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David Fabre · Joël Tchoufag · Vincenzo CitroG 
Flavio Giannetti • Paolo Luchini 

The flow past a freely rotating sphere 

Abstract We consider the flow past a sphere held at a fixed position in a uniform incorning flow but free to 

rotate around a transverse axis. A steady pitchfork bifurcation is reported to take place at a threshold Re
05 = 

206 leading to a state with zero torque but nonzero lift. Numerical simulations allow to characterize this state 
up to Re :=:::: 270 and confirm that it substantially differs from the steady-state solution which exists in the 

wake of a fixed, non-rotating sphere beyond the threshold Re55 = 212. A weakly nonlinear analysis is carried 
out and is shown to successfully reproduce the results and to give substantial improvement over a previous 
analysis (Fabre et al. in J Fluid Mech 707:24-36, 2012). The connection between the present problem and that 
of a sphere in free fall following an oblique, steady (OS) path is also discussed. 

Keywords Freely moving bodies • Fluid-structure interactions • Weakly nonlinear expansion 

1 Introduction 

Free falling and rising of particles in Newtonian fluids play an important role in many industrial and natural 
applications, such as the settling of sediments in lakes, buoyancy-driven bodies in the atmosphere or the 
dynarnics of catalysts in chernical reactors. The particle motion is caused by the buoyancy force that is 
balanced by the hydrodynarnic resistance. The resulting wake dynarnics can lead to completely different 
regimes, such as tumbling, zigzag or steady oblique paths [1]. The mechanisms leading to path destabilization 
are related to intrinsic wake instabilities which induce lift and torque forces on the bodies. Yet, in general, the 
relation between wake instabilities around a fixed body and path instabilities around a body in free fall is not 
straightforward as the latter problem is fully coupled and the wake dynarnics are modified by the motion of 
the body (as discussed for instance in Assemat et al. [2] and Auguste et al. [3]). Thus, it may be useful to 
consider intermediate problems in which only some degrees of freedom of the body are allowed. This is the 
objective of the present paper, where we will consider the flow past a sphere allowed to rotate but not to 
translate. In an experimental setup, this configuration may correspond, for instance, to the case of a sphere 
held by a thin transverse wire. 
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These equations are coupled in two ways. First, the rotation of the sphere results in a boundary condition
to be imposed for the velocity of the fluid at the surface of the sphere as V = � × r. Secondly, in Eq. (1c) the
sphere responds to the torque M exerted by the fluid on it. The latter and the associated force F are given by

F =
∫
S

T · ndS ≡ Fxx + Fyy + Fzz (2a)

M =
∫
S

r × (T · n)dS ≡ Mxx + Myy + Mzz. (2b)

where r denotes the position vector relative to the body center of inertia and T = −PI + Re−1(∇V +T ∇V)
the stress tensor. Note that in the present case, the coupling only involves the torque M while the force F is
not coupled to the motion of the sphere, unlike in the more general case considered in [12]. Finally, this set of
equations is completed by the boundary condition V = U0x for ‖r‖ → ∞.

In the following, we will be mostly interested in the characterization of steady-state solutions of the
problem. According to (2b), such states imply the torque M exerted by the fluid on the sphere to be zero, and
the interesting, non-trivial solutions are those with nonzero rotation rate �.

3 Numerical results

Wehave solved numerically the set of equations (1) using a combined finite-difference second-order immersed-
boundary multigrid code which is described in detail in Citro et al. [4].

The 3D steady solutions can be obtained, in subcritical conditions, by simply integrating the time-dependent
equations (1) over a sufficiently long time interval. However, since in the present paper we consider also
supercritical conditions, we use a stabilization algorithm to obtain directly the steady solution. The method is
based on the minimization of the residual norm at each integration step. It gives us steady-state solutions even
in the case where they are temporally unstable. The method is briefly described in Citro et al. [13] and was also
used in Citro et al. [4] for the case where the rotation rate of the sphere is imposed. Adaptation to the freely
rotating case simply adds the dynamical equation (1c) to the latter problem, and adaptation of the method to
this case is straightforward.

We discretized the computational domain using structured grids that are symmetric with respect to the plane
z = 0. These meshes are clustered near the sphere surface. We performed several numerical tests showing the
effect of the resolution and domain length on the flow field characteristics to validate our code. In particular, as
an example, we present here the convergence of the lift coefficientCL as the grid is refined. Tables 1 and 2 show
variations of CL less than 0.5% when increasing the number of points and/or lengthening the domain. The
value of the lift coefficient, computed for the same Reynolds number by the Spectral element solver Nek5000,

Table 1 Meshes used in the present study to validate our numerical setup

Mesh Parameters

Lx L y Lz Nx Ny = Nz

M1 35 18 18 288 240
M2 38 21 21 364 320
M3 38 21 21 482 380

Nx , Ny, Nz are the number of points used to discretize the computational domain in x-, y- and z-direction, respectively

Table 2 Influence of the spatial grid resolution and domain extension on the lift coefficient CL at Re = 260

Mesh CL Method

M1 0.06490 IBM
M2 0.06589 IBM
M3 0.06608 IBM
– 0.06592 Nek5000

We compare also the results obtained by using the immersed-boundary multigrid (IBM) code and lift coefficient provided by
Nek5000





where m is the azimuthal wavenumber and λ = λr + iλi is the complex eigenvalue. The generalized
eigenproblem to be solved at this order can be recast in the matrix form:

λBQ1 + A (Q0)Q1 = 0.

The solutions of this problem have to be examined for each value of the azimuthal wavenumber. The
case m = 0 corresponds to axisymmetric modes, and symmetry considerations show that the angular velocity
component of the eigenmodes is in the axial direction, i.e., q̂b

m ≡ ω̂0x. It is found that all these modes are
stable and that the least damped one is a non-oscillating one (λi = 0) corresponding to a motion where the
sphere initially spins around the axial axis and slows down due to friction. This mode also exists in the case of
a freely falling disk and was analyzed in appendix C of Tchoufag et al. [19]. In this reference, it was called the
back-to-zero-rotation mode (BZR). A mode with |m| ≥ 2 does not exert any torque on the sphere and hence
is identical to those of the non-rotating (q̂b

m = 0). Moreover, these modes are also found to be always stable
in the range of Reynolds considered.

Hence, the most interesting case corresponds to azimuthal wavenumbers m = ±1, and as for the fixed,
non-rotating sphere, a Pitchfork bifurcation associated with a steady mode (λr = λi = 0) is detected for
Re = ReOS = 206. Following the assumptionmade by Fabre et al. [11], we consider these twomodes adequate
to quantitatively describe the characteristics of the nonlinear obliquemotion of the sphere for Re > Rec. Hence,
restricting the following analysis to these modes, the general O(ε) solution at the threshold (λr = 0) may be
expressed in the form

Q1 = Â(τ )
[
q̂ f
1 (x, r)eiϕ, q̂b

1

]T + c.c., (4)

where Â(τ ) is the O(ε) complex amplitude of the global mode and c.c. stands for the complex conjugate
quantities, which shall be marked by a ∗ symbol hereafter. Note that since the global mode m = 1 is real,
its complex conjugate directly corresponds to the mode m = −1. Therefore, there is no need to distinguish
between two amplitudes Â+ = A and Â− = A∗ since the latter is completely determined once the former is.

Due to symmetry considerations (see [19]), the component of the m = 1 eigenmode corresponding to the
rotation of the body can be written as q̂b

1 = ω̂+
2 (z + iy), so the orientation of the rotation axis is given by the

argument of Aω̂+. We choose to normalize the eigenmode as ω̂+ = 1, so that the norm of A directly gives the
rotation rate. Moreover, a real A will correspond to rotation around the z axis (and lift along the y axis), while
an imaginary A will correspond to rotation around the y axis (and lift along the z axis).

Terms of order ε2 and ε3 are the solution of linear inhomogeneous problems arising from the expansion of
(1) at the corresponding order. Details about the mathematical structure of these problems and the numerical
procedure used to solve them are given in the Supplemental Material in [12] where the weakly nonlinear
analysis has been performed for the more general case of an unsteady mode. It suffices here to say that at order
ε2, the flow is modified by higher-order harmonics which obey the inhomogeneous linear system of equations

∂tBQ2 + A (Q0)Q2 = F2(Q0, Q1).

The forcing term F2 on the right-hand side is made of three independent terms expressing the effect of
a small variation of Re on the base flow and the interaction of one mode (QA + c.c.) with itself and its c.c.
Using the linear superposition principle, we solve this inhomogeneous equation for each contribution to the
forcing. The ε2-order solution then reads Q2 = Q̂δRe + |A|2Q̂AA∗ + (A2Q̂AAe2iϕ + c.c.).

The problem at order ε3 is also an inhomogeneous linear system, the forcing term F3(Q0, Q1, Q2) depend-
ing on lower-order solutions.More specifically,F3 contains terms of the form∼ eiϕ which are resonant because
they excite the system precisely in the direction of the unstable steady eigenmode. In order to avoid the secular
responses caused by these terms, we use the Fredholm alternative and impose a compatibility condition: the
resonant forcingmust be orthogonal to the adjoint modes. Thesemodes are obtained either in a continuous or in
a discrete form. Here, we chose the latter option and compute the adjoint modes by solving for the eigenmodes
of the hermitian ofA , the linear operator of the O(ε) problem. The compatibility condition then results in the
following amplitude equation:

dA

dt
= (Re − Rec)σ A − μA|A|2, (5)

where (Re − Rec)σ is the exponential growth rate of Q1 in the linear regime, while μ is a real coefficient
responsible for the nonlinear saturation. The numerical value of μ, contrary to that of σ , depends on the nor-
malization of the unstable global mode. Solving for the steady solution of (5), the amplitude of the perturbation
from the axisymmetric flow field reads



A = ±
√

(Re − Rec)σ

μ
. (6)

Having in mind that the solution at order 1 has been normalized so that the angular velocity of the eigen-
modes is 1, this equation directly yields a prediction for the rotation rateω. It is noteworthy that the coefficients
σ and μ appearing in the amplitude equation are actually independent upon the mass ratio ρ̄. This point will
be rediscussed in Sect. 5.

4.2 Results and discussion

As recalled in “Introduction,” a previous attempt at describing the bifurcation leading to the OS state for a
sphere in free fall was done in [20]. Unlike in the present approach, the analysis of [20] assumed the rotation
rate ω to be small and expanded the flow around the sphere as follows:

q = [V, P] = q0 + ωq1 + ω2q2 + ω3q3 + · · · (7)

Injecting this ansatz into the incompressible Navier–Stokes equations, the analysis leads to a prediction of
torque exerted on the sphere under the form:

M = Mωω + Mω3ω3 (8)

It was thus possible to predict the existence of a solution with a nonzero rotation rate given by

ω = ±
√

− Mω

Mω3
(9)

Note that the term Mω becomes positive for Re > ReOS, while the term Mω3 is negative in this range of

Reynolds; hence, Eq. (9) also predicts a supercritical bifurcation for Re > ReOS.
The results to be discussed now correspond to the case of a rotation around the z axis, thus resulting in

a lift force along y. In Fig. 3a, we compare the angular velocity ω of the OS state as predicted by the new
ε-expansion derived in the previous paragraph (Eq. 6), as predicted by the ω-expansion of [20] (Eq. 9), and as
computed numerically in Sect. 3. We also compare in Fig. 3b the associated lift forces corresponding to the
three approaches. The comparison shows that, for both these quantities, the present ε-expansion reproduces
much better the numerical results than the previous ω-expansion. In particular, the failure of the ω-expansion
at ReSS = 212 is not observed anymore in the present approach.

As discussed in [11], the angle γ between the force F and the direction of the incoming flow x (given by
tan γ = Fy/Fx ) directly corresponds to the slope of the path in the corresponding situation where the sphere is
freely falling. This angle is plotted as function of Re in Fig. 3c). We observe again that the present ε-expansion
reproduces much better the numerical results than the previous ω-expansion.

Note that Uhlmann and Dusek [10] studied the case of a sphere in free fall with density ratio ρ̄ = 1.5
and reported for Re � 243 a steady oblique motion characterized by a slope γ � 5.2◦ and a rotation rate
ω � 0.014. These findings thus corroborate quantitatively the results of Fig. 3.

5 Summary and discussion

In this paper, we investigated by using numerical simulations and a weakly nonlinear expansion the steady
flow around a sphere placed at a fixed place in a uniform fluid flow and free to rotate around a transverse axis.
A steady pitchfork bifurcation is reported to find place at a threshold ReOS = 206 leading to a state with zero
torque but nonzero lift. Numerical simulations allow to characterize this state up to Re ≈ 270 and confirm
that it substantially differs from the steady-state solution which exists in the wake of a fixed sphere beyond
the threshold ReSS = 212. A weakly nonlinear analysis, formally valid for ε = (Re − Rec)/Rec � 1, is
carried out and is found to reproduce accurately the results up to Re ≈ 225, giving substantial improvement
over a previous expansion conducted by [11] which was unable to predict the existence of this state beyond
Re > 212. The connection between the present problem and that of a sphere in free fall is discussed. It is
argued that the steady solution of the present problem is also an acceptable solution for the related problem





Secondly, the issue of secondary instability of the steady solution considered here is an open question to
be addressed in future studies. In effect, the ability of the sphere to rotate (or to both rotate and translate)
is expected to have an effect on the Hopf bifurcation which is known to occur in the range Re ≈ 270. In
the time-dependent states resulting from this secondary bifurcation, the angular velocity of the sphere will
no longer be constant but will be given by the time-dependent solution of Eq. (1c). As a first step toward a
rigorous study of this problem, we may look at the stability of the flow around a sphere rotating at exactly the
angular velocity of the OS solution described above. This case actually constitutes a subset of a more general
study conducted by [4], who gave a stability map in the ω − Re plane of the flow around a sphere rotating at
a fixed, constant angular velocity. A more rigorous study of this problem, including the effect of the density
ratio, is left for future studies.
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