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We consider the flow past a sphere held at a fixed position in a uniform incorning flow but free to rotate around a transverse axis. A steady pitchfork bifurcation is reported to take place at a threshold Re 05 = 206 leading to a state with zero torque but nonzero lift. Numerical simulations allow to characterize this state up to Re :=:::: 270 and confirm that it substantially differs from the steady-state solution which exists in the wake of a fixed, non-rotating sphere beyond the threshold Re 55 = 212. A weakly nonlinear analysis is carried out and is shown to successfully reproduce the results and to give substantial improvement over a previous analysis (Fabre et al. in J Fluid Mech 707:24-36, 2012). The connection between the present problem and that of a sphere in free fall following an oblique, steady (OS) path is also discussed.

Introduction

Free falling and rising of particles in Newtonian fluids play an important role in many industrial and natural applications, such as the settling of sediments in lakes, buoyancy-driven bodies in the atmosphere or the dynarnics of catalysts in chernical reactors. The particle motion is caused by the buoyancy force that is balanced by the hydrodynarnic resistance. The resulting wake dynarnics can lead to completely different regimes, such as tumbling, zigzag or steady oblique paths [START_REF] Ern | Wake-induced oscillatory paths of bodies freely rising or falling in fluids[END_REF]. The mechanisms leading to path destabilization are related to intrinsic wake instabilities which induce lift and torque forces on the bodies. Yet, in general, the relation between wake instabilities around a fixed body and path instabilities around a body in free fall is not straightforward as the latter problem is fully coupled and the wake dynarnics are modified by the motion of the body (as discussed for instance in Assemat et al. [START_REF] Assemat | The onset of unsteadiness of two-dimensional bodies falling or rising freely in a viscous fluid: a linear study[END_REF] and Auguste et al. [START_REF] Auguste | Falling styles of disks[END_REF]). Thus, it may be useful to consider intermediate problems in which only some degrees of freedom of the body are allowed. This is the objective of the present paper, where we will consider the flow past a sphere allowed to rotate but not to translate. In an experimental setup, this configuration may correspond, for instance, to the case of a sphere held by a thin transverse wire.

These equations are coupled in two ways. First, the rotation of the sphere results in a boundary condition to be imposed for the velocity of the fluid at the surface of the sphere as V = × r. Secondly, in Eq. (1c) the sphere responds to the torque M exerted by the fluid on it. The latter and the associated force F are given by

F = S T • ndS ≡ F x x + F y y + F z z (2a) M = S r × (T • n)dS ≡ M x x + M y y + M z z. ( 2b 
)
where r denotes the position vector relative to the body center of inertia and T = -PI + Re -1 (∇V + T ∇V) the stress tensor. Note that in the present case, the coupling only involves the torque M while the force F is not coupled to the motion of the sphere, unlike in the more general case considered in [START_REF] Tchoufag | Weakly nonlinear model with exact coefficients for the fluttering and spiraling motion of buoyancy-driven bodies[END_REF]. Finally, this set of equations is completed by the boundary condition V = U 0 x for r → ∞.

In the following, we will be mostly interested in the characterization of steady-state solutions of the problem. According to (2b), such states imply the torque M exerted by the fluid on the sphere to be zero, and the interesting, non-trivial solutions are those with nonzero rotation rate .

Numerical results

We have solved numerically the set of equations (1) using a combined finite-difference second-order immersedboundary multigrid code which is described in detail in Citro et al. [START_REF] Citro | Linear stability and weakly nonlinear analysis of the flow past rotating spheres[END_REF].

The 3D steady solutions can be obtained, in subcritical conditions, by simply integrating the time-dependent equations (1) over a sufficiently long time interval. However, since in the present paper we consider also supercritical conditions, we use a stabilization algorithm to obtain directly the steady solution. The method is based on the minimization of the residual norm at each integration step. It gives us steady-state solutions even in the case where they are temporally unstable. The method is briefly described in Citro et al. [START_REF] Citro | Global stability and sensitivity analysis of boundary-layer flows past a hemispherical roughness element[END_REF] and was also used in Citro et al. [START_REF] Citro | Linear stability and weakly nonlinear analysis of the flow past rotating spheres[END_REF] for the case where the rotation rate of the sphere is imposed. Adaptation to the freely rotating case simply adds the dynamical equation (1c) to the latter problem, and adaptation of the method to this case is straightforward.

We discretized the computational domain using structured grids that are symmetric with respect to the plane z = 0. These meshes are clustered near the sphere surface. We performed several numerical tests showing the effect of the resolution and domain length on the flow field characteristics to validate our code. In particular, as an example, we present here the convergence of the lift coefficient C L as the grid is refined. Tables 1 and2 show variations of C L less than 0.5 % when increasing the number of points and/or lengthening the domain. The value of the lift coefficient, computed for the same Reynolds number by the Spectral element solver N ek5000, We compare also the results obtained by using the immersed-boundary multigrid (IBM) code and lift coefficient provided by N ek5000

where m is the azimuthal wavenumber and λ = λ r + iλ i is the complex eigenvalue. The generalized eigenproblem to be solved at this order can be recast in the matrix form:

λBQ 1 + A (Q 0 )Q 1 = 0.
The solutions of this problem have to be examined for each value of the azimuthal wavenumber. The case m = 0 corresponds to axisymmetric modes, and symmetry considerations show that the angular velocity component of the eigenmodes is in the axial direction, i.e., qb m ≡ ω0 x. It is found that all these modes are stable and that the least damped one is a non-oscillating one (λ i = 0) corresponding to a motion where the sphere initially spins around the axial axis and slows down due to friction. This mode also exists in the case of a freely falling disk and was analyzed in appendix C of Tchoufag et al. [START_REF] Tchoufag | Global linear stability analysis of the wake and path of buoyancy-driven disks and thin cylinders[END_REF]. In this reference, it was called the back-to-zero-rotation mode (BZR). A mode with |m| ≥ 2 does not exert any torque on the sphere and hence is identical to those of the non-rotating ( qb m = 0). Moreover, these modes are also found to be always stable in the range of Reynolds considered.

Hence, the most interesting case corresponds to azimuthal wavenumbers m = ±1, and as for the fixed, non-rotating sphere, a Pitchfork bifurcation associated with a steady mode (λ r = λ i = 0) is detected for Re = Re OS = 206. Following the assumption made by Fabre et al. [START_REF] Fabre | The steady oblique path of buoyancy-driven disks and spheres[END_REF], we consider these two modes adequate to quantitatively describe the characteristics of the nonlinear oblique motion of the sphere for Re > Re c . Hence, restricting the following analysis to these modes, the general O( ) solution at the threshold (λ r = 0) may be expressed in the form

Q 1 = Â(τ ) q f 1 (x, r )e iϕ , qb 1 T + c.c., (4) 
where Â(τ ) is the O( ) complex amplitude of the global mode and c.c. stands for the complex conjugate quantities, which shall be marked by a * symbol hereafter. Note that since the global mode m = 1 is real, its complex conjugate directly corresponds to the mode m = -1. Therefore, there is no need to distinguish between two amplitudes Â+ = A and Â-= A * since the latter is completely determined once the former is. Due to symmetry considerations (see [START_REF] Tchoufag | Global linear stability analysis of the wake and path of buoyancy-driven disks and thin cylinders[END_REF]), the component of the m = 1 eigenmode corresponding to the rotation of the body can be written as qb 1 = ω+ 2 (z + iy), so the orientation of the rotation axis is given by the argument of A ω+ . We choose to normalize the eigenmode as ω+ = 1, so that the norm of A directly gives the rotation rate. Moreover, a real A will correspond to rotation around the z axis (and lift along the y axis), while an imaginary A will correspond to rotation around the y axis (and lift along the z axis).

Terms of order 2 and 3 are the solution of linear inhomogeneous problems arising from the expansion of (1) at the corresponding order. Details about the mathematical structure of these problems and the numerical procedure used to solve them are given in the Supplemental Material in [START_REF] Tchoufag | Weakly nonlinear model with exact coefficients for the fluttering and spiraling motion of buoyancy-driven bodies[END_REF] where the weakly nonlinear analysis has been performed for the more general case of an unsteady mode. It suffices here to say that at order 2 , the flow is modified by higher-order harmonics which obey the inhomogeneous linear system of equations

∂ t BQ 2 + A (Q 0 )Q 2 = F 2 (Q 0 , Q 1 ).
The forcing term F 2 on the right-hand side is made of three independent terms expressing the effect of a small variation of Re on the base flow and the interaction of one mode (Q A + c.c.) with itself and its c.c. Using the linear superposition principle, we solve this inhomogeneous equation for each contribution to the forcing. The 2 -order solution then reads

Q 2 = Qδ Re + |A| 2 QAA * + (A 2 QAA e 2iϕ + c.c.).
The problem at order 3 is also an inhomogeneous linear system, the forcing term

F 3 (Q 0 , Q 1 , Q 2 )
depending on lower-order solutions. More specifically, F 3 contains terms of the form ∼ e iϕ which are resonant because they excite the system precisely in the direction of the unstable steady eigenmode. In order to avoid the secular responses caused by these terms, we use the Fredholm alternative and impose a compatibility condition: the resonant forcing must be orthogonal to the adjoint modes. These modes are obtained either in a continuous or in a discrete form. Here, we chose the latter option and compute the adjoint modes by solving for the eigenmodes of the hermitian of A , the linear operator of the O( ) problem. The compatibility condition then results in the following amplitude equation:

dA dt = (Re -Re c )σ A -μA|A| 2 , ( 5 
)
where (Re -Re c )σ is the exponential growth rate of Q 1 in the linear regime, while μ is a real coefficient responsible for the nonlinear saturation. The numerical value of μ, contrary to that of σ , depends on the normalization of the unstable global mode. Solving for the steady solution of (5), the amplitude of the perturbation from the axisymmetric flow field reads

A = ± (Re -Re c )σ μ . ( 6 
)
Having in mind that the solution at order 1 has been normalized so that the angular velocity of the eigenmodes is 1, this equation directly yields a prediction for the rotation rate ω. It is noteworthy that the coefficients σ and μ appearing in the amplitude equation are actually independent upon the mass ratio ρ. This point will be rediscussed in Sect. 5.

Results and discussion

As recalled in "Introduction," a previous attempt at describing the bifurcation leading to the O S state for a sphere in free fall was done in [START_REF] Fabre | Bifurcations and symmetry breakings in the wake of axisymmetric bodies[END_REF]. Unlike in the present approach, the analysis of [START_REF] Fabre | Bifurcations and symmetry breakings in the wake of axisymmetric bodies[END_REF] assumed the rotation rate ω to be small and expanded the flow around the sphere as follows:

q = [V, P] = q 0 + ωq 1 + ω 2 q 2 + ω 3 q 3 + • • • (7) 
Injecting this ansatz into the incompressible Navier-Stokes equations, the analysis leads to a prediction of torque exerted on the sphere under the form:

M = M ω ω + M ω 3 ω 3 (8) 
It was thus possible to predict the existence of a solution with a nonzero rotation rate given by

ω = ± - M ω M ω 3 (9) 
Note that the term M ω becomes positive for Re > Re OS , while the term M ω 3 is negative in this range of Reynolds; hence, Eq. ( 9) also predicts a supercritical bifurcation for Re > Re OS . The results to be discussed now correspond to the case of a rotation around the z axis, thus resulting in a lift force along y. In Fig. 3a, we compare the angular velocity ω of the OS state as predicted by the new -expansion derived in the previous paragraph (Eq. 6), as predicted by the ω-expansion of [START_REF] Fabre | Bifurcations and symmetry breakings in the wake of axisymmetric bodies[END_REF] (Eq. 9), and as computed numerically in Sect. 3. We also compare in Fig. 3b the associated lift forces corresponding to the three approaches. The comparison shows that, for both these quantities, the present -expansion reproduces much better the numerical results than the previous ω-expansion. In particular, the failure of the ω-expansion at Re SS = 212 is not observed anymore in the present approach. As discussed in [START_REF] Fabre | The steady oblique path of buoyancy-driven disks and spheres[END_REF], the angle γ between the force F and the direction of the incoming flow x (given by tan γ = F y /F x ) directly corresponds to the slope of the path in the corresponding situation where the sphere is freely falling. This angle is plotted as function of Re in Fig. 3c). We observe again that the present -expansion reproduces much better the numerical results than the previous ω-expansion.

Note that Uhlmann and Dusek [START_REF] Uhlmann | The motion of a single heavy sphere in ambient fluid: a benchmark for interface-resolved particulate flow simulations with significant relative velocities[END_REF] studied the case of a sphere in free fall with density ratio ρ = 1.5 and reported for Re 243 a steady oblique motion characterized by a slope γ 5.2 • and a rotation rate ω 0.014. These findings thus corroborate quantitatively the results of Fig. 3.

Summary and discussion

In this paper, we investigated by using numerical simulations and a weakly nonlinear expansion the steady flow around a sphere placed at a fixed place in a uniform fluid flow and free to rotate around a transverse axis. A steady pitchfork bifurcation is reported to find place at a threshold Re OS = 206 leading to a state with zero torque but nonzero lift. Numerical simulations allow to characterize this state up to Re ≈ 270 and confirm that it substantially differs from the steady-state solution which exists in the wake of a fixed sphere beyond the threshold Re SS = 212. A weakly nonlinear analysis, formally valid for = (Re -Re c )/Re c 1, is carried out and is found to reproduce accurately the results up to Re ≈ 225, giving substantial improvement over a previous expansion conducted by [START_REF] Fabre | The steady oblique path of buoyancy-driven disks and spheres[END_REF] which was unable to predict the existence of this state beyond Re > 212. The connection between the present problem and that of a sphere in free fall is discussed. It is argued that the steady solution of the present problem is also an acceptable solution for the related problem Secondly, the issue of secondary instability of the steady solution considered here is an open question to be addressed in future studies. In effect, the ability of the sphere to rotate (or to both rotate and translate) is expected to have an effect on the Hopf bifurcation which is known to occur in the range Re ≈ 270. In the time-dependent states resulting from this secondary bifurcation, the angular velocity of the sphere will no longer be constant but will be given by the time-dependent solution of Eq. (1c). As a first step toward a rigorous study of this problem, we may look at the stability of the flow around a sphere rotating at exactly the angular velocity of the OS solution described above. This case actually constitutes a subset of a more general study conducted by [START_REF] Citro | Linear stability and weakly nonlinear analysis of the flow past rotating spheres[END_REF], who gave a stability map in the ω -Re plane of the flow around a sphere rotating at a fixed, constant angular velocity. A more rigorous study of this problem, including the effect of the density ratio, is left for future studies.

Table 1

 1 Meshes used in the present study to validate our numerical setup

	Mesh	Parameters				
		L x	L y	L z	N x	N y = N z
	M1	35	18	18	288	240
	M2	38	21	21	364	320
	M3	38	21	21	482	380
	N					

x , N y , N z are the number of points used to discretize the computational domain in x-, y-and z-direction, respectively

Table 2

 2 Influence of the spatial grid resolution and domain extension on the lift coefficient C L at Re = 260

	Mesh	C L	Method
	M1	0.06490	IBM
	M2	0.06589	IBM
	M3	0.06608	IBM
	-	0.06592	N ek5000