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Acoustic impedance and hydrodynamic
instability of the flow through a circular

aperture in a thick plate

D. Fabre1†, R. Longobardi1,2, V. Citro2, and P. Luchini2

1Institut de Mécanique des Fluides de Toulouse, IMFT, Université de Toulouse, CNRS; Allée
Camille Soula, 31400 Toulouse, France

2DIIN, Universitá degli Studi di Salerno, Via Giovanni Paolo II, 84084 Fisciano (SA), Italy

We study the unsteady flow of a viscous fluid passing through a circular aperture in a 
plate characterized by a non-zero thickness. We investigate this problem by solving the 
incompressible Linearized Navier-Stokes Equations (LNSE) around a laminar base flow, 
in both the forced case (allowing to characterize the coupling of the flow with acoustic 
resonators) and the autonomous regime (allowing to identify the possibility of purely 
hydrodynamical instabilities). In the forced case, we calculate the impedances and discuss 
the stability properties in terms of a Nyquist diagram. We show that such diagrams 
allow us to predict two kinds of instabilities: (i) a conditional instability linked to the 
over-reflexion of an acoustic wave but requiring the existence of a conveniently tuned 
external acoustic resonator, and (ii) a purely hydrodynamic instability existing even in a 
strictly incompressible framework. A parametric study is conducted to predict the range 
of existence of both instabilities in terms of the Reynolds number and the aspect ratio of 
the aperture. Analyzing the structure of the linearly forced flow allows to show that the 
instability mechanism is closely linked to the existence of a recirculation region within 
the thickness of the plate. We then investigate the autonomous regime using the classical 
eigenmode analysis. The analysis confirms the existence of the purely hydrodynamical 
instability in accordance with the impedance-based criterion. The spatial structure of 
the unstable eigenmodes are found to be similar to the structure of the corresponding 
unsteady flows computed using the forced problem. Analysis of the adjoint eigenmodes 
and of the adjoint-based structural sensitivity confirms that the origin of the instability 
lies in the recirculation region existing within the thickness of the plate.

Key words: Instabilities, Jets, Acoustic impedance

1. Introduction

The unsteady flow through an aperture separating two fluid domains, either closed
(ducts, chambers, resonators) or open, is encountered in a large number of applications.
This situation is also of fundamental importance in the design of musical instruments.
A fundamental milestone in the study of such problems is the classical Rayleigh (1945)
solution of the inviscid, potential flow through a circular hole, in the absence of mean flow.
This solution shows that the situation is globally equivalent to the simple assumption

† Email address for correspondence: david.fabre@imft.fr
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of a rigid plug of fluid with an ”effective length” leff oscillating across the aperture.
This Rayleigh solution is often invoked in simple models of acoustic devices and is, for
instance, a key ingredient in the modelling of the so-called Helmholtz resonator.

In the case where the aperture is traversed by a mean flow, the fluid no longer
behaves as an ideal, rigid plug but generally acts as an energy dissipator. This property
is used in many industrial applications where one wants to suppress acoustical waves
(see for instance the bibliography cited in Fabre et al. (2019)). This energy dissipation
is generally associated to a transfer of energy to the flow through the excitation of
vortical structures along the shear layer bounding the jet. Howe (1979) investigated
theoretically this situation and introduced a complex quantity called conductivity KR

which generalizes Rayleigh’s ”effective length”. The knowledge of KR(ω) as function of
the forcing frequency ω, or of the closely related quantity Z(ω) = −iω/KR(ω) called the
impedance, allows to fully characterize the possible interaction of the flow with acoustic
waves. In particular, the real part of the impedance (which is positive for a zero-thickness
hole), is directly linked to the energy flux transferred from the waves to the flow. Howe
subsequently derived a potential model predicting the conductivity (and impedance)
in the case of a hole of zero thickness. Despite its mathematical rigor, Howe’s model
starts from very simplified hypotheses regarding the shape and the location of the vortex
sheet and its convective velocity. Recently, Fabre et al. (2019) reviewed Howe’s problem
using Linearized Navier−Stokes equations in order to take into account the effect of the
viscosity and the exact shape of the vortex sheet. They showed that for Re & 1500,
results are quite independent from the Reynolds number but significantly deviates from
Howe’s ones, above all for intermediate frequencies. Nevertheless, in both Howe’s model
and Fabre et al. (2019)’s improved solution, the behavior of the hole remains dissipative
(associated to a positive real part of the impedance), in accordance with experimental
and numerical investigations.

The case where the thickness of the plate, in which the hole is drilled, is not small
compared to its diameter leads to a completely different situation, as the jet flow can
now act as a sound generator instead of a sound attenuator. The first observation of
this property seems to have been made by Bouasse (1929), who reported that jets
through thick plates could produce a well-reproducible whistling, with a frequency
roughly proportional to the hole thickness. This observation remained unnoticed (as
many other findings of the rich experimental work of Bouasse), but was rediscovered
in the 21st century by Jing & Sun (2000) and Su et al. (2015) who, in an effort to
improve the design of perforated plates used as sound dampers, reported that in some
circumstances, these devices could lose their ability to damp acoustic waves and lead
to self-sustained whistling. Numerical simulations by Kierkegaard et al. (2012) showed
that in the range of parameters where such whistling occurs, the mean flow through the
hole is characterized by a recirculation bubble, either trapped within the thickness of
the plate, or fully detached. However, the precise role of this recirculation bubble in the
sound-production phenomenon remains to be clarified.

The ability of the jet flow to provide acoustical energy is associated to a positive real
part of the impedance, so computation or measurement of this quantity offers a convenient
way to characterize these phenomena. A number of analytical and semi−empirical models
(Jing & Sun (2000), Bellucci et al. (2004) ) have been proposed to predict the impedance
of such finite-length holes. Confrontation with experiments (Su et al. 2015) and numerical
simulations (Eldredge et al. 2007) have revealed the lack of robustness of such models
which all contain ad−hoc parameters. Yang & Morgans (2016) and Yang & Morgans
(2017) developed a more elaborate semi−analytical model based on the actual shape
of the vortex sheet, and furthermore including the effect of compressibility within the
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thickness of the hole. However, their approach remains potential and cannot account for
the effect of viscosity within the thickness of the shear layer, nor for the dependence of
the impedance with respect to the Reynolds number.

Linearized Navier-Stokes Equations (LNSE) offer a more satisfying framework to access
the impedance of such holes, with a full incorporation of viscous effects. This approach
has been carried out in Fabre et al. (2019) for a zero-thickness hole, leading to notable
improvements of Howe’s classical inviscid model. This approach has also been applied
to the flow through a finite-thickness hole by Kierkegaard et al. (2012) in a range of
parameters characterized by self-sustained whistling. However, Kierkegaard et al. (2012)
considered a compressible, turbulent case in a specific configuration involving an acoustic
pipe acting as a resonator. In our case, we wish to characterize the potential of the jet
to lead to self-sustained oscillations regardless of the nature of the acoustic environment,
and even in the case where there are no acoustic resonators at all. The situation we
investigate is thus more generic, but by ruling out the geometry of the upstream and
downstream domains and the Mach number parameter, we are able to conduct a full
parametric study of the problem, an objective which was not achievable considering the
choices of Kierkegaard et al. (2012).

The remainder of the paper is organized as follows :

• In section 2, after defining the geometry and the parameters of the study, we define
the concept of impedance, and explain how, thanks to the use of Nyquist diagrams,
this quantity can be used to predict the stability properties of the jet flow. We show
that two kinds of instabilities are possible in this context : (i) a conditional instability
corresponding to an over-reflexion of acoustic waves in some range of frequencies, leading
to an effective instability only if the jet is coupled to a conveniently tuned acoustic
resonator, and (ii) a purely hydrodynamical instability which manifests regardless of the
existence of an acoustic resonator, and exists even in the case of a strictly incompressible
flow.
• In section 3, we present the Linearized Navier Stokes Equations and the numerical

method. We show how this formalism can be used to solve both a harmonically forced
problem for real frequencies ω allowing to compute the impedances, and a homogeneous
eigenvalue problem allowing to compute the complex frequencies ωr + iωi allowing to
characterize the purely hydrodynamical instabilities.
• In section 4, we detail the structure of the base flow corresponding to the steady

jet as function of the Reynolds number Re and aspect ratio β of the hole. We detail
in particular the discharge coefficient characterizing the relationship between the mean
pressure drop and mean flux through the hole, and the range of existence and spatial
structure of the recirculation region occurring within the thickness of the hole.
• In section 5, we present results of the LNSE approach in the harmonically forced case.

The computed impedances for selected values of Re and β are reported. We document
the structure of the linearly forced flows, in particular within the recirculation region.
We eventually provide a parametric map allowing to predict the ranges of existence of
both conditional and hydrodynamical instatilities in the Re− β parameter plane.
• In section 6, we present results of the LNSE approach in the homogeneous regime.

We confirm the existence of the purely hydrodynamical instability, in accordance with
the impedance-based predictions. We further detail the structure of the eigenmodes, the
adjoint eigenmodes and the adjoint-based structural sensitivity, allowing to highlight
once again the role of the recirculation region on the instability mechanism.
• In section 7, we compare our results with a number of available experimental and

numerical works with related geometries.
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Figure 1. Sketch of the flow configuration (not in scale) representing the oscillating flow through
a circular hole in a thick plate, with definition of the geometrical parameters, and indication of
the global quantities describing the flow.

• Finally, section 8 summarizes the findings and discusses a few perspectives opened
by our work.

2. Problem definition

2.1. Geometry, parameters, and modeling hypotheses

The geometrical configuration investigated in the present paper is sketched in figure 1.
We consider a fluid of viscosity ν and density ρ discharging through a circular aperture
of radius Rh in a planar thick plate with thickness Lh. The domains located upstream
and downstream of the hole are supposed large compared to the dimensions of the hole,
so that the geometry is characterized by a single dimensionless parameter, the aspect
ratio β defined as

β =
Lh

2Rh
. (2.1)

The zero-thickness limit case (β = 0) is investigated in detail in Fabre et al. (2019); in
the present paper we consider holes with finite thickness in the range β ∈ [0.1− 2].

The pressure difference between the inlet and the outlet domain, namely ∆P = [Pin−
Pout], generates a net flow Q = UMAh through the hole, where Ah = πR2

h is the area
of the hole and UM is the mean velocity. This mean flow is characterized by a Reynolds
number defined as :

Re =
2RhUM

ν
≡ 2Q

πRhν
. (2.2)

As in Fabre et al. (2019), we will suppose that the Mach number is small, and that the
dimensions of the hole are small compared to the acoustical wavelengths (acoustical
compactness hypothesis). These hypotheses allow to assume that the flow is locally
incompressible in the region of the hole. An example of matching with an outer acoustic
field is presented in appendix A.
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2.2. Characterization of the unsteady regime and Impedance definition

To characterize the behavior of the jet in the unsteady regime, we assume that far
away from the hole the pressure levels in the upstream and downstream regions tend
to uniform values denoted as pin(t) and pout(t). We will further assume that both the
pressure drop ∆p(t) and the flow rate q(t) are perturbed by small-amplitude deviations
from the mean state characterized by a frequency ω (possibly complex):(

∆p(t)
q(t)

)
=

(
[Pin − Pout]

Q

)
+ ε

(
[p′in − p′out]

q′

)
e−iωt + c.c., (2.3)

Zh(ω) =
[p′in − p′out]

q′
(2.4)

where the amplitude ε is assumed small. Note that with the present definition the
impedance has physical unit kg · s−1m−4. We will also introduce a nondimensional
impedance defined as

Z =
R2
h

ρUM
Zh ≡ ZR + iZI , (2.5)

where the real part of the impedance ZR is the dimensionless resistance while its
imaginary part ZI is the reactance. In presentation of the results, the frequency will be
represented in a nondimensional way by introducing the Strouhal number Ω as follows:

Ω =
ωRh
UM

. (2.6)

2.3. Impedance-based instability criteria

We now explain the links between impedance and instabilities, and show how simple
instability criteria can be formulated using Nyquist diagrams (namely representations of
Zr versus Zi).
• First, the sign of the real part of the impedance ZR(ω) (or resistance) as function

of the real frequency ω is a direct indicator of a possible instability. However, one should
insist that the condition ZR < 0 is a necessary but not sufficient condition for instability.
In the context of electrical circuits (Conciauro & Puglisi (1981)), a system with negative
resistance is said to be active in the sense that it effectively leads to an instability if
connected to a reactive circuit allowing oscillations in the right range of frequencies.
In the present context, this situation is referred as conditional instability and requires
the presence of a correctly tuned acoustic oscillator (a cavity and/or a pipe) connected
upstream (or downstream) of the aperture.
The demonstration that ZR < 0 is a necessary condition for conditional instability can
be explicited in two ways. First, ZR is directly linked to the energy flux transferred
from acoustic waves to the jet The demonstration of this property can be found in Howe
(1979), and is also reproduced in Fabre et al. (2019). Thus, if ZR > 0 the jet behaves as an
energy sink, while if ZR < 0 it acts as an energy source. Secondly, one can also establish
this link by studying the reflection of acoustic waves onto the hole. This argument is
carried out in appendix A, where we conduct an asymptotic matching between the locally
incompressible solution in the vicinity of the hole and an outer solution of the acoustic
problem. The conclusion of this analysis is that in the limit of small Mach number, an
incident acoustic wave coming from the upstream domain is overreflected if and only if
ZR < 0.
A situation leading to conditional instability is illustrated in figure 2a− b. Plot (a) shows
the real and imaginary parts of the impedance in a situation where ZR is negative in an
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Figure 2. Illustration of the Nyquist-based instability criteria. (a− b) : Example of situations
leading to conditional instability. (c − d) Example of situations leading to hydrodynamical
instability. The regions of conditional and hydrodynamic instabilities are represented by yellow
and orange areas, respectively. Left: Plot of ZR (solid line) and ZI (dashed line) as a function
of the real frequency ω, Right: Nyquist diagrams.

interval [ω1, ω2], and Zi does not change sign. When represented in a Nyquist diagram,
the criterion can be formulated as follows: the system is conditionally unstable if the
Nyquist curves enter the half-plane ZR < 0.
• Second, when considered as an analytical function of the complex frequency ω =

ωr + iωi, the impedance can be used to formulate a second instability criterion, namely:
the system is unstable, regardless of the properties of its environment if there exists a
complex zero of the impedance function such that ωi > 0. Indeed, for complex values
of ω the modal dependence reads e−iωt = e−iωrteωit, thus solutions with the form 2.3
are exponentially growing if ωi > 0. In the context of electrical circuits, this situation
is referred to as absolute instability in opposition to the conditional instability discussed
above. Since the term ”absolute” has a different meaning in the hydrodynamic stability
community (as opposed to convective instabilities, see e.g. Huerre & Monkewitz (1990)),
we prefer to adopt the term purely hydrodynamical instabilities to describe this case,
emphasizing the fact that they can occur in a strictly incompressible framework.
Physically, the condition Zh(ω) = 0 implies that there exist modal solutions of the
linearized problem in which pressure jump [p′in − p′out] is exactly zero. In other terms,
the total pressure jump across the hole is imposed as a constant (i.e. [pin(t)− pout(t)] =
[Pin−Pout]) but the flow rate q(t) is allowed to vary. This kind of boundary condition is
a bit uncommon for incompressible flow problems. However, one must keep in mind that
the incompressible solution is only valid locally in the vicinity of the hole. In appendix
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A, we conduct an asymptotic matching with an outer acoustic solution and show that
in the limit of small Mach number, the condition Zh(ω) = 0 with complex ω and ωi > 0
corresponds to a spontaneous self-oscillation of the flow across the hole associated to the
radiation of acoustical waves in both the upstream and downstream domains.
In practize, the number of complex zeros of the analytically continued impedance Zh(ω)
and their location in the complex plane can be deduced from the representation of Zh(ω)
for real values ω using classical Nyquist criterion, which states that there exists an
unstable zero of the impedance if and only if the Nyquist curve encircles the origin in
the anticlockwise direction. A weaker but practically equivalent version of this criterion
can be formulated as follows: the system is unstable in a purely hydrodynamical way if
the Nyquist curve enters the quarter-plane defined by ZR < 0 ; ZI > 0 †. A situation
leading to purely hydrodynamical instability is illustrated in figure 2c− d.
In addition to providing an instability criterion, the knowledge of the impedance for real
ω can also be used to predict an approximation of the complex zeros in the case where
ωi is small. for this sake, let us suppose that the Nyquist curve passes close to the origin,
and let us denote ω0 the value for which the norm of the complex impedance |Z(ω)|
is smallest. The location of this point is illustrated in figures 2c − d. Searching for the
complex zero as ω = ω0 + δω and working with a Taylor series around ω0 leads to

Z(ω0) + (∂Z/∂ω)ω0
δω = 0 (2.7)

hence providing an estimation as follows :

ω ≈ ω0 −
Z(ω0)(∂Z/∂ω)ω0∣∣(∂Z/∂ω)ω0

∣∣2 (2.8)

It can be shown that Z(ω0)(∂Z/∂ω)ω0
is pure imaginary, (a simple geometrical interpre-

tation being that the line joining the point Z(ω0) to the origin and the line tangent to
the Nyquist curve at ω0 are orthogonal to each other). Hence, the correction appearing
in 2.8 directly provides an estimation of the amplification rate ωi.

3. Linearized Navier Stokes Equations and numerical methods

In the previous section, the linearly perturbed flow across a hole was considered from a
general point of view, focussing on the impedance and its link with possible instabilities.
In the present section, we introduce the LNSE framework, and show how this framework
can be used both to compute the impedance through solution of a forced problem and to
directly address the instability problem through solution of an autonomous problem.

3.1. Starting equations

The fluid motion is governed by the Navier-Stokes equations:

∂

∂t

[
u
0

]
= NS

([
u
p

])
=

[
−u · ∇u−∇p+ Re−1∇2u

∇ · u

]
(3.1)

where u and p are the velocity and pressure fields.

† We refer the reader to Kopitz & Polifke (2008) for the theoretical background on the use
of Nyquist criteria in acoustic applications. Note that the second ”weak” form of the criterion
used here is not rigorous as it may happen that the Nyquist contour enters the quarter-plane
and leaves it by the same side without encircling the origin, in which case the criterion would
erroneously predict instability. We carefully checked that such behavior does not occur in the
computed cases.
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The Linearized Navier-Stokes framework consists of expanding the flow as a steady
base-flow plus a small-amplitude modal perturbation as follows:[

u
p

]
=

[
u0

p0

]
+ ε

([
u′

p′

]
e−iωt + c.c.

)
(3.2)

where c.c. denotes the complex conjugate.
In practice, the base-flow [u0, p0] and perturbation [u′, p′] will be computed in a

computational domain of finite size with boundaries noted Γin, Γout, Γwall, Γlat, Γaxis (see
figure 3). The matching with the global quantities Pin, Pout etc. will be done through
the boundary conditions on Γin and Γout. This matching procedure involves a number
of caveats which were longly discussed in Fabre et al. (2019). We refer to this work for
full details, but restrict in this paragraph to a simple exposition of the procedure.

3.2. Base-flow equations

The base flow is the solution of the steady version of the Navier-Stokes equations:

NS[u0; p0] = 0

with the following set of boundary conditions:∫
Γin

u0 · ndS = Q0 (3.3)

p0 = Pin on Γin, (3.4)

p0 = Pout on Γout. (3.5)

In practise, Eq. 3.3 is enforced as a Dirichlet boundary condition by prescribing a

constant value of the axial velocity component, i.e. u0,x = Q0/
(∫

Γin
dS
)

. Noting that

the pressure reference can arbitrarily chosen such that Pout = 0 and that the viscous
stress is negligible along the outlet plane, Eq. 3.5 is enforced as a no-stress condition.
This problem is solved iteratively using Newton’s method, exactly as done in Fabre et al.
(2018). Eventually, Eq. 3.4 is used to extract Pin as the average value of p0 along the
inlet plane, allowing to deduce the discharge coefficient α (see Sec. 4).

3.3. Linear equations

The linear perturbation obeys the following equations :

−iωB[u′; p′] = LNS0[u′; p′], (3.6)

where LNS0 is the linearized Navier-Stokes operator around the base flow and B is a
weight operator defined as follows:

LNS0
[

u′

p′

]
=

[
− (u0 · ∇u′ + u′ · ∇u0)−∇p′ + Re−1∇2u′

∇ · u′
]

; B =

[
1 0
0 0

]
.

(3.7)
This set of equations is complemented by the following boundary conditions :∫

Γin

u′ · ndS = q′, (3.8)

p′(x, r) = p′in on Γin, (3.9)

p′(x, r) = p′out on Γout, (3.10)

This system governs the evolution of the perturbations and is relevant to both the
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forced problem and the autonomous problem. The difference is in the possible depen-
dance with respect to the azimuthal coordinate θ and in the handling of the boundary
conditions:
• For the forced problem, the forcing being axisymmetric, the perturbation is

expected to respect this symmetry and is thus searched under the form [u′; p′] =
[u′r(r, z), u

′
x(r, z), ; p′(r, z)]. Furthermore, a non-zero q′ is imposed (fixed arbitrarily to

q′ = 1). Eq. (3.8) thus leads to a non-homogeneous Dirichlet boundary condition at
the inlet plane treated by imposing a constant axial velocity u′x. For the same reasons as
for the base-flow equations, Eq. (3.10) can be replaced by a no-stress boundary condition
on Γout. The problem can be symbolically written as

[LNS0 − iωB] [u′; p′] = F , (3.11)

where the definition of LNS0 implicitly contains the homogeneous boundary condition
at the outlet, and F represents symbolically the non-homogeneous boundary condition at
the inlet. This problem is nonsingular and readily solved. The pressure p′in is subsequently
deduced from Eq. (3.9) by extracting the mean value of the p′ component along the
inlet boundary Γin of the computational domain, eventually allowing to compute the
impedance.
• For the homogeneous problem, on the other hand, there is no a priori reason

to assume axisymmetry, hence the perturbation may be assumed to have azimuthal
dependance with a wavenumber m, namely [u′, p′] = [û, p̂]eimθ. For axisymmetric modes
(m = 0), as discussed in sec. 2 and appendix A, the relevant boundary conditions arising
from a matching with an outer acoustic solution are p̂in = p̂out = 0, which can be
practically enforced as no-stress conditions at both the inlet and the outlet. When looking
for non-axisymmetric modes (m 6= 0), on the other hand, it makes more sense to impose
u′x = 0 on the inlet (as there is no net flux q′ through the hole in such cases) and no-stress
at the outlet. the problem can be symbolically written in the form

[LNS∗0 − iωB] [û; p̂] = 0 (3.12)

where the operator LNS∗0 implicitly contains the homogeneous conditions at both
upstream and downstream boundaries. For m = 0, the flow rate q̂ associated to the
eigenmodes through 3.8 is generally nonzero, so the eigenmodes can be rescaled such
that q̂ = 1.
After discretization of the operators LNS∗0 and B as large matrices, we are led to a
generalized eigenvalue problem, which admits a discrete set of complex eigenvalues ω =
ωr + iωi. As usual in stability analysis of open flows, only a small number of these
eigenvalues correspond to physically relevant global eigenmodes. The remainder, often
referred to as ”artificial modes”, include both a discretized version of the continuous
spectrum and spurious modes induced by the truncation of the domain to a finite size
Lesshafft (2018). Appendix B details how to sort ”physical modes” from ”artificial modes”
and details the effect of the complex mapping technique used here on the latter set of
modes.

Aside from the determinations of the (direct) eigenmodes [û, p̂], it is also useful to
study the structure of the adjoint eigenmodes [û†, p̂†], namely the eigenmodes of the

adjoint operator LNS∗†0 . We refer to Luchini & Bottaro (2014) for a detailed discussion
of the topic. In the present paper we adopted a discrete adjoint approach.

The structural sensitivity (Giannetti & Luchini 2007) of a hydrodynamic oscillator is
also used in the present manuscript to identify the flow region where the mechanism of
instability acts. In particular, we follow Giannetti & Luchini (2007) to build a spatial
sensitivity map by computing the spectral norm of the sensitivity tensor:
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Figure 3. Structure of the mesh M1 obtained using complex mapping and mesh adaptation for
β = 1, and nomenclature of the boundaries (see appendix B for details on mesh generation and
validation). A zoom of the mesh is reported in the range X ∈ [−2.5; 0.5]Rh and R ∈ [0.1; 1.8]Rh.

S(x, r) =
û†(x, r)⊗û(x, r)∫
D

û†(x, r)û(x, r)dD
(3.13)

where D is the computational domain.

3.4. Numerical method

The results presented here are obtained with the same numerical method as used in
Fabre et al. (2019). The mesh construction and adaptation, computation of the base flow
and of the linear problems are implemented using the open-source finite element software
FreeFem++. The main originalities of the present implementation are the use of complex
mapping in the axial direction to overcome problems associated to the large convective
amplification of structures in the downstream direction (see Fabre et al. (2019)), and the
systematic use of mesh adaptation to substantially reduce the required number of d.o.f.
(following a methodology described in Fabre et al. (2018) and previously used for the
zero-thickness hole in Fabre et al. (2019)). An example of unstructured grid obtained in
this way is displayed in figure 3. Note that the downstream dimension Lout in numerical
coordinates seems rather short; however, as the coordinate mapping used in this case
involves a stretching, the actual dimension in physical coordinates is much larger.

The loops over parameters and generation of the figures are performed using Oc-
tave/Matlab thanks to the generic drivers of the StabFem project (see a presentation
of these functionalities in Fabre et al. (2018)). According to the philosophy of this
project, all the codes used in the present paper are available from the StabFem website
(gitlab.com/stabfem/StabFem) , and a simple script reproducing the main results of the
present paper is provided †. On a standard laptop, all the computations discussed below
can be obtained in few hours. Numerical convergence issues are discussed in Appendix B
by comparing results obtained with four different meshes, with variable domain dimension
and grid density (controlled by using several mesh adaptation strategies).

† gitlab.com/stabfem/StabFem/STABLE_CASES/WHISTLE/SCRIPT_chi1.m).



Impedance and instabilities of the flow through a circular aperture 11

x

r

2 0 2 4 6 8 10

2

1

0

1

2 1.4

1.1

0.8

0.5

0.2

0.1

4.9

4.1

3.3

2.5

1.7

0.9

0.1

(a)

(b)

Figure 4. Contour plot of (a) axial velocity of the base flow and (b) vorticity field computed
at Re = 1500 and β = 1.

4. Base flow: study of the recirculation region

A typical base flow is depicted in figure 4 for a Reynolds number Re = 1500 and
β = 1. The flow is characterized by an upstream radially converging flow turning into
an almost parallel jet. However, an important feature is the occurrence of a recirculation
region within the thickness of the hole. The vorticity field reaches its maximum near
the leading edge, namely the left edge of the hole, and is highly concentrated in the
region of maximum shear stress. Figure 5 illustrates the structure of the flow in the close
vicinity of the aperture, for β = 1. The recirculation region at Re = 800 takes the form
of a narrow bubble trapped close to the upstream corner. As the Reynolds is increased,
this recirculation region expands towards the lower corner, eventually becoming an open
recirculation region.

The intensity of the recirculation region can be characterized by the maximum level
of negative velocity within the thickness of the hole, namely Umax = max(−ux0). This
quantity is plotted in figure 6(a) as function of the Reynolds number for β = 0.3, 0.6
and 1. It is observed that in all cases, the recirculation region shows up for Re ≈ 400.
The intensity of the recirculation region first grows as the trapped bubble extends to
reach the downstream corner, and then decreases as it turns into a fully open one. Not
surprisingly, the intensity is larger in the case of a thicker hole, as the bubble is able to
extend over a longer region.

The steady flow is characterized by the so-called discharge coefficient α, defined as

α =

√
ρU2

M

2(Pin − Pout)
. (4.1)

This coefficient can be thought of as a measure of the vena contracta phenomenon :
assuming that the jet contracts to a top-hat jet with constant velocity UJ and radius
RJ (see figure 1) and using the Bernoulli law, one classically shows that α = UM/UJ =
(πR2

J)/(πR2
h), so it can be interpreted as an area contraction ratio of the jet.

We document on figure 6(b) the discharge coefficient α deduced from the pressure drop
computed from the base flows. It is found that for Re ≈ 104 the discharge coefficient
reaches a value close to 0.61 in all cases. Note that for the thicker case (β = 1) α is lower
than in the other cases for Re . 100, meaning that the pressure drop is weaker, but it
is maximal for Re ≈ 2000, a value corresponding approximately to the transition from a
closed to an open recirculation region.

There exist several estimations of this coefficient. for instance, the hodograph method
leads α ≈ 0.61 (Gilbarg 1960) which is consistent with the large-Re limit of our
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Figure 5. Contour plot of the axial component of the base flow for β = 1 at: (a) Re = 800,
(b) Re = 1200, (c) Re = 1600, (d) Re = 2000. The structure of the recirculation region is
highlighted using streamlines.
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Figure 6. (a) Intensity of the recirculation flow inside the hole and (b) discharge coefficient as
function of Re. Solid line (−) : β = 0.3; dashes (−−) : β = 0.6; dash-dotted line (− ·−) : β = 1.

computations. Note that Blevins (1984) reports that for β = 0.3 the discharge coefficient
decreases from 0.70 to 0.61 as Re raises from 103 to 104. This is consistent with our
findings. The literature generally attributes this decrease of α to the laminar-turbulent
transition. Since our base-flow solution is strictly laminar, we can rule out this argument.
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It seems more relevant to attribute the decrease of α to the transition between attached
and fully detached recirculation region.

5. Linear results for the forced problem

We turn now to analyse the results obtained by the numerical solution of the forced
problem. We chose two different cases characterized by β = 0.3 and β = 1.

5.1. Case β = 0.3

As previously introduced, the most important quantity associated to the unsteady flow
is the impedance Z = ZR + iZI . This quantity is plotted as function of the frequency
in figure 7 for Reynolds ranging from 800 to 2000. The plots in the left column display
ZR and ZI as function of Ω (note that as ZI is generally negative and decreasing with
Ω, it is convenient to plot −ZI/Ω). The right column display the corresponding Nyquist
diagrams.

For Re = 800 (plots (a) and (b)), the system presents a small frequency interval near
Ω ≈ 2.2 with negative values of the real part of the impedance ZR. As explained in
section 2.3, this property is directly related to a possible instability. On the other hand,
the imaginary part ZI is always negative in the range of frequencies considered.

As the Reynolds number is increased further, one observes that the region of negative
ZR gets larger and reaches larger values. Note also that the negative, minimum value of
ZR is associated to a maximum of −ZI/Ω. Increasing the Reynolds number enlarges the
range of ω where the system has negative values of ZR. The cases (e), (g) associated to
Re = 1600, 2000 show a second region of conditional instability for higher frequencies in
the range near Ω ≈ 8.5. This is again associated with a maximum of −ZI/Ω. Note that
for Reynolds numbers up to 2000 we do not find a hydrodynamic instability. We recall
that the number of unstable modes (absolute instability) is associated to the number of
times the contour of the complex impedance Zh encircles the origin. This condition is
never satisfied in figure 7.

To explain these trends, and in particular the possibility for negative ZR, we now
depict in figure 8 the structure of the flow perturbation for three values of the frequency,
corresponding to points C1, S1 and C2 as indicated in plot 7(f). The cases C1 and C2
correspond to the two first negative minima of ZR, hence to conditionally unstable cases,
while case S1 corresponds to a positive maximum of ZR(Ω), hence to a maximally stable
case. The plot shows the real and imaginary part of the pressure component p′, which
correspond respectively to the components in phase with the oscillating flow rate and a
quarter period after (at the instant when the oscillating flow reverses). The figure shows
that the harmonic forcing generates an alternance of high and low pressure regions which
propagate along the shear layer and are amplified downstream. Note that the plots use a
logarithmically stretched color scale, allowing to visualise the structure despite the very
strong spatial amplification.

Thanks to the normalization of the oscillating flow by q′ = 1 and the pressure reference
taken as p′out = 0, the impedance Z = [p′in − p′out]/q′ can be directly read on the figures
from the uniform value of the pressure in the upstream domain. Accordingly, for the
conditionally unstable cases C1 and C2 one can see that the real part of p′in is negative
, while for the stable case (plot (c)) it is positive. On the other hand, the imaginary part
of p′in is negative in the three cases (see the plots in the right column of the figure),
consistently with the fact that ZI is always negative for β = 0.3.

Figure 9 complements the description of the structure of the perturbation for the same
three values of the frequency, by analyzing the dynamics of the shear layer. For this we
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Figure 7. Impedance of the flow through a circular aperture with aspect ratio β = 0.3. Left:
Plot of ZR (solid line) and ZI (dashed line) as a function of the perturbation frequency Ω; Right:
Nyquist diagrams for (a, b),Re = 800, (c, d),Re = 1200, (e, f),Re = 1600, (g, h),Re = 2000.
Points (C1), (S1) and (C2) indicate the location corresponding to the structures shown in figures
8 and 9. Point ”O” indicates the starting point (Ω = 0) of the Nyquist curves.

focus on the real part of the vorticity component ω′r corresponding to the instant of the
cycle where the flow rate through the hole is maximum. For case (C1) (first row), at
this instant the vorticity perturbation consists of two layers of vorticity of opposite sign,
with positive sign in the region closest to the hole. When superposing this perturbation
onto the base flow, which consists of a shear layer of positive vorticity (see e.g. the lower
half of figure 4), the result is to shift the shear layer towards the walls, as schematically
represented in the plot at the right. The section of the jet is thus locally enlarged in
the outlet section, hence the velocity is reduced, and according to the Bernoulli law the
pressure p′s at the outlet section (which may be identified with the real part of p′out)
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Figure 8. Structure of the unsteady flow for β = 0.3 and Re = 1600. Left column: real part of
the pressure component ; right column: imaginary part of the pressure component. First row
(C1) : Ω = 2.6 ( conditionally unstabie case with Zr < 0) ; second row (S1) Ω = 5.45 (stable
case with Zr > 0); third row (C2) Ω = 8.25 ( conditionally unstable case with Zr < 0)

p’in <               p’S

p’in <               p’S

p’in >              p’S

Figure 9. Left : vorticity component ω′
r (real part) of the perturbation ; Right : reconstruction

of the structure of the perturbed shear layer (base flow + perturbation) at the instant
corresponding to maximum flow rate through the hole for β = 0.3 and Re = 1600. cases (C1),
(S1) ,(C2) as in figure 8.
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at this location is increased. This simple argument allow to explain why the fluctuating
pressure jump at the considered instant of the cycle <[p′in − p′out] is negative.

For the case C2 with Ω = 8.25 (third row), the structure of the vorticity perturbation
is more complex and changes sign twice between the upstream and downstream sides of
the holes. Superposing this onto a base flow leads to a situation where the shear layer
is first displaced towards the wall, then away from it and again towards it. The simple
Bernoulli argument thus leads to the same conclusion, namely an increase of the pressure
p′s in the outlet plane.

On the other hand, for the stable case (S1) with Ω = 5.45 the structure of the vorticity
perturbation changes sign only once. The result is that the shear layer is displaced away
from the wall in the outlet plane. The simple Bernoulli argument leads, in this case, to
a decrease of the pressure p′s in the outlet plane.

The explanation presented here is not fully rigorous, in particular because the
impedance is based on the pressure p′out far away downstream and not the one p′s at
the outlet of the hole. The validity of the Bernoulli law is also questionable in such
unsteady regimes. Eventually, the argument assumes a fully detached shear layer and
does not explain why instability is also possible in ranges of Reynolds numbers where the
recirculation bubble is closed. Still, we believe this reasoning gives an simple explanation
to the fact that Minima of ZR (potentially unstable situations) are associated to odd
number of structures within the thickness while maxima of ZR (most stable situations)
are associated to even number of structures within the thickness of the hole.

5.2. Case β = 1

We now consider the case of a thicker hole with aspect ratio β = 1. Figure 10 plots
the impedance for Re from 800 to 2000. As in the previous case detailed in sec. 5.1, one
can see the existence of several frequency intervals where ZR becomes negative.

The real and imaginary part of the impedance Zh are always positive for Re = 800
(see fig. 10a ). As a consequence, the associated Nyquist curve plotted in fig. 10b does
not cross the ZR = 0 axis. The system displays two intervals of conditional instability
at Re = 1200, around Ω ≈ 2.5 and Ω ≈ 4.7, respectively. Note that the real part ZR
presents larger oscillations than in the corresponding case at β = 0.3.

When the Reynolds number is increased, both real and imaginary parts of the
impedance reach very large values. Figure 10e plots ZR and −ZI/Ω for Re = 1600
and reveals four intervals of conditional instability and one interval of hydrodynamical
instability. Another important result which can be seen in this figure is the existence
of true zeros of the impedance. This happens in particular at Ω ≈ 2.07. This property
reveals the existence of a purely hydrodynamical instability as discussed in sec. 3. This
point will be further confirmed in sec. 6. Further increasing the Reynolds number to
Re = 2000 produces a second interval of hydrodynamical instability around Ω = 4.4.

In figures 11 and 12, we represent the pressure and vorticity components of the
perturbations for Re = 2000 for five selected values of Ω corresponding to points
C1, S1, H2, C2, S2 as indicated in figure 10(h). Cases (C1, C2) and (S1, S2) correspond
to minima and maxima of ZR, while case (H2) correspond to the first positive maximum
of ZI .

In the pressure plots (figure 11), the same observations can be made as previously for
β = 0.3, namely the real part of the pressure in the upstream domain is negative for
conditionally unstable cases (C1) and (C2) and positive for stable cases ((S1) and (S2)).
The case (H2) (third row) differs from all other cases by one property : the imaginary
part of the upstream pressure is positive (see right plot).

Inspecting the real part of the vorticity perturbation (left column in figure 12) allows
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Figure 11. Structure of the unsteady flows for β = 1 and Re = 2000. Real (left) and imaginary
(right) parts of the pressure component. (C1) conditionally unstable case with Ω = 0.95; (S1)
stable case with Ω = 1.85; (H2) unconditionally unstable case with Ω = 2.5; (C2) conditionally
unstable case with Ω = 2.7; (S2) stable case with Ω = 3.8.

(H2), unlike all the other cases. It does not seem possible to give a simple explanation of
the unconditional instability in terms of oscillations of the shear layer. We assume that
the mechanism is more complex and includes some feedback mechanism occuring within
the recirculation region.

5.3. Parametric study

In the previous sections, we documented the impedance results for β = 0.3 and β = 1.
In both cases, when increasing the Reynolds number, we observed the emergence of an
increasing number of intervals of conditional instability, associated with the crossing
of the real axis in the Nyquist diagram by successive ”loops” of the Nyquist curve. In
addition, but only for β = 1, we observed the emergence of an increasing number of purely
hydrodynamical instabilities associated to the encircling of the origin by successive loops
of the same curve. In this section, we present the results of a parametric study which
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suggests that the limit case of zero thickness is unconditionally stable, in accordance with
the classical model of Howe and our previous investigation of this case (Fabre et al. 2019).

The frequencies associated to each of the instability branches are plotted in figure 14.
We start by plotting the Strouhal number based on the hole radius Rh as a function of
the aspect ratio β. Note that the frequencies associated to hydrodynamical instabilities
H2 and H3 closely follow those associated to conditional instabilities C2 and C3, thus
confirming our nomenclature choice.

It is interesting to note that all branches indicate that the frequency is inversely
proportional to the aspect ratio of the hole. This suggest that instead of the definition
Ω used up to here, it may be better to define a Strouhal number based on the thickness
of the hole as follows:

StL =
fL

UM
≡ Ωβ

π
. (5.1)

Plotting results using this definition leads to figure 14b, which confirms that the Strouhal
number is almost independent of the aspect ratio for all branches.

6. Linear stability results

We now present the results of the global stability approach of the problem. Before
presenting the results, we stress two important points. First, in the whole range of
parameters considered, non-axisymmetric perturbations (m 6= 0) were found to be always
stable. Secondly, for axisymmetric modes (m = 0), unstable eigenmodes could only be
found using stress-free conditions both upstream and downstream (p̂in = p̂out = 0; q̂ 6= 0).
On the other hand, changing the upstream condition to more standard ’inlet’ condition
(q̂ = 0; p̂in−p̂out 6= 0) yielded no unstable mode at all. Note that both choices of boundary
conditions are perfectly relevant but correspond to different physical situations. Using a
strictly incompressible liquid, these two cases could be realized in an experimental setup
where the upstream domain is of finite dimension and alimented by either a perfect
pressure-imposing pump or a perfect volumetric pump. The choice p̂in = p̂out = 0
considered in the following is also justified for a compressible gas in the case both
upstream and downstream domains are considered of large dimension (see appendix A).

6.1. Eigenvalues

The stability characteristics of the base flow are assessed monitoring the evolution of
the leading global modes. Figure 15(a) shows the growth rate ωi for three least stable
modes for β = 1. Two of them become unstable in the plotted range of Re. The first
branch becomes unstable at Re ≈ 1500 while the second one presents a critical Reynolds
number equal to Re ≈ 1700. This is fully compatible with the impedance predictions
corresponding to branches H2 and H3 discussed in the previous section.

Figure 15(b) displays the oscillation rate ωr for the same three modes. The three
branches display an almost constant value of the radius-based Strouhal number Ω. The
values for the unstable modes are Ω ≈ 2.1 and Ω ≈ 4.2, in perfect accordance with the
expected values for modes H2 and H3.

Note that figure 15(a− b) displays the existence of a third branch of eigenvalues which
is always stable. The corresponding frequency is observed for Ω ≈ 0.5, which corresponds
to a value for which the first ”loop” of the Nyquist curve comes close to zero, but does
not encircle it. This allows to identify this mode with the ”H1” mode which was missing
in fig. (13). This mode actually exists as a global mode but remains stable for all values
of Re and β in the investigated range.
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Figure 15. (up) Nondimensional growth rates Ωi = (Rh/UM )ωi and (down) nondimensional
oscillation rates Ωr = (Rh/UM )ωr as function of Re, computed through the linear stability
approach (lines) and the order-one expansion based on impedance predictions (symbols).

As discussed in sec. 2, in addition to providing an instability criterion, knowledge of
the impedance for real ω also provides an estimation of the eigenvalues associated to the
purely hydrodynamical instability valid in the case where ωi is small. To demonstrate this,
we have plotted with symbols in figure 15(a) the prediction of the asymptotic formula
(2.8). As can be seen, this formula coincides very well with the numerically computed
eigenvalues, but deviations are observed as soon as the dimensionless growth rate exceeds
a value of about 0.1.

6.2. Eigenmodes and adjoint-based sensitivity

We now depict in the upper part of figure 16 the structure of the unstable modes
computed for Re = 1500 and Re = 1700, respectively. We display the pressure component
(a, e) and the axial velocity component (b, f) using the same representation as for the
forced structures in figure 11.

The structure of the modes are dominated by axially extended stream-wise velocity
disturbances located downstream of the aperture and is indeed very similar to the
structures obtained in the linearly forced problem. Note that the levels of the pressure
components are now tending to zero both upstream and downstream, in accordance with
the boundary conditions expected for the purely hydrodynamical instabilities. Apart
from this, the eigenmode H2 has strong similarities with the corresponding mode in the
forced case previously plotted in figures 11 and 12.

Finally, figure 17 completes the description of the eigenmodes by a plot of their
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Figure 16. Structure of the unstable eigenmodes H2 for β = 1;Re = 1500 (a, b) and H3 for
β = 1;Re = 1570 (c, d). Left column : pressure component ; right column : axial velocity
component.

Figure 17. Structure of the adjoint eigenmodes (a, c) and structural sensitivity fields (b, d)
associated to the eigenmodes plotted in figure 16.

associated adjoint fields and structural sensitivities. The adjoint modes (plots a, b) show
that the region of maximum receptivity to momentum forcing is localized near the leading
edge of the hole. The spatial oscillations develop in the upstream region. The distribution
of the adjoint fields are also preserved over the range of Reynolds numbers investigated
here.

The sensitivity is displayed by plotting the quantity Sw corresponding to the norm of
the structural sensitivity tensor defined by eq. (3.13). The sensitivity for both eigenmodes
is essentially localized along the shear layer detaching from the upstream corner of the
hole. This confirms that the region responsible for the instability mechanism is the
boundary of the recirculation bubble formed within the thickness of the plate.

The fact that recirculation regions can lead to global instabilities is not surprising,
and has actually been observed in a number of related studies considering recirculation
bubbles along a flat wall (Hammond & Redekopp 1998; Rist & Maucher 2002; Avanci
et al. 2019) or after a bump (Ehrenstein & Gallaire 2008) or a backward-facing step
(Lanzerstorfer & Kuhlmann 2012). In the cases where the bubble has a long extension,
the instability mechanism can be explained by inspecting the local velocity profile, which
indicate the presence of a region of inflectional absolute instability (in the sense of
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Huerre & Monkewitz (1990)). The studies cited above all indicate that this kind of
instability is expectable when the recirculation velocity Umax is about 0.15 times the
outer velocity, which is in good agreement with our findings (see figure 6a). Recent
work have also identified that separation bubbles can sustain several unstable modes
(Ehrenstein & Gallaire 2008) quantified by the number of vortical structures within the
recirculation bubble, again in agreement with our findings. These arguments suggest that
the present purely hydrodynamical instability belongs to the same class of global self-
sustained instabilities. However, local arguments based on the inspection of the velocity
profiles and identification of an absolute region cannot explain an important feature,
namely the fact that the instability only exists with boundary conditions p′in = p′out and
disappears when the condition is changed to q′ = 0.

Interestingly, the structural sensitivity also reaches significant levels in a second region
located downstream of the aperture, especially for the mode H3. Note that a similar
feature was also observed for instabilities of co-flowing jets (Canton et al. 2017). This
result indicates that a positive instability feedback enhancing the instability mechanism
may also come from the downstream region. This finding may be linked to the role of
wavepackets propagating along the shear layer bounding the jet on the emergence of
self-sustained oscillations Schmidt et al. (2017).

7. Comparison with previous studies

In this section we review existing results obtained experimentally of numerically for
configurations approaching the one investigated here. Compared to the large amount
of literature devoted to the related situation of grazing flow over a perforated plate (a
situation directly relevant to acoustic liners, see the literature cited in the introduction
of Fabre et al. (2019)), a much more limited number of studies have considered the
flow through apertures (bias flow) and among them most have considered either a large
plate perforated by an array of apertures, or a single constriction in a long pipe with
a constriction ratio d/D (where d = 2Rh is the constriction diameter and D the pipe
diameter) in the range [0.5, 0.8]. Due to these different geometries, direct comparisons of
impedances with our results are not possible, but a comparison of the range of frequencies
leading to unstable behavior leads to very good agreement.

Among the studies considering a multiply perforated plate, Jing & Sun (2000) mea-
sured experimentally the impedances for several configurations with variable hole thick-
ness parameter β = Lh/(2Rh). Their results for the case β = 1.2 (see their figure
10) indicate negative impedances in a range of Mach number M ∈ [0.18, 0.22] which
corresponds to StL ∈ [0.24, 0.3]. This range of frequencies is in good accordance with the
value StL ≈ 0.25 associated to the conditional instability C1 found in our study. Note
that their experiments correspond to a value of the Reynolds number Re ≈ 2000, in the
same range as our study.

The experiment by Su et al. (2015) also reports, for β = 0.5, (see their figure 12)
substantially negative impedances for values of the Strouhal number (based on diameter
) larger than 2.8. When translated into our set of parameters, this corresponds to Ω ≈ 1.4
or StL ≈ 0.23. This is again in good agreement with the C1 conditional instability
frequency range.

Next, Moussou et al. (2007) investigated experimentally a long pipe fitted with a
constriction for a number of values of the constriction ratio and the thickness ratio β.
The observe that the conditional instability criterion ZR > 0 (or arg(B) > π/2 using their
notations) is verified in a range StL ≈ [0.2, 0.25], again in good agreement with the C1
conditional instability frequency range. Furhermore, in several cases (especially β = 0.4
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and 0.5) they observe a second range of frequencies StL ≈ 0.7 where the instability
criterion is met. This second range is in good accordance with the C2 conditional
instability frequency range.

Apart from impedance measurements in a forced case, a number of experimental works
have observed spontaneous whistling in an unforced case and reported the corresponding
Strouhal numbers. Testud et al. (2009) report values in the range [0.2-0.3], while Anderson
(1954) recorded values in the range [0.26,0.29]. All these values are again in good
agreement with our own results.

A next highly relevant work, considering again the configuration of a pipe with a
single constriction, is the numerical study of Kierkegaard et al. (2012) based on LNSE. As
discussed in the introduction, despite the similar approach, a number of differences in the
staring hypotheses makes a direct comparison with our own study difficult. However, it
must be emphasized that their results (presented in terms of scattering matrix formalism
instead of the impedance) predict an energy amplification for StL ∈ [0.26, 0.29] (see their
fig. 9), again in excellent agreement with our results. They further elaborate a Nyquist-
based instability criterion incorporating the properties of the whole system (including
acoustic reflexion at the pipe extremities). This criterion shows that, for given dimensions
of the hole (namely d/D = 0.0.63 and β = 0.27), the dimension of the downstream pipes
may render the whole system instable (case A) or stable (cases B and C). This conclusion
is fully consistent with our characterization of the instability as a conditional instability.

Finally, the branch H2 indicates the existence of a purely hydrodynamical instability
associated to an almost constant value of the Strouhal number StL ≈ 0.65 in the whole
range β ∈ [0.4, 1.5]. This implies that a jet through a hole joining two open domains
would spontaneously whistle at such frequencies, even in the absence of any acoustic
resonator. We are not aware in the recent literature of such an observation, as in all
the cited works the hole was fitted at the outlet of a long pipe which played the role
of the acoustic resonator needed for conditional instability. To our knowledge, the only
observation of the whistling flow through a large plate is the work of Bouasse (1929). This
author indeed reported that the whistling frequency is proportional to the hole thickness,
but unfortunately did not express this result in terms of a Strouhal number.

8. Conclusions and perspectives

In this paper, we investigated the unsteady behavior of a laminar viscous jet through
a circular aperture in a thick plate, using Linearized Navier-Stokes Equations (LNSE).
This method allows us to compute the impedance of the flow, which provides useful infor-
mation on the coupling between the flow and the acoustic waves, and on the prediction
of the stability or instability of the system. Impedance calculations allowed us to map
the regime of existence of two kind of possible instabilities: (i) a conditional instability
associated to an over-reflection of acoustic waves, and (ii) a purely hydrodynamical
instability associated to the spontaneous self-oscillation existing in the absence of any
incoming acoustic wave. Both these instabilities can be predicted in a simple way by
plotting the impedance in a Nyquist diagram.

The main outcome of our study is the parametric study of sec. 5.3 providing a
cartography of the regions of instability as function of the Reynolds number and the
aspect ratio β of the hole. The zero-thickness case (β = 0) is stable in accordance with
previous studies. For β & 0.1 we observe conditional instabilities in several frequency
intervals, the preferred mode of conditional instability (C1) for short holes corresponds
to a Strouhal number St ≈ 0.25, a value for which experimental observations confirm
the existence of an instability mechanism coupling the jet to its acoustic environment.
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The purely hydrodynamical instability, on the other hand, is observed for longer holes
(β & 0.5) and higher Reynolds numbers (Re & 1500). The preferred mode for β ≈ 1 is
associated to a higher value of the Strouhal number, namely St ≈ 0.65.

In addition to the characterization of both type of instabilities through impedance
calculations, we conducted a standard linear stability analysis (based on the computation
of eigenvalues) which confirmed the range of existence of the purely hydrodynamical in-
stability and allowed to characterize the spatial structure of the eigenmodes. Downstream
of the aperture, the eigenmodes are characterized by a strong spatial amplification due to
the convectively unstable nature of the jet. The instability mechanism is better revealed
by inspecting the adjoint eigenmodes and the adjoint-based structural sensitivity, which
reveal that the core of the instability mechanism lies in the shear layer detaching from
the upstream edge of the hole. This observation suggests that the recirculation region
existing within the thickness of the hole plays a key role.

By considering a locally incompressible flow and an idealized geometry corresponding
to a circular hole with sharp corners connecting two domains of large extension, we have
been able to focus on the hydrodynamical aspects of the whistling jet phenomenon, and
characterize them without any precise reference of the acoustic environment. However, the
study shows that the first to emerge is the conditional one. We thus plan to continue this
study considering more realistic situations involving a resonator. Three configurations are
particularly interesting. The first is the case where the upstream domain is a closed cavity
acting as a Helmholtz resonator. The second is the case where the hole is fitted at the
outlet of a long pipe. This configuration is called the Pfeifenton and has made the object
of investigations in the 1950’s (see Anderson (1954)) which have to be reconsidered in
view of the present model. The last one is the hole-tone configuration corresponding
to a jet passing through two successive holes. NLSE has been recently applied to this
case (Longobardi et al. 2018) considering both a fully compressible approach and an
”augmented incompressible approach” in which resonators are modeled by equivalent
impedances. Such an approach is a promissing one for the whole class of problems
considered here, and more generally for the study of musical instruments (Fabre et al.
2014).

Aside from the characterization of the conditional instability in more realistic ge-
ometries, future works should be conducted to confirm the existence of the purely
hydrodynamical instability in absence of acoustic resonators. To our knowledge, the only
reporting of a whistling jet in the case of a hole connecting two open domains of large
dimensions is the work by Bouasse in the 1920’s. Experiments and numerical simulations
should be conducted in this range to confirm our predictions.

Finally, since our study points out the important role of the shear layer formed at
the upstream corner of the hole, future experimental and numerical studies should pay
special attention to the sharpness of this corner. A preliminary study using LNSE and
considering rounded corners indeed reveals that even a very small radius of curvature
notably delays the onset of instabilities.

Appendix A. Link between impedance and reflection coefficient

The objective of this appendix is to establish the link between the impedance of the
aperture and the reflection coefficient of an acoustic wave. For this purpose, we will per-
form an asymptotic matching between the incompressible ”inner” solution investigated
in the main part of the paper and a compressible ”outer solution” expressed in terms of
spherical acoustic waves.

We thus consider an outer solution composed in the upstream domain of an incident



Impedance and instabilities of the flow through a circular aperture 27

convergent spherical wave of amplitude A and a reflected divergent spherical wave of
amplitude B, and in the downstream region of a transmitted spherical diverging wave
of amplitude C. We use spherical coordinates and assume a pressure field p′(rs, t) and
a velocity field u′ = u′rs(rs, t)ers where rs =

√
r2 + x2 is the spherical radial coordinate

and ers is the unit vector in the radial direction. The pressure and axial velocity fields
have the classical expressions:

p′(rs, t) =


A

rs
e−i(krs+ωt) +

B

rs
ei(krs−ωt) x < 0;

C

rs
ei(krs−ωt) x > 0.

(A 1)

u′rs(rs, t) =


A

iρω

(
1

r2s
− ik

rs

)
e−i(krs+ωt) +

B

iρω

(
1

r2s
+
ik

rs

)
ei(krs−ωt) x < 0;

C

iρω

(
1

r2s
+
ik

rs

)
ei(krs−ωt) x > 0.

(A 2)

where k = ωc0 is the acoustical wavenumber and c0 is the speed of sound. The inner
limit (rs → 0) of this outer solution can be expressed as follows:

p′(rs, t) ≈


(

(A+B)

rs
+ ik(B −A)

)
e−iωt x < 0;(

C

rs
+ ikC

)
e−iω x > 0.

(A 3)

u′rs(rs, t) ≈


(A+B)

ρiωr2s
e−iωt x < 0;

C

ρiωr2s
e−iωt x > 0.

(A 4)

The outer limit of the inner solution (i.e the incompressible solution considered in the
main part of the paper) is a spherical source (resp. sink) of flow rate q′ in the downstream
(resp. upstream) domain and reads:

u′rs(rs, t) ≈


−q′

2πr2s
e−iωt x < 0;

q′

2πr2s
e−iωt x > 0.

(A 5)

p′(rs, t) ≈


(
p′in +

ρiωq′

2πrs

)
e−iωt x < 0;(

p′out −
ρiωq′

2πrs

)
e−iω x > 0.

(A 6)

Note that the latter expressions comprise both the constant levels p′out, p
′
in and a

subdominant term proportional to 1/rs which was not mentioned in the main part
of the paper. The latter corresponds to the pressure field associated to an unsteady
incompressible source/sink.

The matching is done by identifying the coefficients of similar terms in Eqs. (A 3),
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(A 4), (A 5), (A 6). This leads to:

(A+B) =
−ρiωq′

2π
, (A 7)

ik(B −A) = p′in, (A 8)

C =
−ρiωq′

2π
, (A 9)

ikC = p′out. (A 10)

The two latter relations can be combined with the introduction of the radiation impedance
Zrad:

Zrad =
p′out
q′

=
ρω2

2πc0
. (A 11)

The expressions can be eventually combined to express the amplitude reflection co-
efficient B/A in terms of the hole impedance Zh and the radiation impedance just
introduced:

B

A
=

−Zh
Zh + 2Zrad

. (A 12)

The energy reflection coefficient R is eventually deduced as:

R =
|B|2

|A|2
=

|Zh|2

|Zh|2 + 4Zrad (Re(Zh) + Zrad)
. (A 13)

These expressions yield the following conclusions:
• the energy reflection R is larger than 1 (over-reflexion condition) if and only if

Re(Zh) + Zrad < 0. In dimensionless terms, this leads to

ZR +
MΩ2

2π
< 0

(where M is the Mach number), which reduces to the simpler condition ZR < 0 given in
sec. 2 in the limit M � 1.
• B/A is infinite if and only if Re(Zh) + 2Zrad = 0. The situation B/A = ∞

corresponds to a situation where a wave is emitted upstream (B 6= 0) in the absence of
an incident wave (A = 0), hence to a spontaneous self-oscillation associated to emission
of sound both upstream and downstream. We recognize the definition of the purely
hydrodynamical instability described in sec. 2. In dimensionless terms, the condition
leads to

Z +
MΩ2

π
= 0

which reduces to the simpler condition ZR = ZI = 0 given in sec. 2 in the limit M � 1.
Note that the assumption of an incident converging spherical wave coming from a

semi-infinite space adopted here is questionable; clearly other choices are possible for
modeling the upper domain. For instance, the case where the upper domain is a long
pipe of radius Rp � Rh and the incident wave is a plane wave can also be considered,
and the analysis leads to practically identical conclusions.

Appendix B. Details on the complex mapping technique and mesh
validations

As identified in Fabre et al. (2019), a severe numerical difficulty arises in the solution
of the LNSE equations (for both forced and autonomous problems) due to the strong
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Lout Rout LM LC LA γc RM RA xmax rmax δM Adapt. Nv

M1 15 15 0 2.5 17 0.3 5 17 503+149i 337 1 BF+F 19320
M2 20 15 5 1 – 0.5 – – 20+8i 15 0.5 BF+M 19075
M3 30 20 – – – – – – 30 20 1 BF+M+A 30695
M4 60 20 – – – – – – 60 20 0.25 BF+F 49999

Table 1. Description of meshes M1-M4 built for β = 1 following four different strategies.
[LM , LC , LA, γc, RM , RA] : parameters defining the coordinate mapping. [xmax, rmax]: effective
dimensions in physical coordinates. δM : prescribed value of the maximum grid step. Adapt.: mesh
adaptation strategy (see text). Nv : number of vertices of the mesh obtained at the outcome of
the adaptation process.

spatial amplification of linear perturbations. In this previous paper, usage of a complex
coordinate mapping was proposed as an efficient way to overcome this difficulty. Fabre
et al. (2019) demonstrated that in conjunction with mesh adaptation, this method allows
both to significantly reduce the required number of mesh points and to extend the range
of application of the LNSE up to Re ≈ 3000.

In this appendix we give some details about the implementation and efficiency of this
technique for present study. The technique has been used for both forced (impedance)
and autonomous (eigenvalues) computations, but we only document its performances for
the autonomous problem, restricting to the case β = 1.

In the present paper, the mappings from numerical coordinates (X,R) to physical
coordinates (x, r) are slightly different from the ones used in Fabre et al. (2019), and
defined as follows:

x = Gx(X) = LM + X−LM1−

 X − LM
LA − LM

22

[
1 + iγc tanh

(
X−LM

2LC

)2]
for X < LM ,

= X for LM < X < Lout.
(B 1)

r = Gr(R) = RM +
R−RM[

1−
(
R−RM
RA −RM

)2
]2 for X > 0 and RA < R < Rout,

= R otherwise
(B 2)

Note that the mapping of the x-direction involves both an imaginary part (controlled
by the parameter γc) and a stretching (controlled by the parameter LA.) The difference
with Fabre et al. (2019) is the presence of an additional parameter Lm such that the
complex mapping only applies for x > Lm.

The set of parameters used and the corresponding dimension of the domain in complex
coordinates are reported in table 1.

For validation of the method it is essential to demonstrate that the results are effectively
independent of the values of the parameters. In the present study we have mainly used
two kind of meshes involving complex mapping, with properties detailed in table 1. The
first one, named M1, and already plotted in fig. 3, is very similar to the one used in
Fabre et al. (2019) for the case of the zero-thickness hole. This kind of mesh has been
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Figure 18. (a) Structure of meshes M2 (upper) and M4 (lower) ; (b) pressure component of
the eigenmode H2 as computed using mesh M2 (upper) and M4 (lower).

used for the impedance-based parametric study of sec. 5.3. On the other hand, since the
coordinate mappings applies for x > LM = 0, it is not suited to represent the linear
forced flow and eigenmode structures. The second one kind of mesh, named M2, has
no stretching (thus parameters LA and RA are not relevant) but only complex mapping.
This kind of mesh has been used to plot the structures (figures 8,10 and 14) since complex
mapping only applies for x > LM = 5, outside of the chosen range of these figures. The
two meshes also differ by the mesh adaptation strategy : mesh M1 is adapted to the
base flow for Re = 2000 and two forced flow structures computed for two values of Ω
spanning the range of the parametric study, namely Ω = 0.5 and Ω = 4.5, following the
same strategy as in Fabre et al. (2019). On the other hand, mesh M1 is adapted to the
base flow and the two leading eigenmodes H1 and H2, following the same strategy as in
Fabre et al. (2018).

For validation purposes, we have also designed two meshes M3 and M4 which do not
involve coordinate mapping. These meshes are designed with a longer axial dimension
Lout, and are characterized by a larger number of vertices.

Figure 18(a) displays the structure of meshes M2 and M4. It is found that the mesh
adaptation strategy used for mesh M2 is most efficient to concentrate the grid points in
the most significant regions of the flow (inside the hole) while M4 concentrates a much
larger number of points in the far downstream regions.

Figure 19 superposes the numerically computed spectra using meshes M1, M3 and
M4 for Re = 1700 and 2000. As usual, along with the eigenvalues of the proper global
eigenmodes H1, H2, H3, the spectra display a large number of so-called ”artificial
eigenvalues”. As can be seen, both meshes M3 and M4 lead to the presence of artificial
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Figure 19. Spectra computed with three different meshes : × (red online): mesh M1 (complex
mapping); ∗ (green online): mesh M3 (no mapping, Xmax = 30); + (blue online): mesh M4 (no
mapping, Xmax = 60). (a): β = 1;Re = 1700 ; (b): β = 1;Re = 2000

Re = 1600
H1 H2 H3

M1 -0.1176i + 0.5000 0.0809i + 2.1007 -0.0942i + 4.1245
M2 -0.1164i + 0.5014 0.0813i + 2.1108 -0.0925i + 4.1207
M3 -0.1259i + 0.5017 0.13916i + 2.1051 -0.1051i + 4.1359
M4 -0.1189i + 0.5017 0.0840i + 2.0953 -0.1955i + 4.0984

Re = 2000
H1 H2 H3

M1 -0.0450i + 0.5610 0.3010i + 2.2434 0.2408i + 4.3205
M2 -0.0438i + 0.5619 0.3042i + 2.2476 0.2427i + 4.3170
M3 -0.0421i + 0.5645 0.3114i + 2.2467 0.2287i + 4.3268
M4 -0.0420i + 0.5628 0.2965i + 2.2399 0.1232 + 4.2807

Table 2. Eigenvalues computed with four different meshes for Re = 1600 and Re = 2000
(β = 1)

modes in the unstable part (ωi > 0) of the complex plane, and as the Reynolds number is
increased they come dangerously close to the physical eigenvalues. On the other hand, the
complex mapping used for mesh M1 results in a good separation between the physical
eigenvalues and the artificial ones, which are substantially shifted in the stable part
(ωi < 0) of the complex plane. Note, however, that use of the complex mapping does not
allow to compute the complex conjugates of modes H1, H2, H3 located in the ωr < 0
half-plane. For reasons discussed in Fabre et al. (2019), using a complex mapping with
γc > 0 only allows to suppress the spatial amplification of linear forced structures (or
eigenmodes) with ωr > 0. Instead, choosing γc < 0 would give access to the other half of
the spectrum.
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Table 2 displays the eigenvalues associated to H1, H2, H3 computed for Re = 1600
and 2000 using all meshes considered here. The table confirms that the results obtained
using complex mapping are independent upon the values of the parameters (value for
M1 and M2 are very close to each other despite the fact that the parameters are very
different). They also show that the meshes M3 and M4 are less reliable despite the fact
that they contain a larger number of vertices.

Finally, figure 18(b) depicts the structure of the eigenmode H2 computed using meshes
M2 and M4 for Re = 1600. As the complex mapping for mesh M2 only applies for
x > Lm = 5, the structure for x < Lm is expected to be identical as when computed
without this method. The figure confirms that this is effectively the case. On the other
hand, for x > Lm the eigenmode computed in physical coordinates still displays a spatial
amplification up to a very large downstream distance. On the other hand, the complex
mapping results in a suppression of this spatial amplification.

Note that figure 18(b) makes use of a nonuniform colormap by plotting fS(p′) as ex-
plained in sec. 5.1. Without this trick it would be impossible to give a good representation
of the structure, as the maximum values p′ are of order 1.8 · 103 and 3 · 105 for M2 and
M4, respectively. Hence use of the complex mapping limits the round-off errors due to
the very large maximal levels reached far downstream. Note that on the other hand, this
visualization method enhances the numerical imprecision in the external parts of the flow
(|R| > 2) where the mesh is less refined (but where mesh refinement is not necessary for
accurate computation of the eigenvalues).
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