second aperture, a configuration known as "hole-tone" and encountered for instance in tea kettles [START_REF] Henrywood | The aeroacoustics of a steam kettle[END_REF] and birdcalls [START_REF] Fabre | Application of global stability approaches to whistling jets and wind instruments[END_REF]. The generation of vorticity is also an efficient mechanism to dissipate the acoustic energy. As a consequence, the use of multiply perforated plates traversed by a mean flow (or bias flow) is widely used as a sound attenuator device in many industrial applications, such as combustion system [START_REF] Hughes | The absorption of sound by perforated linings[END_REF][START_REF] Rayleigh | The use of perforated damping liners in aero gas turbine combustion systems[END_REF].

The unsteady, periodic flow through a circular hole in a zero-thickness plate was initially solved by [START_REF] Rayleigh | The use of perforated damping liners in aero gas turbine combustion systems[END_REF] using inviscid, potential theory. The key result of his solution is the proportionality between the net pressure force felt from both sides of the hole and the acceleration of the fluid, so that the whole situation can be modeled by assuming that there is a rigid plug of fluid, with area A h = πR 2 h and equivalent length ef f , oscillating across the aperture, where R h is the radius of the hole.

The case where the flow has a mean component (or bias flow) in addition to the oscillating component was considered by [START_REF] Howe | On the theory of unsteady high reynolds number flow through a circular aperture[END_REF]. He introduced a key quantity, the Rayleigh conductivity K R , defined as the ratio of the acceleration of the fluid particles located within the aperture to the net force exerted on it. The real part of the conductivity generalizes the concept of equivalent length ef f previously introduced by Rayleigh, while its imaginary part is directly proportional to the flux of energy transferred from the imposed oscillatory flow to the jet. Under the hypothesis of high Reynolds number, low Mach number, and assuming that the oscillating flow is of small amplitude with respect to the mean (or bias) flow, Howe derived a theoretical model describing the vorticity shed at the rim of the aperture and predicting the real and imaginary parts of the conductivity by analytical formulas. The main features and caveats of the Howe model will be reviewed in section 2.5.

In the recent years, a number of studies have considered the interaction between acoustics and perforated plates in more complex situations including multiple holes [START_REF] Hughes | The absorption of sound by perforated linings[END_REF], turbulent flows either parallel or tangential to the plates [START_REF] Eldredge | Numerical investigation of the acoustic behavior of a multi-perforated liner[END_REF] or additional physical effects such as thermoacoustic instabilites [START_REF] Rayleigh | The use of perforated damping liners in aero gas turbine combustion systems[END_REF]). In the case where the thickness of the hole is not small compared to its radius, results substantially deviate from Howe's predictions, and a number of studies have proposed improvements of the original model to enlarge its range of validity (Bellucci et al. 2004;[START_REF] Jing | Effect of plate thickness on impedance of perforated plates with bias flow[END_REF][START_REF] Yang | The acoustics of short circular holes opening to confined and unconfined spaces[END_REF]. In the case where the amplitude of the oscillating flow becomes comparable to that of the mean flow, nonlinearities also lead to substantial deviations [START_REF] Jing | Sound-excited flow and acoustic nonlinearity at an orifice[END_REF][START_REF] Scarpato | Linear and nonlinear analysis of the acoustic response of perforated plates traversed by a bias flow[END_REF]. However, in the case of smallamplitude oscillations and short holes, the Howe model still constitutes the cornerstone for theoretical modelling of such flows [START_REF] Scarpato | Modeling the damping properties of perforated screens traversed by a bias flow and backed by a cavity at low strouhal number[END_REF].

In view of the above discussed literature, we can note that all available theoretical model are of inviscid nature and describe the vorticity production in terms of vortex sheets, thus these models are expected to be relevant only in the large-Reynolds limit. An alternative way, which allows to incorporate viscous effects in a rigorous way and to consider arbitrary values of the Reynolds number, is to use Linearized Navier-Stokes equations (LNSE). A number of studies have considered jet flows under this framework [START_REF] Garnaud | The preferred mode of incompressible jets: linear frequency response analysis[END_REF][START_REF] Schmidt | Wavepackets and trapped acoustic modes in a turbulent jet: coherent structure eduction and global stability[END_REF]. However, the focus of these studies was to characterize the spatial amplification properties of the jet [START_REF] Garnaud | The preferred mode of incompressible jets: linear frequency response analysis[END_REF]) and the sound radiation in the downstream domain due to vortex-shedding effects [START_REF] Schmidt | Wavepackets and trapped acoustic modes in a turbulent jet: coherent structure eduction and global stability[END_REF], which is a different question as the one we are considering here. Moreover, these works considered a jet with imposed outlet velocity profile and did not consider the whole process of formation of a jet through a plate from an upsteam domain to a downstream one, which is a necessity to correctly treat our problem.

The objectives of the present paper can thus be summarized in three main points.

(i) First, we wish to design a numerical approach based on Linearized Navier-Stokes Equations, to compute the Rayleigh conductivity of the flow through a hole at arbitrary Reynolds number. As the jet is strongly convectively unstable due to the Kelvin-Helmholtz instability, it is difficult to design a method capturing both the spatial growth of perturbations in the axial direction, which can reach huge levels when the axial distance and the Reynolds number are large, and the coupling between the flow rate and the pressure jump, which is relevant when considering the possible coupling with an acoustical system. Due to these difficulties, previous studies which have used LNSE remained limited to Reynolds number in the range Re < 1000 [START_REF] Garnaud | The preferred mode of incompressible jets: linear frequency response analysis[END_REF]. We will introduce an original method, based on a change of variable of the axial coordinate x in the complex plane, which allows to perform accurate computations up to Re = 10 4 .

(ii) Secondly, we wish to reconsider the case of a hole of zero thickness initially investigated by Howe. We document the structure of base flow, with particular focus on the vena contracta phenomenon. We then describe the spatial structures corresponding to the linear response of the jet to harmonic forcing. The velocity and vorticity components of these structures allow to describe the spatial amplification by the jet, while the pressure components give access to the Rayleigh conductivity. We will compute and display the Rayleigh conductivities (as well as the equivalent concept of impedance) as function of forcing frequency and Reynolds number in the range 10 2 -10 4 and compare with the inviscid predictions of Howe.

(iii) Finally, the third objective is to assess the validity of the linearized Navier-Stokes Equations with respect to perturbations of finite amplitude ε. For this purpose, we will conduct a Direct Numerical Simulation (DNS) of the forced axial-symmetric Navier-Stokes equations in the range ε = [10 -4 -10 -1 ]. Results show that the impedances are effectively well predicted by linearized Navier-Stokes equations (LNSE) up to ε = 10 -1 , despite the fact that the evolution of vorticity perturbations in the jets are strongly nonlinear.

As briefly discussed in the bibliographical review, in the case where the plate is not thin and the holes are sufficiently long, different mechanisms take place and the jet can cease to act as a sound damper to become a sound generator [START_REF] Jing | Effect of plate thickness on impedance of perforated plates with bias flow[END_REF][START_REF] Yang | The acoustics of short circular holes opening to confined and unconfined spaces[END_REF]. The conductivity/impedance concepts are useful tools to characterize the mechanisms in this case. A full characterization of the impedance of finite-thickness holes using the method introduced here as well as a discussion of impedance-based instability criteria will be presented in a forthcoming paper.

Problem definition and review of inviscid models

Problem definition

The situation considered here is the flow of a viscous fluid of density ρ and viscosity ν through a circular hole or radius R h and area A h = πR 2 h inside a planar thin plate of thickness negligible respect to the radius, connecting an inner and an outer open domain, as shown in figure 1. We note Q the mean volumetric flow rate across the aperture, and from that later quantity we classically define the mean velocity as U M = Q/A h . Thus the Reynolds number of the flow is defined as:

Re = 2R h U M ν ≡ 2Q πR h ν .
(2.1)

Steady flow

The steady flow corresponding to the present situation is globally characterized by the mean pressure drop [P in -P out ] and the mean flow rate Q. In the inviscid case, a classical model to relate these quantities was proposed by Levi-Civita and Prandtl. The model consists of a vortex sheet formed at the hole and surrounding the jet (see figure 1). After several diameters, the jet becomes parallel, but with a radius R J smaller than that of the hole. We classically call the ratio of surfaces α = (πR 2 J )/(πR 2 h ) the vena contracta coefficient. This coefficient is classically associated to the pressure loss across the aperture. Assuming a constant velocity U J inside the jet (see figure 1), the conservation of flux through the hole leads to

Q = πR 2 J U J = πR 2 h U 2 M .
Applying the Bernoulli theorem along streamlines passing through the hole thus leads to

[P in -P out ] = ρU 2 J 2 = ρU 2 M 2α 2 , (2.4)
that links the pressure jump across the hole and the mean velocity (or flow rate) inside it. Theoretical inviscid calculations by Prandtl and Levi-Civita provided the value α = 0.5, that represents also the lower limit for this coefficient. [START_REF] Smith | Orifice flow[END_REF], instead, estimated the vena contracta coefficient α = π/(2 + π) ≈ 0.611 for round inviscid jets discharging in open spaces. This value has been found to agree very well with experiments [START_REF] Cummings | High amplitude acoustic transmission through duct terminations: Theory[END_REF] and numerical calculations [START_REF] Scarpato | A les based sound absorption analysis of high-amplitude waves through an orifice with bias flow[END_REF]) at very high Reynolds number.

Unsteady flow : Conductivity and Impedance concepts

We now consider the relationship between the pressure jump and the flow rate in the unsteady case, under the hypothesis of harmonic perturbations 2.3. As explained in the introduction, the Rayleigh conductivity (K R ) is defined as the proportionality coefficient between the acceleration of the fluid particules located within the hole and the pressure jump across the hole. More specifically,

K R = -iωρq (p in -p out )
.

(2.5)

The conductivity is, in the general case, a complex quantity, and has the dimension of a length. Following Howe, it is classically noted K R = 2R h (γ -iδ). The real part γ represents the inertia of the system, while the imaginary part δ is directly related to the average value of the power absorbed by the hole. In effect, for harmonic perturbations described with the convention (2.2), the power is given by

Π = ([p in -p out ]e -iωt + c.c.)(q e -iωt + c.c.) = 2 ([p in -p out ] q ) (2.6)
Where the brackets < • > represent the averaging over a complete period of oscillation 2π/ω, means the real part and the overbar denotes the complex conjugate. Using the definition of the conductivity, this formula directly leads to

Π = 4R h δ ρω |p in -p out | 2 .
(2.7) So, when δ > 0, this term represents a resistance (or the ability to absorb acoustic energy), meaning that exciting the jet at a given frequency necessitates the provision of energy by an outer system.

As an alternative to the Rayleigh conductivity, we can also define the impedance of the aperture (Z h ) as the ratio between the pressure jump and the flow rate:

Z h = (p in -p out ) q -iωρ K R (2.8)
The impedance is also a complex quantity, with physical dimension M ass • Length -2 • T ime -1 . In the following we decompose it as

Z h = ρU M R 2 h (Z R + iZ I ) , (2.9)
where Z R is the dimensionless resistance and Z I is the dimensionless reactance. It is easy to verify that the equation (2.6) for the power absorbed by the hole can be written as function of Z R as follows:

Π = 2 ρU M R 2 h Z R |q | 2 , (2.10)
The Rayleigh conductivity and the impedance are conceptually and practically interchangeable quantities, and both have been used in the literature to characterize the interaction of a jet flow with acoustic fields. In the case of thin holes holes acting as a sound attenuators, most authors have used the conductivity as initially introduced by Howe. On the other hand, in cases where the jet can act as an energy source for external acoustic systems and lead to instabilities, it proves to be more convenient to employ the impedance [START_REF] Fabre | Application of global stability approaches to whistling jets and wind instruments[END_REF][START_REF] Yang | A semi-analytical model for the acoustic impedance of finite length circular holes with mean flow[END_REF]). In the present paper, we will use both concepts. A more detailed discussion of impedance-based instability criteria and a parametric study of the impedance of long holes will be given in a forthcoming paper.

The classical Rayleigh solution in the absence of mean flow

The problem initially solved by [START_REF] Rayleigh | The use of perforated damping liners in aero gas turbine combustion systems[END_REF] is the simplest situation corresponding to the absence of mean flow. In this case, the problem admits an analytical solution under the framework of potential flow theory. This solution yields a direct proportionality between the flow acceleration and the pressure jump, namely

(p in -p out ) = - iρω 2R h q .
(2.11)

The classical interpretation of this result is that the fluid in the vicinity of the hole behaves as a simple solid plug with mass m = ρπR 2 h ef f oscillating across the hole, where ef f is the equivalent length of the plug given by ef f = πR h /2.

When reformulated in terms of conductivity (resp. impedance) and using the nodimensionalization choices introduced in the previous section, the Rayleigh solution thus corresponds to γ = 1; δ = 0 (resp. Z R = 0; Z I = -iΩ/2). An obvious consequence is that under this model, the power absorbed by the hole predicted by (2.10) is exactly zero.

Review and criticism of Howe's inviscid model

We now review and and discuss in more detail the classical model of Howe already mentioned in the introduction. Howe models the jet as a cylindrical vortex sheet of constant radius R h formed at the rim of the aperture. He subsequently assumes a vorticity perturbation of this vortex sheet with the form

ξ = σH(x)δ(r -R h )exp [-iω(t -x/U c )] ,
(2.12)

where δ and H are respectively the Dirac and Heavyside functions, U c the assumed convection velocity of vorticity structures, and σ the amplitude of the vorticity perturbation. This later parameter is determined by imposing a Kutta condition [START_REF] Crighton | The kutta condition in unsteady flow[END_REF], requiring finite velocity and pressure fluctuations an the rim of the hole. Starting from this point, and going through a series of very technical mathematical transformations, Howe was eventually able to predict the Rayleigh conductivity under the following analytical form:

K R = 2R h (γ -iδ) = 2R h 1 + (π/2)I 1 (Ω H )e -Ω H -iK 1 (Ω H ) sinh(Ω H ) Ω H [(π/2)I 1 (Ω H )e -Ω H + iK 1 (Ω H ) cosh(Ω H )]
, (2.13)

where I 1 and K 1 are the order one modified Bessel functions of respectively first and second kind and

Ω H = ωR h /U c is the Strouhal number.
Despite its mathematical rigor, a number of starting hypotheses of the Howe model are questionable. The main caveats of the model can be summarized in four points:

• First, the study models the mean flow as a cylindrical vortex sheet with constant radius R h , hence completely overlooks the vena contracta phenomenon discussed above. In a subsequent step of his analysis (page 215 of his paper), Howe intended to incorporate partially this effect in his model, but this a posteriori modification remains imperfect.

• Secondly, Howe's model assumes that the perturbation affects only the strength of the vortex sheet but not its location, so that the perturbed vortex sheet is assumed to remain perfectly cylindrical. A better starting point would be to assume a vortex sheet with location given by (see figure 1):

r J (r) = R J + εη(x, r, t) = R J + εη (r)exp [ik(ω)x -iω] , (2.14) 
where k(ω) = k r + ik i is complex wavenumber which has to be determined as function of the frequency ω. The inviscid stability analysis of this model is a classical problem whose solution can be found, for instance, in Batchelor & Gill (1962) or in Abid et al. (1993). For completeness, this problem is reviewed in the appendix A.

• Thirdly, the starting point of the Howe analysis (2.12) assumes that the perturbations are convected at a constant velocity U c which is assumed to be half of the centreline jet velocity U J . This choice is justified by analogy with the classical result for the Kelvin-Helmholtz instability of a planar vortex sheet. This choice is a questionable simplification and it would seem more rigorous to predict U c using spatial stability analysis of the cylindrical vortex sheet model, namely U c = k r /ω. This analysis shows that for small frequencies the convection velocity is actually closer to U J than U J /2 (see appendix A).

• Finally, Howe completely ignores the fact that perturbations of the vortex sheet are spatially amplified in addition to being convected.

According to the two last criticisms, it would thus seem more appropriate to replace the starting point (2.12) by the following ansatz:

ξ = σH(x)δ (r J (r) -R J -εη (r)exp [ik(ω)x -iωt]) exp [ik(ω)x -iωt] .
(2.15)

We have not intended to reconstruct the whole analysis from this modified starting point, an option which would anyway not address the first criticism discussed above (vena contracta effect) and would remain limited to the high-Reynolds numbers range. Instead, our chosen approach to address the problem is to compute the impedance (or alternatively the conductivity) through a global resolution of the linearized Navier-Stokes equations (LNSE) for given values of the Reynolds number.

3. The viscous problem: analysis and numerical method for the linear approach

General equations

Taking the diameter of the hole D h = 2R h as a length scale and the mean velocity U M as a velocity scale, the problem is governed by the axial-symmetric incompressible dimensionless Navier-Stokes equations:

∇ • u = 0 ∂ t u + (u • ∇)u + ∇p - 1 Re ∇ 2 u = 0      , (3.1)
where u(x, r, t) = (u x , u r ) and p is the reduced pressure. The variable x and r are respectively the axial and radial coordinate while u x and u r represent the axial and radial velocity components.

The flow is further decomposed into a base flow (U, P ) associated with the mean flux Q and a harmonic perturbation ε(u , p )e -iωt associated with the oscillating flow rate q e -iωt . A crucial hypothesis in this treatment is that the amplitude of the harmonic perturbation is small, namely ε 1. Inserting this decomposition into the Navier-Stokes equations (3.1) and linearizing, two different sets of PDE's are obtained:

• First, the leading order yields the base flow equations:

∇ • U = 0 (U • ∇)U + ∇P - 1 Re ∇ 2 U = 0      . (3.2)
The link between the base flow (U, P ) and the quantities P in , P out , Q introduced in §2 is given by the asymptotic matching conditions and flow rate definition as follows:

P (x, r) → P in for x 2 + r 2 → ∞ and x < 0, (3.3)

P (x, r) → P out for x 2 + r 2 → ∞ and x > 0, (3.4) S U • ndS = Q, (3.5)
where S is any surface traversed by the flow and n a normal unitary vector oriented in the direction of the flow.

• Secondly, the ε-order yields the linearized Navier-Stokes equations (LNSE) governing the perturbation:

∇ • u = 0 -iωu + (U • ∇)u + (u • ∇)U + ∇p - 1 Re ∇ 2 u = 0      . (3.6)
The link with the quantities p in , p out , q introduced in section 2 and allowing to define the impedance/conductivity is:

p (x, r) → p in for x 2 + r 2 → ∞ and x < 0, (3.7) p (x, r) → p out for x 2 + r 2 → ∞ and x > 0, (3.8) S u • ndS = q . (3.9)
Note that, as is customary when dealing with incompressible flows, the pressure is defined up to an arbitrary constant. We can choose this constant by setting P out = 0 and p out = 0 in equations (3.4) and (3.8), so that the mean pressure and fluctuating pressure drops is actually given by [P in -

P out ] = P in , [p in -p out ] = p in .
With the addition of no-slip conditions U = u = 0 on the upstream and downstream surfaces of the plate (noted Γ w ) and symmetry conditions at the axis (noted Γ axis ), the set of equations (3.2-3.9) completely defines the nonlinear problem allowing to compute the vena contracta coefficient α and the linear problem allowing to compute the impedance/conductivity.

In practice, the boundary conditions at √ x 2 + r 2 have to be imposed at the boundaries of a finite computational domain, both upstream and downstream. Treatment of these boundary conditions requires special attention and is detailed in the next sections.

Upstream domain

As sketched in figure 1, the upstream domain is expected to originate from an upstream container of large dimension, and sufficiently far away from the hole. Moreover, the flow is assumed to be radially convergent. However, in the numerical implementation, it is required to specify a given geometry for this upstream domain. Here, we chose to assume that the upstream region is a closed cavity of cylindrical section, with radius R in and length L in . The volumic flux conditions (3.5) and (3.9) are imposed by assuming that both the base flow and the perturbation velocities are constant along the bottom of the cavity, noted Γ in (see figure 2), i.e.

U = Q/S in n u = q /S in n on Γ in , (3.10) 
where S in = πR 2 in is the area of the bottom wall. The values of Q and q have been selected in order to have a mean velocity equal to one into the hole, for both the base flow and the perturbation. The pressure levels P in and p in , which are required for the calculation of the mean pressure loss (and the vena contracta coefficient) and the impedance (or conductivity), are extracted by averaging along the inlet boundary :

P in = 2π/S in Rin 0 P (r)rdr p in = 2π/S in Rin 0 p (r)rdr        on Γ in .
(3.11)

Since the upstream cavity used in our mesh definition is expected to represent an upper domain of infinite extend, its precise geometry has no real importance, but is dimension has to be large enough so that the results are independent of this geometry. In practice we verified that the choice L in = R in = 10R h fulfills this conditions. Finally, at the lateral wall of the cavity for r = R in (noted Γ lat ), we simply choose non-penetration (u r = 0) and no-stress (∂ r u x = 0) conditions for both base flow and perturbation. This condition ensures that the volumic flux imposed at the bottom of the cavity effectively corresponds with the one traversing the hole preventing the occurrence of an unphysical boundary layer that would be obtained using a no-slip condition.

Downstream domain : boundary conditions and change of coordinates

The treatment of the outlet boundary conditions is a delicate point here, as the structure of the perturbation leads to some difficulties, especially when the Reynolds number becomes large. In effect, due to the strongly spatially unstable nature of the jet, all perturbations are strongly amplified along the axial direction. In particular, the pressure field p (x, r) can be reach huge levels (reaching 10 15 or even more for Re ≈ 3000) along the axis (r = 0) for large x, and this conflicts with the necessity of imposing the boundary condition p out = 0 at a finite distance x max corresponding to the boundary of the computational domain.

To detail the origin of the problem and introduce the idea used to overcome it, let us review the classical modeling of the Kelvin-Helmholtz instability for a planar shear layer of zero thickness in the inviscid case. The formal derivation can be found in any classical textbook on hydrodynamical stability (see for example [START_REF] Drazin | Hydrodynamic stability[END_REF] or Charru ( 2011)). Consider as base flow a shear layer separating two regions of constant axial velocity, namely u x = U for r < 0 and u x = 0 for r > 0. Now assume that the perturbation consists of a displacement of the shear layer with the form η(x, r, t) ∝ e ikx-iωt , (3.12)

and assume a similar modal expansion for the velocity potential in the upper and lower regions. Matching the two regions at the interface leads to the classical dispersion relation:

c ≡ ω k = 1 ± i 2 U, (3.13) 
In a temporal stability framework, this means that a perturbation with the a real wavenumber k is convected downstream with a phase velocity U/2 and temporally amplified with a growth rate U k/2. On the other hand, in a spatial stability framework which is more relevant here, a perturbation with real frequency ω will be spatially amplified downstream with a complex wavenumber k and will diverge at x → +∞. This divergence forbids a global resolution of the function η(x, t) when the variable x is real. However, the problem disappears if we consider an analytical continuation of the function η(x, t) with a complex variable x. More specifically, as arg(k) = -π/4, the function η(x, t) becomes convergent as soon as |x| → ∞ in a direction of the complex plane verifying π/4 < arg(x) < 5π/4. These considerations suggest a possible way to overcome the problem, namely using a complex coordinate change x = G x (X) which maps a (real) numerical coordinate X defined over a finite-size computational downstream domain X ∈ [-L in ; L out ], onto the physical coordinate x in a way that it enters the complex plane and follows a direction where the perturbation is spatially damped. Note that the idea is conceptually similar to the Perfectly Matching Layer (PML) method, which is a numerical approach largely used in electromagnetics and acoustics to impose nonreflection boundary condition in wave-propagation problems (see Colonius ( 2004) for a complete review).

The coordinate mapping effectively transforms the outlet location X = L out into a location x = x max = G x (L out ) located into the complex plane. In order for the boundary conditions at the outlet X = L out of the computational domain to best represent the physical boundary condition at |x| → ∞, it is desirable for x max = G x (L out ) to be as large as possible. This can be achieved using coordinate stretching in order to have short numerical domains and large physical ones.

Combining both ideas, namely stretching and complex mapping, we designed the following mapping function from numerical coordinate X to physical coordinate x:

x = G x (X) = X 2 4 1- 0 @ X L A 1 A 2 3 5 2 1 + iγ c tanh X 2L C 2 for X > 0, = X for X < 0. (3.14)
This function is characterized by three parameters which have the following interpretation. First, the parameter L C controls the transition range from real coordinate to complex coordinate. For X L C the mapping is almost identity (G x (X) ≈ X) so that the transition with the upstream, unmapped domain is as smooth as possible. For X ≈ L c the imaginary part of the corresponding physical coordinate x gradually increases. For X L c the argument of x asymptotes to a constant value, namely arg(x) ≈ tan -1 (γ c ). The third parameter L A controls the stretching effect associated to the coordinate mapping. This parameter has to be chosen so that L A > L out . L A → ∞ means no coordinate stretching, so that the real part of x max is the same as the dimension L out of the computational domain, while if L A -L out is small the corresponding x max is rejected very far away in the complex plane.

Finally, although the issue is less crucial respect to the axial coordinate, we also used a mapping r = G r (R) to stretch the radial coordinate from R ∈ [0, R out ] to r ∈ [0, r out ] in order to enlarge the effective radial dimension of the physical domain. Here there is no point in using a complex deformation, so we used the following mapping function :

r = G r (R) = R M + R -R M 1 - R -R M R A -R M 2 2 for X > 0 and R > R A , = R otherwise (3.15)
This function leaves the radial coordinate unchanged in the region r < R M where the jet develops, but it stretches the limit of the domain from R out to r out = G r (R out ) which is very large as soon as R A is close to R out (with the constraint R A > R out ).

Having explained this change of coordinates, it remains to specify the numerical boundary conditions effectively used at the boundaries of the numerical domain R = R out (corresponding to r = r out ) and X = L out (corresponding to x = x max ). In the framework of finite elements, the usual way to impose outlet conditions is to take advantage of the integration by parts leading to the weak formulation. The most natural condition emerging in this way is the zero-traction condition, namely -pn + Re -1 ∇u • n = 0. In the present case, we used the zero-traction condition as an approximation of the physical condition p = 0 for both the base flow and perturbation computations. This choice is justified if the viscous stresses are negligible in the vicinity of the boundaries of the domain, which turns to be the case here.

We stress that using the present method, outflow boundary conditions are effectively applied at a location x max located the complex plane. The validity of the method is not justified by rigorous mathematical argument, but only by the fact that it effectively works. Detailed validations are given in appendix B.1. of this paper. In particular, we show that at low Reynolds numbers results obtained with and without complex mapping are identical, and are independent upon the precise choice of the parameters (γ c , L C , L A ) of the mapping function.

Note that the use of complex coordinate mapping for linear problems involving a single spatial coordinate is customary in stability studies, and mathematical theorems are available to justify how to chose the integration contour as function of the singularities of the problem (see for example Bender & Orszag (2013)). On the other hand, its use for solving a nonlinear problem (i.e. computation of the base flow) involving two spatial coordinates is totally new to our knowledge.

mulation is classically obtained by multiplying by test functions [U +

x , U + r , P + ] and integrating over the domain. Note that this integration has to be done over the physical domain, so in terms of the numerical variables the elementary volume of integration is dV = 2πrdrdx = 2π(H x H r ) -1 rdRdX ≡ 2π(H x H r ) -1 G r (R)dRdX . After integration by parts of the pressure gradient and Laplacian terms of the equation (3.17), we are thus lead to the following weak formulation of the mapped Navier-Stokes equations:

- U + x (U x H x ∂ X U x + U r H r ∂ R U x ) + U + r (U x H x ∂ X U r + U r H r ∂ R U r ) dV + P H x ∂ X U + x + H r ∂ R U + r + U + r /r -P + (H x ∂ X U x + H r ∂ R U r + U r /r) dV - 1 Re H 2 x ∂ X U x ∂ X U + x + H 2 r ∂ R U x ∂ R U + x dV - 1 Re H 2 x ∂ X U r ∂ X U + r + H 2 r ∂ R U r ∂ R U + r + U r U + r /r 2 dV = 0.
(3.18) Note that with this formulation, the no-traction boundary conditions at the outlet boundary, as well as the symmetry condition at the axis and the zero tangential stress condition at the lateral wall of the cavity are automatically satisfied thanks to the integration by parts. The other boundary conditions are imposed by penalization. The weak formulation of the LNSE (3.6) was obtained in a similar way, but we don't explicitly report it for sake of brevity.

Once the weak formulation is written, the discrete matrix are assembled using classical Taylor-Hood (P 2 , P 2 , P 1 ) finite elements for the spatial discretization.

The use of mesh adaptation to generate a efficient mesh is done in a way very similar as explained in [START_REF] Fabre | A practical review to linear and nonlinear approaches to flow instabilities[END_REF]. The procedure is as follows :

(i) we generate an initial coarse mesh using the Delaunay-Voronoi triangulation of the domain.

(ii) we use Newton iteration to compute a base flow at a moderate value of the Reynolds (for instance Re = 10).

(iii) we adapt the mesh to the base flow solution of the previous step and recompute the base flow on the resulting mesh.

(iv) we repeat points (ii) and (iii) for gradually increasing values the Reynolds number up Re = 1000.

After this stage, we are guaranteed to have a mesh yielding converged results as for base flow characteristics.

(v) we solve the linear problem for a value of ω in the range of interest, adapt the mesh to fit with the corresponding structure, and recompute the base flow on the resulting mesh.

After this stage, we are ensured to have a mesh yielding converged results for both the base flow and the perturbation for a given ω. For even better efficiency, it is also possible to do the last mesh adaptation (v) for two values of ω spanning the range of parameters in which converged results are expected.

To obtain the results presented in the next sections, two different meshes were designed in this way. The first mesh, noted M 0 is generated without the use of complex mapping, with a large domain corresponding to L out = x max = 80. This mesh was used to compute impedances at low Reynolds (up to 1000) and to plot the base flow characteristics. The second, noted M 1 , uses complex mapping and was used for most results at larger Reynolds values. The structure of this mesh M 1 is illustrated in figure 2 Additional meshes were designed for convergence tests and for demonstrations of the Re = 3000 which are representative of this regime. The predictions of the Howe model are displayed using dotted lines. The comparison shows that, although the curves display the same general shape, the results differ notably, especially as for the imaginary part δ (plot b) in the range Ω ≈ 2 where the Howe model underestimates the numerically computed one by approximately 30%. On the other hand, the model overestimates the real part γ for Ω 2 by about 10% and underestimates it for Ω 2 with the same amount.

As discussed in paragraph 2.5, the result of Howe is expressed in terms of a nondimensional frequency Ω H = ΩR h /U c based on the convection velocity of vorticity structures along the vortex sheet U c , whose precise value is questionable. In figure 13 we followed the original choice of Howe U c = U M which leads to Ω H = Ω. We also tried to compare the results using improved modelings of U c , leading only to mild ameliorations of the accordance.

Finally, a useful quantity which can be extracted from the impedance is the delay angle of the pressure with respect to the velocity:

φ = arg(Z h ) = tan -1 Z I Z R (5.1)
This quantity has been used in a number of experiments, as it allows to discriminate the cases where the impedance is mainly resistive (φ ≈ 0) from the ones where it is mainly reactive (φ ≈ -π/2). This quantity is plotted in figure 14, confirming that the behavior switches from purely resistive to purely reactive as the frequency is increased. We also observe in this plot a collapse of the curves obtained in the high-Reynolds asymptotic regime Re 1500.The angle φ extracted from the Howe model is also plotted in the figure (note that in terms of conductivity, the definition of φ translates into φ = π/2 -arg(K R ) = -tan -1 (γ/δ)). Again, a substantial deviation is observed, especially in the range of intermediate frequencies Ω ≈ 2 where the deviation can be as large as π/12 ≡ 15 o . Oddly, the inviscid Howe model turns out to give better predictions for the case Re = 100 than for the high-Reynolds number regime. 5.4. The quasi-static limit for Ω → 0. We have observed that in the limit of small frequencies (Ω → 0), the impedance becomes purely real and tends to a constant value. This limit value can be predicted using a quasi-static approximation, and this property will be used to verify the consistency of our impedance calculations. As explained in section 2.3 for a steady flow, the pressure jump and the mean velocity across the hole are related through the Bernoulli equation which can be written under the form (2.4)

∆p = ρu 2 M 2α 2 (Re M ) , (5.2) 
Assuming ∆p = ∆P + ∆p and u

M = U M + u M , inserting into (5.2) with Re M = (U M + u M )R h /ν = Re(1 + u M /U M )
and linearizing lead to

∆P + ∆p ≈ ρU 2 M 2α 2 + ρu M U M α 2 1 - 1 α ∂α ∂Re .
(5.3)

Remembering now that ∆P = (ρU 2 M )/(2α 2 ), this equation allows to obtain a prediction for the impedance which is assumed to be valid in the quasi-static limit (Ω → 0):

Z QS = ∆p πR 2 h u M = ρU M α 2 πR 2 h 1 - 1 α ∂α ∂Re
Re .

(5.4) Table 2 compares the impedance computed using the method of the previous section for a small value of the frequency, namely Ω = 10 -6 , to the quasi-static prediction (5.4) obtained using the base-flow characteristics computed in section 4. One can note that the results agree with less that 1% of error. Finally, we can note that the term (1/α)(∂α/∂Re)Re in equation (5.4) is small because α is a slowly varying function of Re. The fourth column of table 1 gives the prediction of the quasi-static impedance obtained when neglecting this term. The comparison shows that this simplified prediction is still an excellent approximation, and slightly overestimates the actual value except for the case Re = 100, where it underestimates it. This is consistent with the fact that the α -Re curve reaches a maximum for Re ≈ 120 (see figure 6).

The low-frequency limit was also addressed by Howe in the framework of his model. A Taylor series of the expression (2.13) leads to δ ≈ πΩ H /4 (equation 3.15(b) of Howe's paper), which, when expressed in terms of impedance, translates into Z R ≈ (2/π)(U c /U M ) ≈ 0.637(U c /U M ). Thus, the choice U c /U M = 1 made by Howe actually yields a prediction for Z R which underestimates the High-Reynolds value by approximatively 37%. Note that this mismatch can also be observed in figure 13(b) regarding the initial slope of the curve δ(Ω). This error in the quasi-static limit may be cancelled using an ad-hoc choice of U c /U M , but as previously explained, such a modification does not improve substantially the accordance in other ranges of Ω.

Direct Numerical Simulations of a harmonically forced jet

In order both to validate the linearized approach for small amplitudes and to investigate the influence of nonlinearities for larger amplitudes, we performed Direct Numerical Simulations by integrating in time the Navier-Stokes equations (3.1) for a harmonically forced jet. The DNS are performed using FreeFem++ on the same mesh M 0 as used in the previous section for resolution in physical coordinates (note that the complex mapping technique is fitted to the resolution of the linearized problem but is not relevant for nonlinear simulations). The numerical code used for time-integration is very similar to the one used by in [START_REF] Marquet | Amplifier and resonator dynamics of a low-reynolds-number recirculation bubble in a global framework[END_REF]. The equations are advanced in time using a partly implicit second-order accurate scheme. The time derivative are approximated using three-step backward finite difference scheme. The pressure, the laplacian term and the continuity equation are implicit while the convective terms are explicit and treated using a characteristics methods (Boukir et al. 1997).

As initial conditions, we used the steady solution of the Navier-Stokes equations [U; P ] obtained as as described in §3.4. As for the boundary conditions, instead, we used no slip on Γ w , symmetry on Γ axis , stress-free conditions on Γ lat and traction-free on Γ out . At correspond to the mean flow obtained by time-averaging. There is a subtle difference between these concepts (Barkley 2006), and the difference is expected to be of order ε 2 . This is in accordance with the fact that deviations are only notable for the largest amplitude ε = 10 -1 . As for the impedances, it is remarkable that the LNSE results provide an excellent approximation to the DNS results, with a relative error less than 1% except for high frequency and large where it increases a little (we found the maximum relative error about 4% at ω = 4 and ε = 0.1).

Summary and discussion

The main goal of this study was to reconsider the classical problem of the response of a jet through a circular aperture through a plate of small thickness to harmonic forcing. This problem was initially considered by Howe who proposed an inviscid model which is still the basis of most studies of this problem. However a number of starting hypotheses of the Howe model are questionable. In order to reconsider the problem on more rigorous grounds, our chosen approach has been to numerically solve the problem using Linearized Navier-Stokes Equations (LNSE).

The first step of the LNSE approach consists of computing a base flow corresponding to the steady laminar flow through the aperture. Section 4 was devoted to the description of this base flow. Upstream of the aperture, it essentially consists of a radially convergent flow, while downstream of the aperture, the flow forms a quasi parallel jet bounded by a thin vorticity layer originating from the rim. As classically observed in experiments, the radius of the jet is smaller than the radius of the aperture. We documented this effect in terms of the vena contracta coefficient α. Our numerical results indicate an almost constant value α ≈ 0.61 in the range 10 3 < Re < 10 4 , in accordance with classical experiments.

The second step of the LNSE approach consists of solving a linear problem for smallamplitude disturbances with harmonic temporal dependance. A standard implementation of this method, starting from a formulation in terms of physical coordinates (x, r) on a numerical domain "large enough" to resolve correctly the structure of the linear perturbation (typically [r max , x max ] = [20, 80]), was first tried. This first implementation was found to lead to difficulties in the high-Reynolds number range, leading to the impossibility to obtain reliable results as soon as Re 1000. These difficulties were analyzed, and the problem was found to be linked to the strong spatial amplification properties of the jet.

To overcome these difficulties, an original and elegant method was designed, which consists of reformulating the problems in terms of a mapped complex coordinate X(x). An appropriate choice of the mapping function allows to get rid of the spatial amplification of the perturbation in the axial, mapped direction. Although the spatial structure of the perturbation has no longer a physical interpretation when computed using complex coordinates, we demonstrated that the global quantities depending only from the pressure jump across the hole, such as the vena contracta coefficient and the impedances are well resolved. This method thus allows to obtain meaningful results using a much smaller numerical domain (typically [R max , L out ] = [15,15]) and incidentally a much lighter numerical grid.

Using this method, we then characterized the response of the jet to harmonic forcing by computing its impedance, namely the ratio between the fluctuating pressure jump and fluctuating flow rate across the aperture, which is a key quantity used by acousticians to characterize the interaction of jet flows with acoustic fields. In all cases the real part of the impedance was found to be positive, meaning that exciting the jet at a given frequency necessitates the provision of energy from an outer system. Moreover, the impedance was found to become independent of the precise value of Re as soon as Re 1500, indicating the existence of a high-Reynolds number asymptotic regime.

Results in this high-Reynolds number regime were compared to predictions of the Howe model. The comparison was done in terms of the Rayleigh conductivity, which is a concept directly related to the impedance and used by a fraction of the acoustic community as an alternative. Comparisons shows substantial deviations, especially in the range of intermediate nondimensional frequencies, indicating that some of the hypotheses underlying the Howe model are too restrictive.

Finally, to confirm the validity of our linearized approach, we also performed direct numerical simulations considering harmonic perturbation with small but finite amplitude ε. The spatial structure of the perturbations computed in this way showed a rapid saturation of the spatial instability towards an array of vortex rings, very different from the structure computed using LNSE. Despite this, the values of the impedance extracted from these DNS, as well as the properties of the mean flow, were found to be in excellent agreement with LNSE results, with a maximum relative error of only a few percents for ε = 0.1. This result confirms that the LNSE is an efficient method to predict the impedance, even in cases where the spatial evolution of the perturbations is rapidly dominated by nonlinear effects.

We end this discussion with a few closing remarks. First, coming back on the complex mapping technique used in the LNSE approach, we stress that this method was designed to overcome a mathematical difficulty linked to the linear problem, namely strong spatial amplification extending very far away in the axial direction. As so, this method is not suited to a direct numerical solution in the nonlinear regime, and the DNS presented in section 6 were thus performed in physical coordinates. On the other hand, the method is potentially usable for studying the linear stability of large class of flows characterized by nearly-parallel spatially unstable regions, such as the wakes of blunt or profiled bodies. We are currently investigating the applicability of complex mapping for such problems.

Secondly, since our whole approach relies on an assumed laminar base flow, one may question the applicability of our results when considering turbulent jets. Although the precise threshold is difficult to predict, transition to turbulence in such jets is typically thought to take place in the range Re ∈ [10 3 -10 4 ]. However, when transition takes place, turbulence is only observed in the downstream region located after the near-field vena contracta region which remains essentially laminar. Having observed in our DNS that the nonlinear evolution of vortex structures in the far-field do not affect the value of the impedance, we can postulate that the same is true regarding nonlinear effects due tu turbulence, as thus that our results, obtained under the hypothesis of a laminar flow, are actually applicable to turbulent jets in a large range of parameters.

Finally, we have mentioned in the introduction that in the case where the thickness of the plate is not small compared to the radius of the hole, the jet can cease to act as a sound damper to become a sound generator, leading to the possibility of self-sustained oscillations of the jet. In such a case, the impedance concept is a useful tool to characterize the instability mechanism, and the numerical method designed in the present paper is directly applicable to investigation of such instabilities. A parametric study of the response of jets through plates of finite thickness to harmonic forcing is underway and will be presented in a forthcoming paper.

Table 1 .

 1 Values of the impedance in the low-frequency range. Comparison of values obtained numerically with a very small Ω, quasi-static approximation (5.4), and simplified approximation obtained assuming ∂α/∂Re = 0.

	Re	ZR(Ω = 10 -6 )	ZQS	ρUM α 2 πR 2 h
	100	0.778957	0.778985	0.784964
	500	0.828280	0.828228	0.813912
	1500	0.854970	0.854510	0.843178
	2000	0.860562	0.868020	0.849696
	3000	0.867572	0.866437	0.857986

Table 2 .

 2 Comparison between the DNS and the linear approximation in term of pressure drop of the mean (base) flow and impedances.

	Method, Frequency	ε	∆p0	ZR	ZI
		10 -1	1.315197	0.823836	0.306126
	DNS, Ω = 0.5	10 -2	1.308922	0.823949	0.304707
		10 -3	1.308850	0.823755	0.305271
		10 -4	1.308849	0.822438	0.305119
	LNSE, Ω = 0.5	-	1.308657	0.823451	0.307814
		10 -1	1.318342	0.642373	0.384001
	DNS, Ω = 2	10 -2	1.308899	0.631512	0.379576
		10 -3	1.308842	0.628868	0.376664
		10 -4	1.308849	0.628365	0.375493
	LNSE, Ω = 2	-	1.308657	0.627929	0.377853
		10 -1	1.332050	0.524558	0.458023
	DNS, Ω = 4	10 -2	1.309361	0.506036	0.467145
		10 -3	1.308858	0.502835	0.465519
		10 -4	1.308850	0.503785	0.465163
	LNSE, Ω = 4	-	1.308657	0.502442	0.467931

Appendix A. Inviscid stability analysis of a cylindrical vortex sheet

In this appendix we review the stability analysis of a cylindrical vortex sheet, a classical problem first addressed by Batchelor & Gill (1962).

A.1. Equations

We consider as a base flow a cylindrical jet with a top-hat profile, with radius R J and velocity U J :

This corresponds to a cylindrical shear layer. The stability analysis of this flow can be studied by adding small perturbations in potential form, both inside (φ o ) and outside (φ i ) the jet. These perturbations are searched in eigenmode form as follows : -ωt) ; φ o = BK m (kr)e i(kx-ωt) ; η = Ce i(kx-ωt) (A 2) Where r = R J + η is the location of the jet edge. The matching conditions at r = R are continuity of the pressure (p i = p o ) , and kinematical conditions connecting the temporal derivative of η to the radial velocity ∂φ/∂r. Hence :

-iωη = (∂φ o /∂r) r=R J , i(kU J -ω)η = (∂φ i /∂r) r=R J . Eliminating constants A, B, C, we get the following dispersion relation : D(ω, k) = (ω -kU J ) 2 + L 0 (kR J )ω 2 = 0 (A 3) Where L 0 (k) = -I 0 (kR J )K 0 (kR J ) I 0 (kR J )K 0 (kR J )