. Ashidi, and M. Isa, “Underwater image quality enhancement through integrated color 
model with Rayleigh distribution,” Appl. Soft Comput. J 27, 219–230 (2015). 

19. C. Ancuti, C. O. Ancuti, T. Haber, and P. Bekaert, “Enhancing underwater images and videos by fusion,” IEEE 
Conference on Computer Vision and Pattern Recognition. 81–88 (2012). 

                                                                                               Vol. 27, No. 2 | 21 Jan 2019 | OPTICS EXPRESS 642 



20. S. Bazeille, I. Quidu, L. Jaulin, and J.-P. Malkasse, “Automatic underwater image pre-processing,” Cmm 06(1), 
xx (2006). 

21. I. Leonard, A. Alfalou, and C. Brosseau, “Sensitive test for sea mine identification based on polarization-aided 
image processing,” Opt. Express 21(24), 29283–29297 (2013). 

22. M. Dubreuil, P. Delrot, I. Leonard, A. Alfalou, C. Brosseau, and A. Dogariu, “Exploring underwater target 
detection by imaging polarimetry and correlation techniques,” Appl. Opt. 52(5), 997–1005 (2013). 

23. A. Kouzoubov, M. J. Brennan, and J. C. Thomas, “Treatment of polarization in laser remote sensing of ocean 
water,” Appl. Opt. 37(18), 3873–3885 (1998). 

24. K. J. Voss and E. S. Fry, “Measurement of the Mueller matrix for ocean water,” Appl. Opt. 23(23), 4427–4439 
(1984). 

25. G. D. Lewis, D. L. Jordan, and P. J. Roberts, “Backscattering target detection in a turbid medium by polarization 
discrimination,” Appl. Opt. 38(18), 3937–3944 (1999). 

26. L. Bartolini, L. De Dominicis, M. Ferri De Collibus, G. Fornetti, M. Francucci, M. Guarneri, E. Paglia, C. Poggi, 
and R. Ricci, “ Polarimetry as tool to improve phase measurement in an amplitude modulated laser for 
submarine archaeological sites inspection,” Proc. SPIE - Int. Soc. Opt. Eng 1 (7), 1–12 (2007). 

27. G. D. Gilbert and J. C. Pernicka, “Improvement of underwater visibility by reduction of backscatter with a 
circular polarization technique,” Appl. Opt. 6(4), 741–746 (1967). 

28. J. G. Walker, P. C. Chang, and K. I. Hopcraft, “Visibility depth improvement in active polarization imaging in 
scattering media,” Appl. Opt. 39(27), 4933–4941 (2000). 

29. J. S. Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging polarimetry for remote 
sensing applications,” Appl. Opt. 45(22), 5453–5469 (2006). 

30. J. D. van der Laan, D. A. Scrymgeour, S. A. Kemme, and E. L. Dereniak, “Detection range enhancement using 
circularly polarized light in scattering environments for infrared wavelengths,” Appl. Opt. 54(9), 2266–2274 
(2015). 

31. F. C. MacKintosh, J. X. Zhu, D. J. Pine, and D. A. Weitz, “Polarization memory of multiply scattered light,” 
Phys. Rev. B Condens. Matter 40(13), 9342–9345 (1989). 

32. D. Bicout, C. Brosseau, A. S. Martinez, and J. M. Schmitt, “Depolarization of multiply scattered waves by 
spherical diffusers: Influence of the size parameter,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. 
Topics 49(2), 1767–1770 (1994). 

33. G. W. Kattawar and M. J. Raković, “Virtues of mueller matrix imaging for underwater target detection,” Appl. 
Opt. 38(30), 6431–6438 (1999). 

34. L. Mullen, B. Cochenour, W. Rabinovich, R. Mahon, and J. Muth, “Backscatter suppression for underwater 
modulating retroreflector links using polarization discrimination,” Appl. Opt. 48(2), 328–337 (2009). 

35. S. Stocker, F. Foschum, P. Krauter, F. Bergmann, A. Hohmann, C. Scalfi Happ, and A. Kienle, “Broadband 
optical properties of milk,” Appl. Spectrosc. 71(5), 951–962 (2017). 

36. Y. Piederrière, F. Boulvert, J. Cariou, B. Le Jeune, Y. Guern, and G. Le Brun, “Backscattered speckle size as a 
function of polarization: influence of particle-size and- concentration,” Opt. Express 13(13), 5030–5039 (2005). 

37. http://www.sealife-cameras.com/fr/cam%C3%A9ras/dc1400-pro-vid%C3%A9o 
38. http://www.forssea-robotics.fr/html/produit.html 
39. S. Lee, S. Yun, J.-H. Nam, C. S. Won, and S.-W. Jung, “A review on dark channel prior based image dehazing 

algorithms,” EURASIP J. Image Video Process. 2016(1), 4 (2016). 
40. J. H. Kim, W. D. Jang, J. Y. Sim, and C. S. Kim, “Optimized contrast enhancement for real-time image and 

video dehazing,” J. Vis. Commun. Image Represent. 24(3), 410–425 (2013). 
41. K. Panetta, C. Gao, and S. Agaian, “Human-visual-system-inspired underwater image quality measures,” IEEE J. 

Oceanic Eng. 41(3), 541–551 (2016). 

 

                                                                                               Vol. 27, No. 2 | 21 Jan 2019 | OPTICS EXPRESS 643 




