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Linear stability and weakly nonlinear analysis of
the flow past rotating spheres

V. Citro':#, J. Tchoufag’, D. Fabre’, F. Giannetti' and P. Luchini'

]DIIN, Universitd degli Studi di Salerno, Via Giovanni Paolo II, 84084 Fisciano (SA), Italy

2Université de Toulouse; INPT, UPS; IMFT (Institut de Mécanique des Fluides de Toulouse); Allée
Camille Soula, F-31400 Toulouse, France

We study the flow past a sphere rotating in the transverse direction with respect to
the incoming uniform flow, and particularly consider the stability features of the wake
as a function of the Reynolds number Re and the sphere dimensionless rotation rate
§2. Direct numerical simulations and three-dimensional global stability analyses are
performed in the ranges 150 < Re < 300 and 0 < £2 < 1.2. We first describe the
base flow, computed as the steady solution of the Navier—Stokes equation, with special
attention to the structure of the recirculating region and to the lift force exerted on the
sphere. The stability analysis of this base flow shows the existence of two different
unstable modes, which occur in different regions of the Re/S2 parameter plane. Mode
I, which exists for weak rotations (£2 < 0.4), is similar to the unsteady mode existing
for a non-rotating sphere. Mode II, which exists for larger rotations (£2 > 0.7), is
characterized by a larger frequency. Both modes preserve the planar symmetry of the
base flow. We detail the structure of these eigenmodes, as well as their structural
sensitivity, using adjoint methods. Considering small rotations, we then compare the
numerical results with those obtained using weakly nonlinear approaches. We show
that the steady bifurcation occurring for Re > 212 for a non-rotating sphere is changed
into an imperfect bifurcation, unveiling the existence of two other base-flow solutions
which are always unstable.

Key words: bifurcation, instability, wakes

1. Introduction

Regions of separated flow past bluff bodies are common features of realistic
configurations existing in many natural phenomena or industrial applications. The
complex three-dimensional flow past a sphere is one of the basic flow configurations
which has received a great deal of attention from fluid dynamicists and has acted as
a benchmark for a wide range of more complicated practical situations.

The case of a fixed sphere has been extensively investigated in the past, both
numerically and experimentally. Natarajan & Acrivos (1993) examined the linear insta-
bility of the steady axisymmetric base flow to three-dimensional modal perturbations.
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They reported the occurrence of a supercritical bifurcation, at a critical Reynolds
number of Re ~ 212 (SS = steady state), characterized by unitary azimuthal
wavenumber. The resulting branch with a steady asymmetric wake structure, as
observed also in the experimental investigations of Magarvey & Bishop (1965)
and Nakamura (1976), is stable up to a Reynolds number of Re"S = 277.5
(VS = vortex shedding) (Natarajan & Acrivos 1993). Johnson & Patel (1999)
subsequently performed a comprehensive experimental and numerical study, finding
good agreement with the previous data. Tomboulides & Orszag (2000) performed
accurate three-dimensional numerical simulations, based on a code with a spectral
discretization, confirming the occurrence of the two bifurcations and the planar
symmetry of the single-frequency periodic vortex shedding. Recently, Fabre, Auguste
& Magnaudet (2008) analysed the nature of the bifurcation and identified it as a
pitchfork of revolution bifurcation with O(2) symmetry, following the nomenclature
of Golubitsky & Stewart (2012). Namely, because of azimuthal symmetry, this
bifurcation gives rise to a continuous family of asymmetric solutions with symmetry
planes taking all possible orientations, instead of only two solutions like an ordinary
pitchfork bifurcation. Eventually, Meliga, Chomaz & Sipp (2009b) solved direct and
adjoint eigenproblems to study the receptivity and the structural sensitivity for the
first bifurcation at the critical Reynolds number of Re’ = 212.6. They found that
the core of the instability (wavemaker) is located in the recirculation bubble past the
sphere.

The flow past a sphere rotating around a transverse axis has received less attention.
Kurose & Komori (1999) studied the drag and lift forces for 1 < Re <500 by means of
direct numerical simulations (DNS). Niazmand & Renksizbukut (2003) also analysed
the spatial structure of the flow using DNS in the presence of both rotation and surface
blowing. They reported that the rotation can lead to the onset of vortex shedding at
a lower Reynolds number compared with the non-rotating case. Giacobello, Ooi &
Balachandar (2009) and Kim (2009) investigated wake transitions past a transversely
rotating sphere at three different Reynolds numbers, Re = 100, 250, 300. At Re =300,
they observed two different kinds of coherent vortical structures and suggested the
existence of two different unsteady mechanisms because the wakes showed a distinctly
different topology and a different process of vortex shedding. This situation displays
some similarity with the case of a rotating 2D cylinder, where strong rotation also
leads to the onset of a new shedding mode which is distinct from the classical one
existing in the absence of rotation (Mittal & Kumar 2003; Pralits, Brandt & Giannetti
2010). Recently, Poon et al. (2014) simulated this flow for higher Reynolds numbers
(500 < Re < 1000), revealing a new secondary regime called ‘shear-layer’ stable foci.
They also discussed in detail the force coefficients and the Strouhal number as a
function of the dimensionless rotation rate §2. It should be noted that the cases of
a sphere rotating around an axis oriented obliquely with respect to the flow (Poon
et al. 2010) or aligned with the flow (Pier 2013) have also been examined, yielding
different but rich behaviours.

Aside from the case of a sphere rotating at an imposed rate considered in the
present paper, a related and equally interesting situation is the case of a sphere free
to rotate (either in free fall or held by a pivot and free to rotate around it). This case
was considered in Fabre, Tchoufag & Magnaudet (2012) using a weakly nonlinear
expansion valid in the limit of small rotations. The study showed that in this situation
the flow bifurcates to a freely rotating steady solution above a critical value of the
Reynolds number Re’® = 206 which differs from the value Re> =212 for a non-
rotating sphere. More recently, Fabre et al. (2016) reconsidered the case of a sphere



freely rotating around a pivot with both 3D simulations and an alternative weakly
nonlinear expansion; they clarified the range of existence and the features of this freely
rotating solution.

The first objective of the present paper is to reconsider and clarify the stability
properties of the wake past a sphere rotating at an imposed rate using a global
stability approach. Such approaches are known to be the right tool to map
the thresholds corresponding to the onset of unsteadiness, and, combined with
adjoint-based structural sensitivity approaches, they also provide useful hints to
identify the instability mechanisms responsible for unsteadiness (Luchini & Bottaro
2014). However, performing a global stability analysis of a 3D open flow remains
costly in terms of memory requirements and computational time, and has thus
became possible only very recently (Bagheri et al. 2009b; Schlatter, Bagheri &
Henningson 2011; Tammisola et al. 2014; Citro et al. 2015). The case of a sphere
thus constitutes a challenging benchmark for such methods, and the rotating case
allows the quantification of the added value of a 3D global approach compared with
previous studies which all assumed the flow to be close to the axisymmetric state
(Natarajan & Acrivos 1993; Meliga et al. 2009b). The second objective of this paper
is to clarify the nature of the transition occurring in the vicinity of the Re%S threshold
in the case of a weak rotation, using both weakly nonlinear approaches valid in this
range and results from the global analysis.

2. Problem formulation

We consider the case of a transversely rotating sphere immersed in a parallel
uniform stream of velocity U,. The spatial and temporal domains are respectively
2 c R? and t C [0, 7]. Figure | shows the coordinate system and the geometry
adopted for the present work. The Cartesian system passes through the centre of the
sphere, the x-axis has been chosen parallel to the incoming uniform velocity and the
rotation rate vector @ is aligned with the z-axis. The flow is described by the usual
time-dependent Navier—Stokes equations:

V -u=0, (2.]0)
du

E+u-Vu:—VP+ vV, (2.1b)

where P € R is the reduced pressure scalar field, u € R? is the velocity vector with
components u = (u, v, w) and v is the kinematic viscosity.
This system of differential equations is completed by boundary conditions at the
surface of the sphere 9%, and a matching condition at infinity, namely
Ulr—Rope =@ X T =@€3 XT,  ON 3Dy (2.2a)
u—>U,=Upe,, as |r|— occ. (2.2b)
In practice, the latter condition is applied at the inlet surface 3%, and on the lateral

sides 3%, of the computational domain, while a no-traction condition is applied at
the outlet surface, namely

n-(Re'Vu —pl)|—,,.. =0, on 3Dp,. 2.3)

The hydrodynamic loads can be obtained by integrating the stress tensor over the
sphere surface. In particular, the aerodynamic lift coefficient reads

C,=——, with L= / [—pny + w(Vu + vu'). n,]ds, 2.4)
Do
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FIGURE 1. (Colour online) Perspective view of the computational domain and the frame
of reference. This configuration is characterized by a uniform incoming flow U, and
by the sphere angular velocity @ which is directed along the z-axis. The computational
domain (dashed lines) extends frTom Xiwe 10 Xogters FTOM Ygoum 10 Yy and is symmetric in
the spanwise direction with a width of z,.

where D and A = =D?/4 are the diameter and the cross-sectional area of the sphere
respectively and n is the normal vector to the surface of the sphere, with Cartesian
components n,, n, and ..

The dynamics, govemmed by the incompressible Navier—Stokes equations (2.1),
depends on the Reynolds number Re = U,D/v and the dimensioniess rolation rate
2 = wDf2Uy. The pressure is non-dimersionalized with respect to the dynamic
pressure pU2 and the time with respect to the characteristic time scale U/D.

3. Linear stability and sensitivity

We investigate the stability characteristics of the flow past a rotating sphere. The
starting point for the global hydrodynamical stability analysis is the assumption that
the total flow field [u, P] only displays small-amplitude devialion:}ln’, P] with respect

to an equilibrium Sate, i.e. a fixed poini. called the base flow [U”, P’]. Namely,
n(x, 3.2, t) = U(x,y, 2) + et'(x.y,2, 1) + O(e?), (3.1a)
P,y 2, 8)=P(x,y, )+ eP(x,y,2.1) + O(e), (3.15)

where € < 1. The long-term -stability features of the flow are then investigated using
the decomposition into the classical normal mode form

u'(x,y, 2, 1) = @t{(x, y, e, (3.2a)
P(x,y.z, 1) = P(x, y, )™, (3.2b)



i.e. the perturbation is characterized by the complex spatial fields [z, Pl(x,y,z) and by
the inherent growth rate o and frequency A. By introducing (3.1) and (3.2) into the
Navier—Stokes system (2.1) and neglecting high-order terms, we obtain two different
problems: (i) the base-flow problem, which is governed by the time-independent
version of (2.1) with boundary conditions (2.2), and (ii) the global stability problem,
which reads

V . ﬁ :O, (3.30)
1
(o +ia+U,-Va+a-VU,=—VP+ R_v2ﬁ. (3.3b)
e

This system (3.3), along with the following boundary conditions:

|, =0 (on the sphere surface d%y); (3.4a)
=0 (on the lateral sides 0%, and at the inlet surface d%;); (3.4b)
n-(Re 'Via —pl)|—,,., =0 (on the outlet surface dZp,); (3.4¢)

leads to a generalized eigenvalue problem; when the growth rate o < 0, the flow is
linearly stable, while when o > 0, the perturbation grows exponentially in time.

In order to locate the core of the instability and to describe the features of the
inherent flow, we rely on the concept of a wavemaker used in stability analysis
(Giannetti & Luchini 2007). Following the recent review by Luchini & Bottaro
(2014), we use a linear adjoint-based approach to determine this region. The resulting
sensitivity tensor is given by

At ~
ux,y,jux,yz
5 T( ¥, U(x, y, 2) ’
/ﬁ(x,y,z)-ﬁ(x,y,z)dV
7

(3.5)

¥

where the adjoint fields (&', p*) are obtained using the generalized Lagrange identity

(Ince 1926)
v.a' =0, (3.6a)

lvza*. (3.6b)

—(oc+iia' + U, -Va' — VU, -i" =—Vp' — =

Here, we use the spectral norm to build the spatial sensitivity maps. The boundary
conditions associated with the direct eigenproblem are given by (3.4). The conditions
for the adjoint problem, instead, are chosen to eliminate the boundary terms after the
application of the Lagrange identity (Giannetti & Luchini 2007).

4. Numerical methods

The results presented in this work are found using two different codes: (i) a
combined finite-difference second-order immersed-boundary multigrid (IBM) code
and (ii) the spectral finite-element software Nek5000 (Tufo & Fischer 1999).

The finite-difference (IBM) code is based on a classical second-order conservative
discretization of the Navier—Stokes equations on a staggered non-uniform Cartesian
mesh. In order to achieve higher accuracy and save computational time, a grid
clustering near the sphere is used. The boundary conditions on the sphere are



imposed through a second-order-accurate immersed-boundary scheme, in which the
stencil of the finite-difference operators near the body is modified using an appropriate
interpolation—extrapolation procedure. More precisely, the interpolation is performed
using the point closest to the body surface (which can be either an internal or an
external point) and the following point on the exterior of the sphere. The interpolation
is performed in either the streamwise or the transverse direction according to which
one is closest to the local normal. Linear or quadratic reconstruction was used and
tested, leading in both cases to a global second-order accuracy. The discretized
three-dimensional problem is then solved by using an in-house linear multigrid
solver coupled with a Newton global linearization (Trottenberg, Oosterlee & Schiiller
2001). In order to obtain good convergence in the presence of highly stretched
grids, an alternating collective line Gauss—Seidel (CLGS) smoother was used. This
relaxation procedure considers a line of computational cells as a main block of a
Gauss—Seidel-type iteration, which leads to a banded six-diagonal system of linear
equations to be solved at each subiteration of the multigrid algorithm. This procedure
is the line version of the more classical block Vanka smoother (Vanka 1986) and
has been used with a classical V cycle (Trottenberg et al. 2001). In our version,
the matrix entries are calculated by a local linearization of the governing equations.
More details on the characteristics of this kind of smoother can be found in Feldman
& Gelfgat (2009). The discretization of the convective terms can be problematic
since the classical second-order centred discretization is not h-elliptic and can lead
to a severe degradation and failure of the iterative procedure. In our code, the
convective terms are discretized with a standard first-order upwind discretization,
while second-order accuracy is recovered through a standard deferred correction
procedure based on classical centred discretization implemented at the smoother
level. The immersed-boundary technique with a quadratic interpolation is applied
only on the finest level, while, for simplicity, at coarser levels, a stair-step geometry
is considered. This procedure does not alter the overall convergence speed of the
multigrid algorithm and considerably simplifies the coding and the computational
time. Textbook multigrid efficiency (Trottenberg et al. 2001) is achieved far from the
bifurcation thresholds. As for all iterative procedures close to a transition threshold,
a severe degradation of the performance is obtained. This is due to the existence
of a limited number of eigenvalues of the iteration matrix moving and crossing the
imaginary line: in this situation the whole iterative procedure diverges. In order to
avoid this problem, we used a stabilizing procedure able to significantly accelerate
the convergence of our multigrid. In fact, one of the original ingredients of our code
is the ability to perform the base-flow and stability computations simultaneously
(Luchini, Giannetti & Pralits 2007). At each iteration, the approximate knowledge
of the leading eigenvalues is used to accelerate the convergence of the base flow.
While this is not particularly important when we are far from the critical Reynolds
number, this strategy becomes essential close to the critical point and in the unstable
region, where the convergence of classical multigrid algorithms is slowed down by
the presence of slowly decaying or unstable modes. In such conditions, classical
smoothers (such as Jacobi, Gauss—Seidel or Vanka type) are not able to suppress the
high-frequency content of the error, leading in many cases to divergence. In order to
track the bifurcation, in these situations, complex algorithms have to be implemented.
An example is offered by the RPM method, in which the computational space is
divided into the direct sum of a stable and an unstable subspace. In the stable
subspace, the algorithm uses classical smoothers, while a Newton iteration is adopted
in the small unstable subspace. This algorithm is, however, very complex to code up



and difficult to insert in an already existing code. For the present investigation, in
the attempt to accelerate the convergence of the base flow and perform the stability
analysis close to the critical point, we have adopted a different approach in which
a subspace iteration method based on an approximate inverse (obtained through the
multigrid iteration) of the linearized Navier—Stokes operator is adopted to extract and
filter out the slow-converging components of the solution (leading modes). Details of
the algorithm can be found in Luchini et al. (2007).

The second code used for the present analysis is the spectral element code Nek5000.
In this software, the velocity vector field and the pressure scalar field are discretized
onto Py—Py_, spectral elements using Lagrange orthogonal polynomials in the
Gauss—Lobatto-Legendre (GLL) nodes. The temporal discretization for the momentum
equation is achieved by using a semi-implicit splitting scheme. The resulting algorithm
solves the convective, viscous and pressure problems. An overlapping Schwarz method
(Fischer 1997) is adopted to solve the latter two elliptic problems.

The immersed-boundary multigrid code is particularly useful to track the neutral
curves and the imperfect bifurcation. For stability computations (where just a few
leading modes are needed), this approach is considerably faster than the classical
time-stepper approach (Bagheri et al. 2009a) used with Nek5000, in which the base
flow is first computed and then an Arnoldi algorithm implemented in the ParPACK
package is used in conjunction with the time-resolved solution of the linearized
Navier—Stokes equations. For this reason, most of the parametric computations have
been performed with the multigrid code. Nek5000, on the other hand, uses a spectral
element method (SEM) and can achieve higher spatial accuracy. Therefore, this
code has been used to cross-validate the results and their accuracy. Moreover,
it was used to perform time-resolved computations and verify the validity of
the linear stability results. We discuss in §4.1 the details of the methodology
adopted to compute the base flows in supercritical conditions with Nek5000. Due
to the high degree of optimization and parallel scalability, this code is really
efficient when an accurate time-resolved solution of the unsteady Navier—Stokes
equations is needed. Taking advantage of these characteristics, the two codes have
been used in a complementary way to cross-validate the results and reduce the
computational effort.

4.1. Computation of base flows near the bifurcations

Within a time-stepper approach, the 3D steady base-flow solution can be obtained
by simply integrating the time-dependent Navier—Stokes equations (2.1) over a long
time interval when the flow is in subcritical conditions, i.e. before the occurrence
of a bifurcation. However, if the Reynolds number exceeds the instability threshold,
we cannot use a simple time integration to compute the unstable steady base flow
that is required for the global stability analysis. It is, therefore, necessary to use a
stabilizing numerical procedure able to retrieve the unstable reference state. In the
case of low-dimensional systems, on one hand, there exist several continuation and
bifurcation packages like AUTO (Doedel 1986) or CONTENT (Kuznetsov & Levitin
1996) based on direct solvers for the linear algebraic systems and eigenvalue problems
involved in the computations. On the other hand, since the discretization of a full
three-dimensional problem often leads to a very large discrete system, the extension
to high-dimensional problems is not straightforward.

It should be noted that computation of the steady solution using a Newton algorithm,
which is the most commonly used method in global stability studies of 2D flows,



Mesh  Xinter  Xowter  Ydown Yip Zat Nelem. N, pol.ord.

m —10 30 —10 10 10 11240 10
Nek5000 m, —12 35 —12 12 12 13490 10
. =12 % =12 12 12 13490 13
mg —15 50 —15 15 15 18 160 13
N, x Ny x N,
M' —10 30 —10 10 10 192x 128 x 128
IBM M —12 35 —12 12 12 384 x 256 x 256

M3 —12 35 —12 12 12 512 x 384 x 384

TABLE 1. The different meshes used to validate our numerical simulations. Nek5000:
N 1is the total number of spectral elements inside the computational domain; N, ..
is the polynomial order adopted for the spatial discretization. IBM code: N, N,, N, are
respectively the total number of points in the x, y and z directions.

is not suitable here, as it necessitates a matrix inversion which would require too
much memory and time in a 3D case. An alternative, however, would be to adopt a
Krylov-subspace method like the classical GMRES (Saad 2003). Other approaches can
be found in the literature. In Akervik et al. (2006), for instance, the authors managed
to reach the steady state by damping the unstable frequencies using a dissipative
relaxation term proportional to the high-frequency content of the velocity fluctuation
field. Shroff & Keller (1993), instead, were able to compute unstable states by using
a projection onto the small unstable subspace coupled with a Newton procedure.

As discussed in the previous section, the base flow is obtained in two different
ways. For the Cartesian multigrid method, details have been discussed above. For
the Nek5000 code, we adopt a novel efficient algorithm (Citro et al. 2016), inspired
by the Krylov-subspace methods, to compute unstable steady states of the inherent
dynamical system. This method, like GMRES, is based on the minimization of the
residual norm at each integration step. It allows us to obtain the unstable steady field
by correcting the new iteration of the numerical procedure using a linear combination
of previous fields. The key steps of this procedure can be found in appendix A of
Citro et al. (2015). However, we tested our algorithm in computing the flow past
a circular cylinder. In this case, the maximum difference between the base flow
computedlo using our algorithm and the classical Newton—Raphson method is less
than 107°.

4.2. Convergence analysis and validation

The computational domain is chosen to be a large rectangular box surrounding the
bluff body (see figure 1). In our case, it extends from Xinser tO Xowter, from Yaown to yup
and is symmetric in the z direction with a width of z,.

Table 1 shows the details of the several meshes used for the analysis (for both
the IBM and the SEM code). The adopted grids present a clustering of points near
the sphere surface and are symmetrically located with respect to the plane (x—y). For
the Cartesian IBM code, Roberts stretching transformations (Tannehill, Anderson &
Pletcher 1997, pp. 336-337) are used to smoothly cluster the points close to the sphere
centre. A similar approach has been successfully used in Giannetti & Luchini (2007).

In the case of Nek5000, the domain is discretized into hexahedral elements, which
are deformed by isoparametric mappings. Within each element, the unknown is
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FIGURE 2. Truncation error (L, norm) as a function of the number of points for the
finite-difference second-order immersed-boundary multigrid code. The solution on a grid
of 1024 x 512 x 512 is assumed as the reference solution. In particular, we report here
the number of points in the x direction, N,; the other two directions are characterized by
N, = N, = 0.5N,. The dashed line represents the theoretical second-order scaling of the
error.

represented in local Cartesian coordinates by tensor-product Lagrange polynomials of
degree N,oiora. (and Ny orq. — 2 for the pressure field). The upper part of table 1 shows
the characteristics of these meshes. The grids adopted in the immersed-boundary
calculations are also reported in the same table. In order to validate our numerical
methods, we performed several tests to study the effects of the resolution and of the
size of the computational domain. A grid convergence analysis was performed for
the new immersed-boundary code. Figure 2 depicts the evolution of the error as a
function of the number of points adopted in the discretization (in the x direction). We
found perfect agreement between the second-order theoretical scaling of the error and
the evolution of the error computed by our multigrid code. Furthermore, a validation
analysis has been carried out in order to select the best grid in terms of speed and
accuracy. Table 2 shows the comparison between the results obtained by the present
numerical approaches and the dedicated literature. We found small changes in the lift
coefficient C; and in the critical Reynolds number ReSS for the first bifurcation. Thus,
for efficiency reasons, we chose the meshes m, and M? to compute all of the results
documented in the present work.

5. Results
5.1. Base flow

Figure 3 displays the typical shape of the base flow through contours of the pressure
field and streamlines in the lateral (x—y) mid-plane (z=0). First of all, we review the
case without rotation (£2 =0). For Re < Re® =212 (figure 3a), the base flow remains
axisymmetric, and the structure is the same in every transverse plane. This flow state
consists of a toroidal recirculation region with closed streamlines. In topologic terms,
the flow along the sphere is characterized by two detachment points in the symmetry
plane, plus a central reattachment point, while the flow in the wake is characterized
by two stable foci and one saddle point.



Reference Method Mesh C; ReSS
(Re =250, 2 =0)

Johnson & Patel (1999) FD — 0.062 —
Constantinescu & Squires (2000) FD — 0.0617 —
Kim & Choi (2002) FV — 0.060 —
Giacobello et al. (2009) SM — 0.061 —
Present work SEM (Nek5000) my 0.0616 2127
Present work SEM (Nek5000) m, 0.0618 212.4
Present work SEM (Nek5000) m; 0.0618 2124
Present work SEM (Nek5000) my 0.0618 2124
Present work FD (IBM) M! 0.0613 212:7
Present work FD (IBM) M? 0.0618 2124
Present work FD (IBM) M 0.0618 2124
Natarajan & Acrivos (1993) FEM — — 210
Meliga et al. (2009b) FEM — —_ 212.6

TABLE 2. Validation of the present numerical approaches. In particular, we compare the
lift coefficient C; and the critical Reynolds number for the first bifurcation ReSS with
values reported in the literature. (FD = finite-difference method, SEM = spectral element
method, FV = finite-volume method, FEM = finite-element method).

Above this threshold, intrinsic wake dynamics leads to a spontaneous symmetry
breaking, the resulting state displaying only a planar symmetry with respect to an
arbitrary transverse plane (which is taken here as the (x—y) plane for consistency
with the results in the rotating case). When observed in this symmetry plane,
the recirculation region is asymmetric, one of the vortical structures becoming
stronger than the other one (see figure 3b for Re = 275). One can also note that
the streamlines in the symmetry plane are no longer closed, but are spiralling towards
a converging focus in the upper half and outwards from a diverging focus in the
lower half. As described in detail by Johnson & Patel (1999), this feature indicates
a three-dimensional flow along the toroidal structure, with streamlines diverging in
the third direction from the upper focus and converging towards the lower one. It
should be noted also that the central reattachment point is shifted upwards, while the
locations of the two detachment points are weakly modified. Finally, the isocontours
indicate that pressure is larger near the upper part of the sphere surface, which results
in a negative lift.

In the presence of rotation, the axisymmetry of the flow is always broken and
replaced by a planar symmetry with respect to the transverse plane (x—y) perpendicular
to the rotation z-axis. Figure 3(c) displays the base flow for a weak rotation (£2=0.01)
and low Reynolds number Re =200. Compared with the non-rotating case, one can
observe that the location of the detachment point is shifted downstream in the
lower half and upstream in the upper half. As a consequence, the recirculation
region becomes asymmetric, the lower structure becoming stronger than the upper
one. Overall, the resulting wake is very similar to the one resulting from the
bifurcation at ReSS in the non-rotating case, with non-closed streamlines indicating
divergence/convergence of the flow in the perpendicular direction. The effect of
rotation on the pressure is also to decrease the pressure on the lower side of the
sphere and to increase it on the upper side. This is in accordance with the classical
explanation of the Magnus effect, and results in a net negative lift force. Figure 3(d)



(b)

-0280 -0077 0.130 0330 0530 -0.280 -0085 0,120 0320 0526

-0.29 0 0.21 0.53 -0310 -0.100 0110 0320 0528

[
) ==

-066 -040 -008 022 051 -066 -040 -007 023 053
B [

FIGURE 3. (Colour online) Flow past a sphere immersed in a uniform stream: contour plot
of the pressure fields for several flow conditions. The white lines represent the streamlines
of the flow. The fixed sphere case (£2 =0.0) is depicted using two cases: (a) axisymmetric
state at Re=200 and (b) asymmetric flow at Re =275 (onset of mode I without rotation).
Furthermore, we select four cases to show the spatial structure of the flow for mode I:
(c) 2 =0.01, Re =200, (d) 2 =0.01, Re =270, (¢) 2=0.2, Re=200, (f) 2 =02,
Re =240; and two cases for mode II: (g) 2 =0.9, Re=200, (h) 2=0.9, Re=270.

displays the base flow for the same weak rotation rate (2 =0.01) and higher Reynolds
number Re =270. In this case the recirculation region becomes strongly asymmetric.
We can interpret this as a superposition of the two previous effects: the Magnus
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FIGURE 4. (Colour online) The base-flow lift C; as a function of the Reynolds number
Re for various values of £2.

effect due to rotation and the intrinsic wake mechanism responsible for the symmetry
breaking in the absence of rotation reinforcing each other.

As the rotation rate is further increased, the regions with spiralling streamlines in
the upper and lower parts of the wake disappear, as already found by Giacobello
et al. (2009). This is exemplified by figure 3(e), which displays the base flow for a
moderate rotation (2 =0.2) and Reynolds number Re =200. It should be noted that
the topology of the flow becomes different and simpler compared with the previous
case. Considering the flow along the sphere, there is now a single detachment point
located on the upper half of the sphere instead of a pair of detachment points and
a central reattachment point. Considering the flow in the wake, the two foci and
the saddle point have also vanished. Consequently, the recirculation becomes fully
open. As can be seen in 3(f) for Re = 240, increasing the Reynolds number does
not strongly modify the structure of the flow. In both of these plots we still observe
that the pressure is decreased on the lower side of the sphere and increased on the
upper side. Again, in accordance with the classical explanation of the Magnus effect,
this results in a net negative lift force. It should be noted that although the plots
only depict the flow in the symmetry plane, the streamlines give an indication of
the three-dimensionality of the flow. Namely, in the vicinity of the upper detachment
point, the tightening of the streamlines indicates divergence in the perpendicular
direction, while in the lower part of the wake, the spreading of the streamlines
indicates convergence in the perpendicular direction.

Figures 3(g) and 3(h) display the case of a larger rotation rate, 2 = 0.9, with
Re =200 and Re =270 respectively. We can note that the open recirculation region
originating from the detachment point on the upper half of the sphere becomes more
open and more intense with respect to the previous cases. The base-flow results
obtained for subcritical values of the parameters are in perfect agreement with the
simulations by Giacobello et al. (2009). In fact, the streamline patterns presented
here (in subcritical conditions) are very similar to the ones reported in figure 8 of
Giacobello et al. (2009).

Figure 4 details the lift force exerted upon the sphere as a function of the Reynolds
number, for several values of the rotation rate. Without rotation (§2 =0), one recovers
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FIGURE 5. (Colour online) (a) Neutral stability curves for the three-dimensional flow
past a transversely rotating sphere: (¥) mode I; (O) mode II. We report also DNS results
provided by Giacobello et al. (2009), Kim (2009) and Poon et al. (2010): (O) stable
simulations; (A) unstable DNS (they reported the existence of a saturated limit cycle).
(b) Strouhal numbers for mode I and II.

the picture already described, namely zero lift below Re® =212 and a bifurcation
towards a non-zero lift situation above this value. For §2 > 0, the lift is always negative
and of larger magnitude than in the non-rotating case. This is consistent with the fact
that the intrinsic wake dynamics and the Magnus effect reinforce each other to build
the lift force, as explained previously.

Finally, in this figure, the curves corresponding to the lowest values of £2 approach
the curves of the non-rotating case, except in the vicinity of Re* where a continuous
transition is observed. This feature is linked to the fact that the pitchfork bifurcation
existing in the absence of rotation actually becomes an imperfect bifurcation in the
case of slow rotation. Accordingly, in the vicinity of the threshold, one expects to
encounter other equilibrium solutions lying on a separate branch disconnected from the
one considered here. Such solutions were actually effectively found, but they turned
out to always be unstable. Hence, we prefer not to document these additional solutions
in the present section. The imperfect bifurcation for small rotation will be reconsidered
in detail in §6.

5.2. Global stability

We now detail the results of the global linear stability analysis outlined in §5.1. The
main outcome of this study is depicted in figure 5(a), which displays the thresholds
for linear instability in the Re/S2 parameter plane. We observe the existence of two
distinct regions. The first region exists for moderate values of the rotation (£2 < 0.4).
This mode, called ‘mode I’ in the following, is one that exists in the non-rotating case
(£2 =0). As can be observed, small rotation has a destabilizing effect: the threshold
Reynolds number decreases from 272 in the non-rotating case to Re™@! =235 for
£2 =0.2. However, increasing the rotation again has the opposite effect: in the range



£2=[0.2, 0.4], the value of the critical Reynolds number becomes larger than 300. We
suggest that these trends are related to the transition in the wake flow topology. In
particular, when 0.0 < §2 < 0.2, the recirculation bubble is asymmetric and one of the
recirculation regions grows; this modification to the base-flow structure destabilizes the
flow past rotating spheres for a mild rotation. On the other hand, when £2 > 0.2, the
recirculation bubble disappears and the flow, as a consequence, becomes more stable
as the rotation rate increases.

The second region of instability occurs for larger rotations, namely £2 > 0.7 in the
range of Re considered, and is related to the existence of a second unstable branch.
For this second mode, denoted ‘mode II’, the effect of rotation is destabilizing as the
threshold Reynolds number decreases as £2 is further increased.

In figure 5(a), we have also displayed with symbols the DNS results of Kim (2009)
and Poon et al. (2014) for Re =250 and 300. As can be seen, these results are in
excellent agreement with ours, since all of their unsteady simulations fall inside the
regions we found to be linearly unstable, while all of their steady simulations fall in
the stable one.

Figure 5(b) shows the effect of £2 on the Strouhal number associated with the
eigenfrequency of the unstable global modes. We note that St displays a relatively
linear dependence on £2 for mode I, while it is almost constant for mode II. Thus,
we can conclude that, for mode II, the rotation rate §2 weakly affects the Strouhal
number which is approximatively 0.4. Our results agree well with those reported by
Giacobello et al. (2009), Kim (2009) and Poon et al. (2010) using DNS.

Figure 6(a—f) shows the spatial structure of the velocity field of direct mode I.
This global mode is dominated by axially extended streamwise velocity disturbances
located downstream of the sphere. It should be noted that the ¥ and v components are
symmetric with respect to the (x, y) plane while the w component is antisymmetric
(figure 6a,.e). This means that the unsteady mode, which emerges from this
instability, respects the planar (x—y) symmetry of the underlying base flow. This
fact is consistent with classical results for a non-rotating sphere. Figure 6(g—i) depicts
the spatial distribution of the adjoint field. It should be noted that the latter is
strongly localized near the surface of the sphere, more specifically in the upper part
of the sphere where the shear is largest due to opposite rotation. We underline here
that the adjoint field can be considered as a Green’s function for the receptivity of
the corresponding global mode (Giannetti & Luchini 2007). In fact, the amplitude
of the instability mode is provided by the scalar product of the adjoint with any
forcing function and/or initial condition. Mode I can therefore be most efficiently
triggered in the near wake of the bluff body. In order to characterize the instability
mechanism, we also performed a structural sensitivity analysis. The latter region,
depicted in figure 6([), is localized in a near-wake region of the sphere, across the
surface separating the outer flow from the wake region. From these observations we
may infer that (i) the region responsible for this instability (wavemaker) is localized
in the recirculation region behind the sphere and (ii) the instability is mostly receptive
to perturbations near the surface of the sphere.

Figure 7 shows the spatial distribution of the direct and adjoint mode II and
the resulting structural sensitivity. The structure of this direct global mode is again
characterized by spatial oscillations downstream of the sphere. We notice that mode
IT presents faster spatial oscillations than mode I but presents a similar spatial shape.
This means that like mode I, mode II preserves the planar symmetry of the base flow.
As a result, the oscillating flow resulting from these unstable modes is not expected
to display oscillations with respect to the mean plane. Our results agree well with
the DNS results provided by Kim (2009).
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FIGURE 6. (Colour online) Mode I (see figure 5). (a.c,e) Isosurfaces of direct streamwise
i, transverse © and spanwise w velocity field. (b.d) Contour plots of the inherent
component in the symmetry plane and (f) in the plane z=0.25. The adjoint mode I is
also depicted in (g.) and (i) by using isosurfaces. (j) The resulting structural sensitivity
field. Parameter settings: 2 =0.2, Re = 235.

The adjoint mode II is depicted in figure 7(g—i). It is still localized near the sphere
surface. We found that the region of maximum receptivity for shedding mode II is
still localized near the sphere surface and is stronger than that of mode I



(a) (b) X

15 0 Z 4 -2 0 2 4 6 8 10 12 4
¢ A 6
5 4
% 2
C %
24 -2
N 'y ¥
0k -
’ Re(u) — direct L&
z 0-0;90 -0240 -0083 0072 0230
(c) (dy 4 -20 2 4 6 8 10 12 14
X 6
5 4
0 ' -
g S
\
24 : x -2
\‘, o A
0 9 U Re(u) direct a3 01% Q.0 G380 S8
- - .' -6
0 029017 0o o017 o3 SRR
(e) (f) -4 20 2 4 6 8 10 12 14
X
5
0
24
\ % ¥
(LIS o
0 “0 Re(w) — direct
019010 0 010 023
(2) Z (h) z ' ' 507
X 0 _0 X 0 .0 3 i
1 TS g 8 ' ‘
¢ 105 . | 05 la~ - i . | 0.5
lo ¥ | e | 0. ; o ¥
: b | [y ;eo y U ;
D] i 0~ 9 R s 0
Re(u) — adjoint Re(v) — adjoint Re(w) — adjoint Structural sensitivity
580 -260 O 258 447 -35 -23 -2 0 10 -176 -D78 0 1.30 0 981 1966 3570

FIGURE 7. (Colour online) The same as figure 6. Parameter settings: 2 =0.9 at Re=270.

On the other hand, the structural sensitivity indicates that the region responsible for
instability (the ‘wavemaker”) is also localized in a region of strong shear near the
sphere surface. This finding agrees well with the conclusion of Giacobello et al. (2009,
§ 3.3) that suggested a Kelvin—Helmholiz instability of the shear layer as the instability
mechanism.
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the eigenfrequency of modes I and II and the DNS results reported by Giacobello er al.
(2009) for Re =250 and Re = 300.

We note that it is possible to use the previous results to develop an effective passive
control strategy for rotating sphere flows. Pralits er al. (2010) showed that a small
control body can be placed in order to suppress the vortex shedding in the wake of a
rotating circular cylinder. Their computations illustrated how a technique based on a
structural sensitivity analysis of the governing equations can be used to design efficient
control strategies for the vortex shedding behind bluff bodies. In our case, we note that
the wavemakers of modes I and II are close to each other. Therefore, there could be
a possibility of controlling both modes simultaneously by using a simple strategy.

Finally, we compare the Strouhal number computed in the present investigation
with vortex shedding frequencies obtained by Giacobello er al. (2009). Figure 8
shows that, in the range of rotation rates investigated here, the Strouhal number of a
fully developed saturated limit cycle is very similar to the value computed by using
the eigenfrequency of the unstable global mode I or IL

6. The case of slow rotation

As recalled in the introduction, in the non-rotating case, the flow around a sphere
experiences a pitchfork bifurcation at Re = Re®™ = 212.4, which leads from an
axisymmetric state with zero lift to a mirror-symmetric state with non-zero lift.
To investigate the nature of such bifurcations, and in particular their supercritical
or subcritical nature, a usual and straightforward extension of the global stability
approach used in the previous section is to perform a weakly nonlinear development
in terms of the distance to the threshold.

A general methodology to tackle such weakly nonlinear problems, as well as a
numerical method based on finite elements, was introduced by Sipp & Lebedev (2007)
for the case of a 2D cylinder and adapted to 3D objects by Meliga, Chomaz & Sipp
(2009a) and Meliga er al. (2009b). This methodology is now routinely used in our
teams for various problems of fixed (Tchoufag er al. 2011) or moving (Tchoufag,
Fabre & Magnaudet 20145; Fabre et al. 2016) objects of various geometries.

The purpose of the present section is to repeat this calculation for the case of
a sphere and to extend it to include the effect of a weak rotation. We will show



that the approach directly leads to an amplitude equation describing an imperfect
bifurcation, in good accordance with the numerical results obtained by using the IBM
code previously described.

6.1. Weakly nonlinear approach

Following Meliga et al. (2009a), we pose €* = 1/ReSS — 1/Re and assume this
parameter to be small. The flow is thus expanded in terms of this parameter as
follows:

g=[u.pl=qo+eq, +g+eqgs+--- . (6.1)

In order to introduce the effect of rotation in the method, we also have to assume that
the rotation is small. Since in the non-rotating case the amplitude equation derived
in Meliga et al. (2009a) arises from the resolution of the problem at order €, we

anticipate that @ has to be of the same order of magnitude, so that we set
w:eSwo, (6.2)

where @, is the rescaled rotation rate of order one.

Following the standard weakly nonlinear expansion for such flows (Sipp & Lebedev
2007; Meliga et al. 2009a), we rely on a multi-time scale technique and assume
T = €’t, where t and t are respectively the slow and fast time scales. Injection
of this decomposition into the governing equations (2.1) along with the boundary
conditions (2.2) leads to various problems to be solved for Re = ReSS at different
orders €, with 7=0; 12,3, sz

(i) At order €°, we obtain the nonlinear problem governing g, the axisymmetric base
flow with no rotation.

(i1) At order €, we obtain a linear problem which can be written in a symbolic way
as L£q, = 0. Since we are at the threshold Re%, this equation has non-trivial
solution with azimuthal wavenumbers =1 (the marginal eigenmodes). The
solution at this order is thus a linear combination of the global modes at
Re =RéSS, and is taken as

g =A@)q(r, x)e* +cc., (6.3)

where ¢ is the eigenvector of the azimuthal wavenumber (m = +1) and Ais a
complex amplitude that depends on the slow time scale. It should be noted that
the eigenvector ¢ can be normalized so that the real and imaginary parts of the
amplitude A correspond to the y and z components of the lift (see Fabre er al.
2008).

(iii) At order €2, the solution contains base-flow viscous corrections due the departure
from Re® as well as quadratic terms resulting from the self-interactions of the
global mode. Using the notations of Meliga et al. (2009a), this reads as

G =G5 + quu AP + (guuA%e™ +c.c.). (6.4)

(iv) At order €, one obtains a linear problem which can be written in a symbolic
way as follows:

3q; + (3.Age” +c.c) =N (¢, q;) + Lqs, (6.5)



where N'(q,, q,) represents the nonlinear interaction between the solutions at the
two previous orders, and £ is the same linear operator as for the problem at order
one. This problem is again similar to the case of Meliga et al. (2009a), except
for the fact that g5 has to verify the boundary condition corresponding to a steady
rotation, namely

U3 =woZ Xr. (6.6)

As the linear operator governing the system (6.5) is singular, the usual procedure
to remove the secular terms consists of taking a scalar product of the forcing
terms with the adjoint of the problem. This yields a single differential equation
for the amplitude A, with the form

dA
. A6’A — u|APA + aw, (6.7)

where A, i and a are all real. Here, the coefficients A and p contain the effect of
the forcing terms corresponding to the viscous correction (g;) and the quadratic
terms constituting ¢,. These terms are computed exactly as in Meliga et al
(2009a), so their detailed expression need not be given. On the other hand, the
coefficient a comes from the non-homogeneous boundary condition.

Let (v, v2)ag,, = j:‘i%n v} « vy, i.e. the Hermitian scalar product between two
complex vectors v; and v, on the surface 9%, Then, the coefficient a is
computed as follows:

1 1
a= <—Vu’r -n, —ﬁ3> , (6.8)

where @3 = wo(x/2e, + ix/2es, —r/2e3) (in cylindrical coordinates) because of the
no-slip condition on the sphere at order €.

All of the calculations presented in this section are carried out using a finite-element
method based on the Freefem + + software, along the lines of Meliga er al. (2009a).
The methodology was adapted and validated in our team for various problems
including spheres (Fabre et al. 2016), bubbles (Tchoufag, Fabre & Magnaudet 2013)
and disks (Tchoufag et al. 2014b). The reader is referred to these latter papers for
more details, especially the supplementary material related to Tchoufag et al. (2014b)
where the weakly nonlinear approach was set up for the more general case of a freely
moving object, and the associated code was made available to potential users on an
open-source basis. For the present case, convergence of the results was checked by
varying the mesh details, including the grid density in the close vicinity of the sphere
and the dimensions of the domain, along the lines of what was done for ellipsoidal
bubbles (table II of Tchoufag et al. (2013)) or disks (table II of Tchoufag, Fabre &
Magnaudet (2014a)). The retained mesh is the same as used in Fabre er al. (2012,
2016). It provides the critical Reynolds for the onset of instability with four digits
of accuracy, i.e. Re% =212.6, which is identical to the value given in Meliga et al.
(2009b). Numerical values of the coefficients entering the amplitude equations are
obtained with three-digit accuracy, namely A1 =126, u=94.3, a=—0.0247.

To study the dynamics predicted by the amplitude equation (6.7), we first look
for equilibrium solutions, then consider their asymptotic trends as @ — 0 and finally
investigate their stability by examining the behaviour of small-amplitude perturbations
with respect to them. For the latter purpose, one must ensure that the amplitude A is



defined as a complex number, the real and imaginary parts contributing to the lift in
the y and z directions, so that the stability with respect to both in-plane and out-of-
plane perturbation has to be distinguished. The details are presented in appendix A. In
summary, it is shown that the system possesses three branches of equilibrium solutions
which verify the following properties.

(i) The first one, denoted Ay, is real and positive, and exists for all values of €2.
For very small rotation, it displays the following asymptotic behaviours:

aw : [ A€ :
Am%—ﬂ— as w— 0 with €2 <0; Ay~ as @ — 0 with €2 > 0.
W

22
(6.9a,b)
This solution is stable to both in-plane and out-of-plane perturbations.
(i1) The second branch, denoted Ag,, is real and negative, and emerges from a saddle—
node for €2 > 3 .2723a*3u?Rw?3 /1. For very small rotations, it displays the
following asymptotic behaviour:

Am&’—% as @ — 0 with €>>0. (6.10)

This second branch is unstable to both in-plane and out-of-plane perturbations.
(iii) The third branch, denoted Ags, originates from the same saddle-node as the
previous one, and for very small rotations, it has the asymptotic behaviour

Ae? -
Apz~ —y/ — as @— 0 with ¢ > 0. (6.11)
o

This last branch is stable with respect to in-plane perturbations but unstable with
respect to out-of-plane perturbations.

It should be noted that the fact that the three solutions are all real means that the
corresponding structures are symmetrical with respect to the transverse (x—y) plane.
Accordingly, these states are characterized by a constant lift in the y direction, given
by their amplitude A in the original scaling.

6.2. Comparison with 3D numerical simulations

We recall that due to the normalization of the direct modes, the lift force is directly
given by A, allowing one to compare, directly, the solutions of the amplitude equations
with the numerical results of figure 4. The comparison is presented in figure 9, which
shows that the base flow discussed in § 5.1 is in perfect agreement with the predictions
of branch Ay of the weakly nonlinear model. In addition, the weakly nonlinear
approach allows the unveiling of the existence of other disconnected branches of
steady solutions for a rotating sphere, corresponding to branches Ag, and Ags. As
shown in figure 9, the global approach also allows the existence of these states to
be confirmed, at least for @ = 0.001 and @ = 0.0001. On the other hand, for larger
values of the rotation rate, these branches become difficult to track. Since they are
always unstable, we disregarded these branches in the stability approach described in
§5.2 and concentrated only on the primary branch Ag;.

As expected, the discrepancies between the theory and the DNS data in figure 9
increase with the rotation rate. As the sphere spins faster, the departure from the
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FIGURE 9. (Colour online) The lift force as a function of the Reynolds number for
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normal form (6.7) of the imperfect pitchfork bifurcation. The solid lines represent the
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axisymmetric base flow is greater even for Reynolds numbers far smaller than
Re®, and the steady global mode bifurcating from the fixed sphere configuration
progressively loses its relevance. It should be noted also that, the weakly nonlinear
expansion having been derived in the vicinity of the steady bifurcation, its comparison
with DNS data is expected to be less satisfactory as the departure from criticality
increases. Figure 9 confirms such behaviour, for all three solution branches and for
all rotation rate values.

7. Conclusion

We analysed the stability of a flow past a transversely rotating sphere for various
angular velocities (0 < £2 < 1.2). The analysis carried out in this work confirms the
existence of two different self-sustained modes (modes I and II) in the wake of such
rotating spheres. These unsteady modes derive from Hopf supercritical bifurcations.
This result was confirmed by using DNS. The first shedding mode is dominated
by axially extended streamwise velocity disturbances located past the sphere. The
structural sensitivity analysis identifies the wavemaker of these global oscillations in
the near-wake region. Mode II presents a frequency that is twice that of mode I but is
also characterized by spatial oscillations downstream of the sphere. The core of this
instability is in a region of strong shear near the sphere surface. This suggests that
this instability could be related to a feedback mechanism involving Kelvin—Helmbholtz
waves, in accordance with previous experimental and numerical data (Giacobello et al.
2009).

A weakly nonlinear analysis was derived to investigate the asymmetric wake in
the presence of small rotation rates §2. We adopted a third-order expansion using a
multi-time-scale technique and solved the subsequent hierarchy of equations that was



obtained. We showed that this asymmetric state, prior to the vortex shedding, verifies
the normal form of an imperfect pitchfork bifurcation whose threshold is the critical
Re beyond which the non-rotating sphere loses its axisymmetry. Excellent agreement
between the theoretical prediction and numerical simulations is reported for all three
solution branches. We find one positive branch of solution and two negative ones, as
predicted by the matched asymptotic analysis of the normal form. Our results agree
well with the well-known Magnus effect predicting the lift produced by a rotating
body in a uniform stream.

Appendix A. Stability analysis of the imperfect bifurcation solution branches
The amplitude equation (6.7) can be reduced to the following canonical form:

) ¢
3—;:RX—|X|2X+1, (A1)

where we have introduced the reduced bifurcation parameter

R— (ﬂw‘2/3a'2/3u‘2/3)62, (A2)
the reduced amplitude

X:(w—l/3a—l/3u|/3)A (A3)
and the rescaled time scale

= (0 2Pa Py Py, (A4)

Now, we focus our attention on the equilibrium solutions X =X, of the amplitude
equation. Such solutions correspond to the real roots of the cubic equation

RXo — |Xo|*Xo +1 =0. (A5)

Elementary properties of cubic equations (Cardan’s theorem) can be used to show
that (A 5) has three branches of solution, and to investigate their behaviour as R
becomes large:

(i) The first one, denoted Xp;, exists for all values of R. Moreover, it displays the
following asymptotic behaviours: Xo; — —1/R as R — —oo and X — VR as
R — +4c0.

(ii) The second one, denoted X, originates from a saddle point located at [R; X] =
[3-272/3; —2713]. It exists only for R>3-27%? and has the asymptotic behaviour
X02 —> —I/R as R— +-00.

(iii) The last one, denoted Xp3, originates from the same saddle point, has the same
range of existence and has the asymptotic behaviour X¢3 — —+/R as R — +o0.

The asymptotic behaviours presented here as |R| — oo provide the ones for @ — 0
of the main text, which actually correspond to the distinguished limit @*? « €? <« 1.
To investigate the stability of these states, we consider small deviations around each
of these equilibrium solutions. We disturb the steady solution of the reduced form so

that
X = (X +x)e”. (A6)



Injection of this decomposition into (A 1) and linearization in terms of [x| and 6
lead to

ox

E:Rx—3|XO|2x, (ATa)
a0
—Xo=-0, (A7b)
ot
leading to the following eigenvalues:
1

o1 =R —3Xo>=—1/Xo —2Xo|*; o= (A 8a,b)

—)To'

It should be noted that oy (respectively o) represents the growth/decay rate of
perturbations of the amplitude (respectively the phase).

(i) The first branch Xp; is always positive, so both eigenvalues are negative. This
branch is stable with respect to in-plane and out-of-plane perturbations.

(ii) The second branch is located in the interval —2%3 < Xy < 0. Hence, both
eigenvalues are positive: the branch is unstable with respect to both in-plane and
out-of-plane perturbations.

(iii) The third branch verifies Xo3 < —2%3. Hence, oy is negative but o, is positive.
This branch is stable with respect to in-plane perturbations but unstable with
respect to out-of-plane perturbations.
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