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second aperture, a configuration known as “hole-tone” and encountered for instance in tea
kettles (Henrywood & Agarwal 2013) and birdcalls (Fabre et al. 2014). The generation of
vorticity is also an efficient mechanism to dissipate the acoustic energy. As a consequence,
the use of multiply perforated plates traversed by a mean flow (or bias flow) is widely
used as a sound attenuator device in many industrial applications, such as combustion
system (Hughes & Dowling 1990; Rupp et al. 2012).

The unsteady, periodic flow through a circular hole in a zero-thickness plate was
initially solved by Rayleigh (1945) using inviscid, potential theory. The key result of
his solution is the proportionality between the net pressure force felt from both sides of
the hole and the acceleration of the fluid, so that the whole situation can be modeled by
assuming that there is a rigid plug of fluid, with area Ah = πR2

h and equivalent length
`eff , oscillating across the aperture, where Rh is the radius of the hole.

The case where the flow has a mean component (or bias flow) in addition to the
oscillating component was considered by Howe (1979). He introduced a key quantity, the
Rayleigh conductivity KR, defined as the ratio of the acceleration of the fluid particles
located within the aperture to the net force exerted on it. The real part of the conductivity
generalizes the concept of equivalent length `eff previously introduced by Rayleigh, while
its imaginary part is directly proportional to the flux of energy transferred from the
imposed oscillatory flow to the jet. Under the hypothesis of high Reynolds number, low
Mach number, and assuming that the oscillating flow is of small amplitude with respect
to the mean (or bias) flow, Howe derived a theoretical model describing the vorticity shed
at the rim of the aperture and predicting the real and imaginary parts of the conductivity
by analytical formulas. The main features and caveats of the Howe model will be reviewed
in section 2.5.

In the recent years, a number of studies have considered the interaction between
acoustics and perforated plates in more complex situations including multiple holes
(Hughes & Dowling 1990), turbulent flows either parallel or tangential to the plates
(Eldredge et al. 2007) or additional physical effects such as thermoacoustic instabilites
(Rupp et al. 2012). In the case where the thickness of the hole is not small compared to
its radius, results substantially deviate from Howe’s predictions, and a number of studies
have proposed improvements of the original model to enlarge its range of validity (Bellucci
et al. 2004; Jing & Sun 2000; Yang & Morgans 2017). In the case where the amplitude of
the oscillating flow becomes comparable to that of the mean flow, nonlinearities also lead
to substantial deviations (Jing & Sun 2002; Scarpato 2014). However, in the case of small-
amplitude oscillations and short holes, the Howe model still constitutes the cornerstone
for theoretical modelling of such flows (Scarpato et al. 2012).

In view of the above discussed literature, we can note that all available theoretical
model are of inviscid nature and describe the vorticity production in terms of vortex
sheets, thus these models are expected to be relevant only in the large-Reynolds limit.
An alternative way, which allows to incorporate viscous effects in a rigorous way and
to consider arbitrary values of the Reynolds number, is to use Linearized Navier-Stokes
equations (LNSE). A number of studies have considered jet flows under this framework
(Garnaud et al. 2013; Schmidt et al. 2017). However, the focus of these studies was to
characterize the spatial amplification properties of the jet (Garnaud et al. 2013) and the
sound radiation in the downstream domain due to vortex-shedding effects (Schmidt et al.
2017), which is a different question as the one we are considering here. Moreover, these
works considered a jet with imposed outlet velocity profile and did not consider the whole
process of formation of a jet through a plate from an upsteam domain to a downstream
one, which is a necessity to correctly treat our problem.

The objectives of the present paper can thus be summarized in three main points.
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(i) First, we wish to design a numerical approach based on Linearized Navier-Stokes
Equations, to compute the Rayleigh conductivity of the flow through a hole at arbi-
trary Reynolds number. As the jet is strongly convectively unstable due to the Kelvin-
Helmholtz instability, it is difficult to design a method capturing both the spatial growth
of perturbations in the axial direction, which can reach huge levels when the axial
distance and the Reynolds number are large, and the coupling between the flow rate
and the pressure jump, which is relevant when considering the possible coupling with
an acoustical system. Due to these difficulties, previous studies which have used LNSE
remained limited to Reynolds number in the range Re < 1000 (Garnaud et al. 2013). We
will introduce an original method, based on a change of variable of the axial coordinate
x in the complex plane, which allows to perform accurate computations up to Re = 104.

(ii) Secondly, we wish to reconsider the case of a hole of zero thickness initially
investigated by Howe. We document the structure of base flow, with particular focus on
the vena contracta phenomenon. We then describe the spatial structures corresponding to
the linear response of the jet to harmonic forcing. The velocity and vorticity components
of these structures allow to describe the spatial amplification by the jet, while the pressure
components give access to the Rayleigh conductivity. We will compute and display the
Rayleigh conductivities (as well as the equivalent concept of impedance) as function of
forcing frequency and Reynolds number in the range 102 − 104 and compare with the
inviscid predictions of Howe.

(iii) Finally, the third objective is to assess the validity of the linearized Navier-Stokes
Equations with respect to perturbations of finite amplitude ε. For this purpose, we
will conduct a Direct Numerical Simulation (DNS) of the forced axial−symmetric
Navier−Stokes equations in the range ε = [10−4 − 10−1]. Results show that the
impedances are effectively well predicted by linearized Navier−Stokes equations (LNSE)
up to ε = 10−1, despite the fact that the evolution of vorticity perturbations in the jets
are strongly nonlinear.

As briefly discussed in the bibliographical review, in the case where the plate is not
thin and the holes are sufficiently long, different mechanisms take place and the jet can
cease to act as a sound damper to become a sound generator (Jing & Sun 2000; Yang &
Morgans 2017). The conductivity/impedance concepts are useful tools to characterize the
mechanisms in this case. A full characterization of the impedance of finite-thickness holes
using the method introduced here as well as a discussion of impedance-based instability
criteria will be presented in a forthcoming paper.

2. Problem definition and review of inviscid models

2.1. Problem definition

The situation considered here is the flow of a viscous fluid of density ρ and viscosity
ν through a circular hole or radius Rh and area Ah = πR2

h inside a planar thin plate of
thickness negligible respect to the radius, connecting an inner and an outer open domain,
as shown in figure 1. We note Q the mean volumetric flow rate across the aperture, and
from that later quantity we classically define the mean velocity as UM = Q/Ah. Thus
the Reynolds number of the flow is defined as:

Re =
2RhUM

ν
≡ 2Q

πRhν
. (2.1)
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2.2. Steady flow

The steady flow corresponding to the present situation is globally characterized by
the mean pressure drop [Pin − Pout] and the mean flow rate Q. In the inviscid case,
a classical model to relate these quantities was proposed by Levi−Civita and Prandtl.
The model consists of a vortex sheet formed at the hole and surrounding the jet (see
figure 1). After several diameters, the jet becomes parallel, but with a radius RJ smaller
than that of the hole. We classically call the ratio of surfaces α = (πR2

J)/(πR2
h) the

vena contracta coefficient. This coefficient is classically associated to the pressure loss
across the aperture. Assuming a constant velocity UJ inside the jet (see figure 1), the
conservation of flux through the hole leads to Q = πR2

JUJ = πR2
hU

2
M . Applying the

Bernoulli theorem along streamlines passing through the hole thus leads to

[Pin − Pout] =
ρU2

J

2
=
ρU2

M

2α2
, (2.4)

that links the pressure jump across the hole and the mean velocity (or flow rate) inside it.
Theoretical inviscid calculations by Prandtl and Levi−Civita provided the value α = 0.5,
that represents also the lower limit for this coefficient. Smith & Walker (1923), instead,
estimated the vena contracta coefficient α = π/(2 + π) ≈ 0.611 for round inviscid jets
discharging in open spaces. This value has been found to agree very well with experiments
(Cummings & Eversman 1983) and numerical calculations (Scarpato et al. 2011) at very
high Reynolds number.

2.3. Unsteady flow : Conductivity and Impedance concepts

We now consider the relationship between the pressure jump and the flow rate in the
unsteady case, under the hypothesis of harmonic perturbations 2.3. As explained in the
introduction, the Rayleigh conductivity (KR) is defined as the proportionality coefficient
between the acceleration of the fluid particules located within the hole and the pressure
jump across the hole. More specifically,

KR =
−iωρq′

(p′in − p′out)
. (2.5)

The conductivity is, in the general case, a complex quantity, and has the dimension of
a length. Following Howe, it is classically noted KR = 2Rh(γ − iδ). The real part γ
represents the inertia of the system, while the imaginary part δ is directly related to the
average value of the power absorbed by the hole. In effect, for harmonic perturbations
described with the convention (2.2), the power is given by

〈Π〉 =
〈
([p′in − p′out]e−iωt + c.c.)(q′e−iωt + c.c.)

〉
= 2<([p′in − p′out]q̄′) (2.6)

Where the brackets < · > represent the averaging over a complete period of oscillation
2π/ω, < means the real part and the overbar denotes the complex conjugate. Using the
definition of the conductivity, this formula directly leads to

〈Π〉 =
4Rhδ
ρω
|p′in − p′out|2. (2.7)

So, when δ > 0, this term represents a resistance (or the ability to absorb acoustic
energy), meaning that exciting the jet at a given frequency necessitates the provision of
energy by an outer system.

As an alternative to the Rayleigh conductivity, we can also define the impedance of the
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aperture (Zh) as the ratio between the pressure jump and the flow rate:

Zh =
(p′in − p′out)

q′

(
−iωρ
KR

)
(2.8)

The impedance is also a complex quantity, with physical dimension Mass ·Length−2 ·
Time−1. In the following we decompose it as

Zh =
ρUM
R2
h

(ZR + iZI) , (2.9)

where ZR is the dimensionless resistance and ZI is the dimensionless reactance. It is easy
to verify that the equation (2.6) for the power absorbed by the hole can be written as
function of ZR as follows:

〈Π〉 = 2
ρUM
R2
h

ZR|q′|2, (2.10)

The Rayleigh conductivity and the impedance are conceptually and practically in-
terchangeable quantities, and both have been used in the literature to characterize the
interaction of a jet flow with acoustic fields. In the case of thin holes holes acting as a
sound attenuators, most authors have used the conductivity as initially introduced by
Howe. On the other hand, in cases where the jet can act as an energy source for external
acoustic systems and lead to instabilities, it proves to be more convenient to employ the
impedance (Fabre et al. 2014; Yang & Morgans 2016). In the present paper, we will use
both concepts. A more detailed discussion of impedance-based instability criteria and a
parametric study of the impedance of long holes will be given in a forthcoming paper.

2.4. The classical Rayleigh solution in the absence of mean flow
The problem initially solved by (Rayleigh 1945) is the simplest situation corresponding

to the absence of mean flow. In this case, the problem admits an analytical solution
under the framework of potential flow theory. This solution yields a direct proportionality
between the flow acceleration and the pressure jump, namely

(p′in − p′out) = − iρω
2Rh

q′. (2.11)

The classical interpretation of this result is that the fluid in the vicinity of the hole
behaves as a simple solid plug with mass m = ρπR2

h`eff oscillating across the hole,
where `eff is the equivalent length of the plug given by `eff = πRh/2.

When reformulated in terms of conductivity (resp. impedance) and using the nodi-
mensionalization choices introduced in the previous section, the Rayleigh solution thus
corresponds to γ = 1; δ = 0 (resp. ZR = 0;ZI = −iΩ/2). An obvious consequence is that
under this model, the power absorbed by the hole predicted by (2.10) is exactly zero.

2.5. Review and criticism of Howe’s inviscid model
We now review and and discuss in more detail the classical model of Howe already

mentioned in the introduction. Howe models the jet as a cylindrical vortex sheet of
constant radius Rh formed at the rim of the aperture. He subsequently assumes a vorticity
perturbation of this vortex sheet with the form

ξ′ = σH(x)δ(r −Rh)exp [−iω(t− x/Uc)] , (2.12)

where δ and H are respectively the Dirac and Heavyside functions, Uc the assumed
convection velocity of vorticity structures, and σ the amplitude of the vorticity perturba-
tion. This later parameter is determined by imposing a Kutta condition (Crighton 1985),
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requiring finite velocity and pressure fluctuations an the rim of the hole. Starting from this
point, and going through a series of very technical mathematical transformations, Howe
was eventually able to predict the Rayleigh conductivity under the following analytical
form:

KR = 2Rh(γ − iδ) = 2Rh

{
1 +

(π/2)I1(ΩH)e−Ω
H − iK1(ΩH) sinh(ΩH)

ΩH [(π/2)I1(ΩH)e−ΩH + iK1(ΩH) cosh(ΩH)]

}
, (2.13)

where I1 and K1 are the order one modified Bessel functions of respectively first and
second kind and ΩH = ωRh/Uc is the Strouhal number.

Despite its mathematical rigor, a number of starting hypotheses of the Howe model
are questionable. The main caveats of the model can be summarized in four points:
• First, the study models the mean flow as a cylindrical vortex sheet with constant

radius Rh, hence completely overlooks the vena contracta phenomenon discussed above.
In a subsequent step of his analysis (page 215 of his paper), Howe intended to incorporate
partially this effect in his model, but this a posteriori modification remains imperfect.
• Secondly, Howe’s model assumes that the perturbation affects only the strength of

the vortex sheet but not its location, so that the perturbed vortex sheet is assumed to
remain perfectly cylindrical. A better starting point would be to assume a vortex sheet
with location given by (see figure 1):

rJ(r) = RJ + εη(x, r, t) = RJ + εη′(r)exp [ik(ω)x− iω] , (2.14)

where k(ω) = kr + iki is complex wavenumber which has to be determined as function of
the frequency ω. The inviscid stability analysis of this model is a classical problem whose
solution can be found, for instance, in Batchelor & Gill (1962) or in Abid et al. (1993).
For completeness, this problem is reviewed in the appendix A.
• Thirdly, the starting point of the Howe analysis (2.12) assumes that the perturba-

tions are convected at a constant velocity Uc which is assumed to be half of the centreline
jet velocity UJ . This choice is justified by analogy with the classical result for the Kelvin-
Helmholtz instability of a planar vortex sheet. This choice is a questionable simplification
and it would seem more rigorous to predict Uc using spatial stability analysis of the
cylindrical vortex sheet model, namely Uc = kr/ω. This analysis shows that for small
frequencies the convection velocity is actually closer to UJ than UJ/2 (see appendix A).
• Finally, Howe completely ignores the fact that perturbations of the vortex sheet are

spatially amplified in addition to being convected.
According to the two last criticisms, it would thus seem more appropriate to replace the
starting point (2.12) by the following ansatz:

ξ′ = σH(x)δ (rJ(r)−RJ − εη′(r)exp [ik(ω)x− iωt]) exp [ik(ω)x− iωt] . (2.15)

We have not intended to reconstruct the whole analysis from this modified starting
point, an option which would anyway not address the first criticism discussed above
(vena contracta effect) and would remain limited to the high−Reynolds numbers range.
Instead, our chosen approach to address the problem is to compute the impedance (or
alternatively the conductivity) through a global resolution of the linearized Navier-Stokes
equations (LNSE) for given values of the Reynolds number.
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3. The viscous problem: analysis and numerical method for the linear
approach

3.1. General equations
Taking the diameter of the hole Dh = 2Rh as a length scale and the mean velocity

UM as a velocity scale, the problem is governed by the axial-symmetric incompressible
dimensionless Navier-Stokes equations:

∇ · u = 0

∂tu + (u ·∇)u + ∇p− 1
Re
∇2u = 0

 , (3.1)

where u(x, r, t) = (ux, ur) and p is the reduced pressure. The variable x and r are
respectively the axial and radial coordinate while ux and ur represent the axial and
radial velocity components.

The flow is further decomposed into a base flow (U, P ) associated with the mean flux
Q and a harmonic perturbation ε(u′, p′)e−iωt associated with the oscillating flow rate
q′e−iωt. A crucial hypothesis in this treatment is that the amplitude of the harmonic
perturbation is small, namely ε� 1. Inserting this decomposition into the Navier−Stokes
equations (3.1) and linearizing, two different sets of PDE’s are obtained:
• First, the leading order yields the base flow equations:

∇ ·U = 0

(U ·∇)U + ∇P − 1
Re
∇2U = 0

 . (3.2)

The link between the base flow (U, P ) and the quantities Pin, Pout, Q introduced in §2
is given by the asymptotic matching conditions and flow rate definition as follows:

P (x, r)→ Pin for
√
x2 + r2 →∞ and x < 0, (3.3)

P (x, r)→ Pout for
√
x2 + r2 →∞ and x > 0, (3.4)∫

S
U · ndS = Q, (3.5)

where S is any surface traversed by the flow and n a normal unitary vector oriented in
the direction of the flow.
• Secondly, the ε-order yields the linearized Navier−Stokes equations (LNSE) govern-

ing the perturbation:

∇ · u′ = 0

−iωu′ + (U ·∇)u′ + (u′ ·∇)U + ∇p′ − 1
Re
∇2u′ = 0

 . (3.6)

The link with the quantities p′in, p′out, q
′ introduced in section 2 and allowing to define

the impedance/conductivity is:

p′(x, r)→ p′in for
√
x2 + r2 →∞ and x < 0, (3.7)

p′(x, r)→ p′out for
√
x2 + r2 →∞ and x > 0, (3.8)∫

S
u′ · ndS = q′. (3.9)

Note that, as is customary when dealing with incompressible flows, the pressure is
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defined up to an arbitrary constant. We can choose this constant by setting Pout = 0 and
p′out = 0 in equations (3.4) and (3.8), so that the mean pressure and fluctuating pressure
drops is actually given by [Pin − Pout] = Pin, [p′in − p′out] = p′in.

With the addition of no-slip conditions U = u′ = 0 on the upstream and downstream
surfaces of the plate (noted Γw) and symmetry conditions at the axis (noted Γaxis),
the set of equations (3.2−3.9) completely defines the nonlinear problem allowing to
compute the vena contracta coefficient α and the linear problem allowing to compute
the impedance/conductivity.

In practice, the boundary conditions at
√
x2 + r2 have to be imposed at the boundaries

of a finite computational domain, both upstream and downstream. Treatment of these
boundary conditions requires special attention and is detailed in the next sections.

3.2. Upstream domain
As sketched in figure 1, the upstream domain is expected to originate from an upstream

container of large dimension, and sufficiently far away from the hole. Moreover, the flow
is assumed to be radially convergent. However, in the numerical implementation, it is
required to specify a given geometry for this upstream domain. Here, we chose to assume
that the upstream region is a closed cavity of cylindrical section, with radius Rin and
length Lin. The volumic flux conditions (3.5) and (3.9) are imposed by assuming that
both the base flow and the perturbation velocities are constant along the bottom of the
cavity, noted Γin (see figure 2), i.e.

U = Q/Sinn

u′ = q′/Sinn

}
on Γin, (3.10)

where Sin = πR2
in is the area of the bottom wall. The values ofQ and q′ have been selected

in order to have a mean velocity equal to one into the hole, for both the base flow and
the perturbation. The pressure levels Pin and p′in, which are required for the calculation
of the mean pressure loss (and the vena contracta coefficient) and the impedance (or
conductivity), are extracted by averaging along the inlet boundary :

Pin = 2π/Sin

∫ Rin

0

P (r)rdr

p′in = 2π/Sin

∫ Rin

0

p′(r)rdr

 on Γin. (3.11)

Since the upstream cavity used in our mesh definition is expected to represent an upper
domain of infinite extend, its precise geometry has no real importance, but is dimension
has to be large enough so that the results are independent of this geometry. In practice
we verified that the choice Lin = Rin = 10Rh fulfills this conditions. Finally, at the
lateral wall of the cavity for r = Rin (noted Γlat), we simply choose non-penetration
(ur = 0) and no-stress (∂rux = 0) conditions for both base flow and perturbation. This
condition ensures that the volumic flux imposed at the bottom of the cavity effectively
corresponds with the one traversing the hole preventing the occurrence of an unphysical
boundary layer that would be obtained using a no-slip condition.

3.3. Downstream domain : boundary conditions and change of coordinates
The treatment of the outlet boundary conditions is a delicate point here, as the

structure of the perturbation leads to some difficulties, especially when the Reynolds
number becomes large. In effect, due to the strongly spatially unstable nature of the
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jet, all perturbations are strongly amplified along the axial direction. In particular, the
pressure field p′(x, r) can be reach huge levels (reaching 1015 or even more for Re ≈ 3000)
along the axis (r = 0) for large x, and this conflicts with the necessity of imposing the
boundary condition p′out = 0 at a finite distance xmax corresponding to the boundary of
the computational domain.

To detail the origin of the problem and introduce the idea used to overcome it, let
us review the classical modeling of the Kelvin-Helmholtz instability for a planar shear
layer of zero thickness in the inviscid case. The formal derivation can be found in any
classical textbook on hydrodynamical stability (see for example Drazin & Reid (2004) or
Charru (2011)). Consider as base flow a shear layer separating two regions of constant
axial velocity, namely ux = U for r < 0 and ux = 0 for r > 0. Now assume that the
perturbation consists of a displacement of the shear layer with the form

η(x, r, t) ∝ eikx−iωt, (3.12)

and assume a similar modal expansion for the velocity potential in the upper and lower
regions. Matching the two regions at the interface leads to the classical dispersion relation:

c ≡ ω

k
=

1± i
2

U, (3.13)

In a temporal stability framework, this means that a perturbation with the a real
wavenumber k is convected downstream with a phase velocity U/2 and temporally
amplified with a growth rate Uk/2. On the other hand, in a spatial stability framework
which is more relevant here, a perturbation with real frequency ω will be spatially
amplified downstream with a complex wavenumber k and will diverge at x→ +∞. This
divergence forbids a global resolution of the function η(x, t) when the variable x is real.
However, the problem disappears if we consider an analytical continuation of the function
η(x, t) with a complex variable x. More specifically, as arg(k) = −π/4, the function η(x, t)
becomes convergent as soon as |x| → ∞ in a direction of the complex plane verifying
π/4 < arg(x) < 5π/4. These considerations suggest a possible way to overcome the
problem, namely using a complex coordinate change x = Gx(X) which maps a (real)
numerical coordinate X defined over a finite-size computational downstream domain
X ∈ [−Lin;Lout], onto the physical coordinate x in a way that it enters the complex
plane and follows a direction where the perturbation is spatially damped. Note that
the idea is conceptually similar to the Perfectly Matching Layer (PML) method, which
is a numerical approach largely used in electromagnetics and acoustics to impose non-
reflection boundary condition in wave-propagation problems (see Colonius (2004) for a
complete review).

The coordinate mapping effectively transforms the outlet location X = Lout into a
location x = xmax = Gx(Lout) located into the complex plane. In order for the boundary
conditions at the outlet X = Lout of the computational domain to best represent the
physical boundary condition at |x| → ∞, it is desirable for xmax = Gx(Lout) to be as
large as possible. This can be achieved using coordinate stretching in order to have short
numerical domains and large physical ones.

Combining both ideas, namely stretching and complex mapping, we designed the
following mapping function from numerical coordinate X to physical coordinate x:

x = Gx(X) = X241−

0@ X

LA

1A2352

[
1 + iγc tanh

(
X

2LC

)2
]

for X > 0,

= X for X < 0.

(3.14)
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This function is characterized by three parameters which have the following interpre-
tation. First, the parameter LC controls the transition range from real coordinate to
complex coordinate. For X � LC the mapping is almost identity (Gx(X) ≈ X) so
that the transition with the upstream, unmapped domain is as smooth as possible.
For X ≈ Lc the imaginary part of the corresponding physical coordinate x gradually
increases. For X � Lc the argument of x asymptotes to a constant value, namely
arg(x) ≈ tan−1(γc). The third parameter LA controls the stretching effect associated to
the coordinate mapping. This parameter has to be chosen so that LA > Lout. LA → ∞
means no coordinate stretching, so that the real part of xmax is the same as the dimension
Lout of the computational domain, while if LA−Lout is small the corresponding xmax is
rejected very far away in the complex plane.

Finally, although the issue is less crucial respect to the axial coordinate, we also used
a mapping r = Gr(R) to stretch the radial coordinate from R ∈ [0, Rout] to r ∈ [0, rout]
in order to enlarge the effective radial dimension of the physical domain. Here there is
no point in using a complex deformation, so we used the following mapping function :

r = Gr(R) = RM +
R−RM[

1−
(
R−RM
RA −RM

)2
]2 for X > 0 and R > RA,

= R otherwise

(3.15)

This function leaves the radial coordinate unchanged in the region r < RM where the
jet develops, but it stretches the limit of the domain from Rout to rout = Gr(Rout) which
is very large as soon as RA is close to Rout (with the constraint RA > Rout).

Having explained this change of coordinates, it remains to specify the numerical
boundary conditions effectively used at the boundaries of the numerical domain R = Rout
(corresponding to r = rout) and X = Lout (corresponding to x = xmax). In the framework
of finite elements, the usual way to impose outlet conditions is to take advantage of
the integration by parts leading to the weak formulation. The most natural condition
emerging in this way is the zero-traction condition, namely −pn + Re−1∇u · n = 0. In
the present case, we used the zero-traction condition as an approximation of the physical
condition p = 0 for both the base flow and perturbation computations. This choice is
justified if the viscous stresses are negligible in the vicinity of the boundaries of the
domain, which turns to be the case here.

We stress that using the present method, outflow boundary conditions are effectively
applied at a location xmax located the complex plane. The validity of the method is
not justified by rigorous mathematical argument, but only by the fact that it effectively
works. Detailed validations are given in appendix B.1. of this paper. In particular, we
show that at low Reynolds numbers results obtained with and without complex mapping
are identical, and are independent upon the precise choice of the parameters (γc, LC , LA)
of the mapping function.

Note that the use of complex coordinate mapping for linear problems involving a
single spatial coordinate is customary in stability studies, and mathematical theorems
are available to justify how to chose the integration contour as function of the singularities
of the problem (see for example Bender & Orszag (2013)). On the other hand, its use
for solving a nonlinear problem (i.e. computation of the base flow) involving two spatial
coordinates is totally new to our knowledge.
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mulation is classically obtained by multiplying by test functions [U+
x , U

+
r , P

+] and
integrating over the domain. Note that this integration has to be done over the physical
domain, so in terms of the numerical variables the elementary volume of integration is
dV = 2πrdrdx = 2π(HxHr)−1rdRdX ≡ 2π(HxHr)−1Gr(R)dRdX . After integration by
parts of the pressure gradient and Laplacian terms of the equation (3.17), we are thus
lead to the following weak formulation of the mapped Navier−Stokes equations:

−
∫ [

U+
x (UxHx∂XUx + UrHr∂RUx) + U+

r (UxHx∂XUr + UrHr∂RUr)
]

dV

+
∫ [

P
(
Hx∂XU+

x +Hr∂RU+
r + U+

r /r
)
− P+ (Hx∂XUx +Hr∂RUr + Ur/r)

]
dV

− 1
Re

∫ [
H2
x∂XUx∂XU

+
x +H2

r∂RUx∂RU
+
x

]
dV

− 1
Re

∫ [
H2
x∂XUr∂XU

+
r +H2

r∂RUr∂RU
+
r + UrU

+
r /r

2
]

dV

= 0.
(3.18)

Note that with this formulation, the no-traction boundary conditions at the outlet
boundary, as well as the symmetry condition at the axis and the zero tangential stress
condition at the lateral wall of the cavity are automatically satisfied thanks to the
integration by parts. The other boundary conditions are imposed by penalization. The
weak formulation of the LNSE (3.6) was obtained in a similar way, but we don’t explicitly
report it for sake of brevity.

Once the weak formulation is written, the discrete matrix are assembled using classical
Taylor−Hood (P2, P2, P1) finite elements for the spatial discretization.

The use of mesh adaptation to generate a efficient mesh is done in a way very similar
as explained in Fabre & Citro (2018). The procedure is as follows :

(i) we generate an initial coarse mesh using the Delaunay-Voronoi triangulation of the
domain.

(ii) we use Newton iteration to compute a base flow at a moderate value of the Reynolds
(for instance Re = 10).

(iii) we adapt the mesh to the base flow solution of the previous step and recompute
the base flow on the resulting mesh.

(iv) we repeat points (ii) and (iii) for gradually increasing values the Reynolds number
up Re = 1000.

After this stage, we are guaranteed to have a mesh yielding converged results as for
base flow characteristics.

(v) we solve the linear problem for a value of ω in the range of interest, adapt the mesh
to fit with the corresponding structure, and recompute the base flow on the resulting
mesh.

After this stage, we are ensured to have a mesh yielding converged results for both the
base flow and the perturbation for a given ω. For even better efficiency, it is also possible
to do the last mesh adaptation (v) for two values of ω spanning the range of parameters
in which converged results are expected.

To obtain the results presented in the next sections, two different meshes were designed
in this way. The first mesh, noted M0 is generated without the use of complex mapping,
with a large domain corresponding to Lout = xmax = 80. This mesh was used to compute
impedances at low Reynolds (up to 1000) and to plot the base flow characteristics. The
second, noted M1, uses complex mapping and was used for most results at larger Reynolds
values. The structure of this mesh M1 is illustrated in figure 2

Additional meshes were designed for convergence tests and for demonstrations of the
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Re = 3000 which are representative of this regime. The predictions of the Howe model
are displayed using dotted lines. The comparison shows that, although the curves display
the same general shape, the results differ notably, especially as for the imaginary part
δ (plot b) in the range Ω ≈ 2 where the Howe model underestimates the numerically
computed one by approximately 30%. On the other hand, the model overestimates the
real part γ for Ω . 2 by about 10% and underestimates it for Ω & 2 with the same
amount.

As discussed in paragraph 2.5, the result of Howe is expressed in terms of a nondimen-
sional frequency ΩH = ΩRh/Uc based on the convection velocity of vorticity structures
along the vortex sheet Uc, whose precise value is questionable. In figure 13 we followed
the original choice of Howe Uc = UM which leads to ΩH = Ω. We also tried to compare
the results using improved modelings of Uc, leading only to mild ameliorations of the
accordance.

Finally, a useful quantity which can be extracted from the impedance is the delay angle
of the pressure with respect to the velocity:

φ = arg(Zh) = tan−1

(
ZI
ZR

)
(5.1)

This quantity has been used in a number of experiments, as it allows to discriminate
the cases where the impedance is mainly resistive (φ ≈ 0) from the ones where it is
mainly reactive (φ ≈ −π/2). This quantity is plotted in figure 14, confirming that the
behavior switches from purely resistive to purely reactive as the frequency is increased.
We also observe in this plot a collapse of the curves obtained in the high-Reynolds
asymptotic regime Re & 1500.The angle φ extracted from the Howe model is also plotted
in the figure (note that in terms of conductivity, the definition of φ translates into φ =
π/2 − arg(KR) = −tan−1(γ/δ)). Again, a substantial deviation is observed, especially
in the range of intermediate frequencies Ω ≈ 2 where the deviation can be as large as
π/12 ≡ 15o. Oddly, the inviscid Howe model turns out to give better predictions for the
case Re = 100 than for the high-Reynolds number regime.

5.4. The quasi−static limit for Ω → 0.
We have observed that in the limit of small frequencies (Ω → 0), the impedance

becomes purely real and tends to a constant value. This limit value can be predicted using
a quasi−static approximation, and this property will be used to verify the consistency of
our impedance calculations. As explained in section 2.3 for a steady flow, the pressure
jump and the mean velocity across the hole are related through the Bernoulli equation
which can be written under the form (2.4)

∆p =
ρu2

M

2α2(ReM )
, (5.2)

Assuming ∆p = ∆P + ∆p′ and uM = UM + u′M , inserting into (5.2) with ReM =
(UM + u′M )Rh/ν = Re(1 + u′M/UM ) and linearizing lead to

∆P +∆p′ ≈ ρU2
M

2α2
+
ρu′MUM
α2

(
1− 1

α

∂α

∂Re

)
. (5.3)

Remembering now that ∆P = (ρU2
M )/(2α2), this equation allows to obtain a prediction

for the impedance which is assumed to be valid in the quasi-static limit (Ω → 0):

ZQS =
∆p′

πR2
hu
′
M

=
ρUM
α2πR2

h

(
1− 1

α

∂α

∂Re
Re
)
. (5.4)
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Re ZR(Ω = 10−6) ZQS
ρUM

α2πR2
h

100 0.778957 0.778985 0.784964
500 0.828280 0.828228 0.813912

1500 0.854970 0.854510 0.843178
2000 0.860562 0.868020 0.849696
3000 0.867572 0.866437 0.857986

Table 1. Values of the impedance in the low-frequency range. Comparison of values obtained
numerically with a very small Ω, quasi-static approximation (5.4), and simplified approximation
obtained assuming ∂α/∂Re = 0.

Table 2 compares the impedance computed using the method of the previous section
for a small value of the frequency, namely Ω = 10−6 , to the quasi-static prediction
(5.4) obtained using the base-flow characteristics computed in section 4. One can note
that the results agree with less that 1% of error. Finally, we can note that the term
(1/α)(∂α/∂Re)Re in equation (5.4) is small because α is a slowly varying function of Re.
The fourth column of table 1 gives the prediction of the quasi-static impedance obtained
when neglecting this term. The comparison shows that this simplified prediction is still an
excellent approximation, and slightly overestimates the actual value except for the case
Re = 100, where it underestimates it. This is consistent with the fact that the α − Re
curve reaches a maximum for Re ≈ 120 (see figure 6).

The low-frequency limit was also addressed by Howe in the framework of his model.
A Taylor series of the expression (2.13) leads to δ ≈ πΩH/4 (equation 3.15(b) of
Howe’s paper), which, when expressed in terms of impedance, translates into ZR ≈
(2/π)(Uc/UM ) ≈ 0.637(Uc/UM ). Thus, the choice Uc/UM = 1 made by Howe actually
yields a prediction for ZR which underestimates the High-Reynolds value by approxima-
tively 37%. Note that this mismatch can also be observed in figure 13(b) regarding the
initial slope of the curve δ(Ω). This error in the quasi-static limit may be cancelled using
an ad-hoc choice of Uc/UM , but as previously explained, such a modification does not
improve substantially the accordance in other ranges of Ω.

6. Direct Numerical Simulations of a harmonically forced jet
In order both to validate the linearized approach for small amplitudes and to investigate

the influence of nonlinearities for larger amplitudes, we performed Direct Numerical
Simulations by integrating in time the Navier−Stokes equations (3.1) for a harmonically
forced jet. The DNS are performed using FreeFem++ on the same mesh M0 as used
in the previous section for resolution in physical coordinates (note that the complex
mapping technique is fitted to the resolution of the linearized problem but is not relevant
for nonlinear simulations). The numerical code used for time-integration is very similar
to the one used by in Marquet et al. (2008). The equations are advanced in time using
a partly implicit second−order accurate scheme. The time derivative are approximated
using three-step backward finite difference scheme. The pressure, the laplacian term and
the continuity equation are implicit while the convective terms are explicit and treated
using a characteristics methods (Boukir et al. 1997).

As initial conditions, we used the steady solution of the Navier−Stokes equations [U;P ]
obtained as as described in §3.4. As for the boundary conditions, instead, we used no slip
on Γw, symmetry on Γaxis, stress−free conditions on Γlat and traction−free on Γout. At
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Method, Frequency ε ∆p0 ZR ZI

10−1 1.315197 0.823836 0.306126
DNS, Ω = 0.5 10−2 1.308922 0.823949 0.304707

10−3 1.308850 0.823755 0.305271
10−4 1.308849 0.822438 0.305119

LNSE, Ω = 0.5 — 1.308657 0.823451 0.307814

10−1 1.318342 0.642373 0.384001
DNS, Ω = 2 10−2 1.308899 0.631512 0.379576

10−3 1.308842 0.628868 0.376664
10−4 1.308849 0.628365 0.375493

LNSE, Ω = 2 — 1.308657 0.627929 0.377853

10−1 1.332050 0.524558 0.458023
DNS, Ω = 4 10−2 1.309361 0.506036 0.467145

10−3 1.308858 0.502835 0.465519
10−4 1.308850 0.503785 0.465163

LNSE, Ω = 4 — 1.308657 0.502442 0.467931

Table 2. Comparison between the DNS and the linear approximation in term of pressure
drop of the mean (base) flow and impedances.

correspond to the mean flow obtained by time-averaging. There is a subtle difference
between these concepts (Barkley 2006), and the difference is expected to be of order
ε2. This is in accordance with the fact that deviations are only notable for the largest
amplitude ε = 10−1.

As for the impedances, it is remarkable that the LNSE results provide an excellent
approximation to the DNS results, with a relative error less than 1% except for high
frequency and large where it increases a little (we found the maximum relative error
about 4% at ω = 4 and ε = 0.1).

7. Summary and discussion
The main goal of this study was to reconsider the classical problem of the response of

a jet through a circular aperture through a plate of small thickness to harmonic forcing.
This problem was initially considered by Howe who proposed an inviscid model which is
still the basis of most studies of this problem. However a number of starting hypotheses
of the Howe model are questionable. In order to reconsider the problem on more rigorous
grounds, our chosen approach has been to numerically solve the problem using Linearized
Navier−Stokes Equations (LNSE).

The first step of the LNSE approach consists of computing a base flow corresponding
to the steady laminar flow through the aperture. Section 4 was devoted to the description
of this base flow. Upstream of the aperture, it essentially consists of a radially convergent
flow, while downstream of the aperture, the flow forms a quasi parallel jet bounded by a
thin vorticity layer originating from the rim. As classically observed in experiments, the
radius of the jet is smaller than the radius of the aperture. We documented this effect
in terms of the vena contracta coefficient α. Our numerical results indicate an almost
constant value α ≈ 0.61 in the range 103 < Re < 104, in accordance with classical
experiments.

The second step of the LNSE approach consists of solving a linear problem for small-
amplitude disturbances with harmonic temporal dependance. A standard implementation
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of this method, starting from a formulation in terms of physical coordinates (x, r)
on a numerical domain ”large enough” to resolve correctly the structure of the linear
perturbation (typically [rmax, xmax] = [20, 80]), was first tried. This first implementation
was found to lead to difficulties in the high-Reynolds number range, leading to the
impossibility to obtain reliable results as soon as Re & 1000. These difficulties were
analyzed, and the problem was found to be linked to the strong spatial amplification
properties of the jet.

To overcome these difficulties, an original and elegant method was designed, which
consists of reformulating the problems in terms of a mapped complex coordinateX(x). An
appropriate choice of the mapping function allows to get rid of the spatial amplification
of the perturbation in the axial, mapped direction. Although the spatial structure of
the perturbation has no longer a physical interpretation when computed using complex
coordinates, we demonstrated that the global quantities depending only from the pressure
jump across the hole, such as the vena contracta coefficient and the impedances are well
resolved. This method thus allows to obtain meaningful results using a much smaller
numerical domain (typically [Rmax, Lout] = [15, 15]) and incidentally a much lighter
numerical grid.

Using this method, we then characterized the response of the jet to harmonic forcing
by computing its impedance, namely the ratio between the fluctuating pressure jump and
fluctuating flow rate across the aperture, which is a key quantity used by acousticians to
characterize the interaction of jet flows with acoustic fields. In all cases the real part of the
impedance was found to be positive, meaning that exciting the jet at a given frequency
necessitates the provision of energy from an outer system. Moreover, the impedance was
found to become independent of the precise value of Re as soon as Re & 1500, indicating
the existence of a high-Reynolds number asymptotic regime.

Results in this high-Reynolds number regime were compared to predictions of the
Howe model. The comparison was done in terms of the Rayleigh conductivity, which
is a concept directly related to the impedance and used by a fraction of the acoustic
community as an alternative. Comparisons shows substantial deviations, especially in the
range of intermediate nondimensional frequencies, indicating that some of the hypotheses
underlying the Howe model are too restrictive.

Finally, to confirm the validity of our linearized approach, we also performed direct
numerical simulations considering harmonic perturbation with small but finite amplitude
ε. The spatial structure of the perturbations computed in this way showed a rapid
saturation of the spatial instability towards an array of vortex rings, very different from
the structure computed using LNSE. Despite this, the values of the impedance extracted
from these DNS, as well as the properties of the mean flow, were found to be in excellent
agreement with LNSE results, with a maximum relative error of only a few percents
for ε = 0.1. This result confirms that the LNSE is an efficient method to predict the
impedance, even in cases where the spatial evolution of the perturbations is rapidly
dominated by nonlinear effects.

We end this discussion with a few closing remarks. First, coming back on the complex
mapping technique used in the LNSE approach, we stress that this method was designed
to overcome a mathematical difficulty linked to the linear problem, namely strong spatial
amplification extending very far away in the axial direction. As so, this method is not
suited to a direct numerical solution in the nonlinear regime, and the DNS presented in
section 6 were thus performed in physical coordinates. On the other hand, the method is
potentially usable for studying the linear stability of large class of flows characterized by
nearly-parallel spatially unstable regions, such as the wakes of blunt or profiled bodies.
We are currently investigating the applicability of complex mapping for such problems.
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Secondly, since our whole approach relies on an assumed laminar base flow, one may
question the applicability of our results when considering turbulent jets. Although the
precise threshold is difficult to predict, transition to turbulence in such jets is typically
thought to take place in the range Re ∈ [103 − 104]. However, when transition takes
place, turbulence is only observed in the downstream region located after the near-field
vena contracta region which remains essentially laminar. Having observed in our DNS
that the nonlinear evolution of vortex structures in the far-field do not affect the value
of the impedance, we can postulate that the same is true regarding nonlinear effects due
tu turbulence, as thus that our results, obtained under the hypothesis of a laminar flow,
are actually applicable to turbulent jets in a large range of parameters.

Finally, we have mentioned in the introduction that in the case where the thickness of
the plate is not small compared to the radius of the hole, the jet can cease to act as a
sound damper to become a sound generator, leading to the possibility of self-sustained
oscillations of the jet. In such a case, the impedance concept is a useful tool to characterize
the instability mechanism, and the numerical method designed in the present paper
is directly applicable to investigation of such instabilities. A parametric study of the
response of jets through plates of finite thickness to harmonic forcing is underway and
will be presented in a forthcoming paper.

Appendix A. Inviscid stability analysis of a cylindrical vortex sheet
In this appendix we review the stability analysis of a cylindrical vortex sheet, a classical

problem first addressed by Batchelor & Gill (1962).

A.1. Equations
We consider as a base flow a cylindrical jet with a top-hat profile, with radius RJ and

velocity UJ :

Ux(r) =
{
UJ if r < RJ ;
0 if r > RJ .

(A 1)

This corresponds to a cylindrical shear layer. The stability analysis of this flow can be
studied by adding small perturbations in potential form, both inside (φo) and outside
(φi) the jet. These perturbations are searched in eigenmode form as follows :

φi = AIm(kr)ei(kx−ωt); φo = BKm(kr)ei(kx−ωt); η = Cei(kx−ωt) (A 2)
Where r = RJ + η is the location of the jet edge.
The matching conditions at r = R are continuity of the pressure (pi = po) , and

kinematical conditions connecting the temporal derivative of η to the radial velocity
∂φ/∂r. Hence :

i(ω − kUJ)φi(RJ) = iωφo(RJ),

−iωη = (∂φo/∂r)r=RJ
,

i(kUJ − ω)η = (∂φi/∂r)r=RJ
.

Eliminating constants A,B,C, we get the following dispersion relation :

D(ω, k) = (ω − kUJ)2 + L0(kRJ)ω2 = 0 (A 3)
Where

L0(k) = −I
′
0(kRJ)K0(kRJ)
I0(kRJ)K ′0(kRJ)
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